液压阀口空化机理及对系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用流场仿真、高速观测和频谱测量等方法从流场的微观角度对液压阀口的流道结构、压力梯度、流场流态和空化特性之间的关系进行了系统研究。针对阀口形状复杂、尺寸小、流速快以及流场结构变化剧烈等特点,从各种阀口形式的空化状况分析入手,研究了阀口结构参数、流动参数等因素对空化状态的影响,以及气穴数量、分布等形态要素与系统流量、噪声特性的相关关系。发现气穴的生成和发育受剪切流与涡流两种流态的影响,在高速剪切与低压旋涡并存的情况下,空化更容易受到旋涡的控制。阀口迁移会造成流道内部压力梯度的剧烈变化,进而造成空化初生位置的转移和空化类型的转变。通过多参数寻优的方法得到了空化状态下阀口流量系数的修正公式及流量公式,同时对空化流场进行了可视化观测和频谱分析,发现气泡流的周期性变化频率与空化噪声的高频段基本重合。研究结果为设计高效率、低能耗、低噪声的液压阀和管道系统奠定了基础,具有重要的理论意义和实际应用价值。
     论文的主要内容如下:
     第一章讲述了空化研究的发展历史,在此基础上对液体中的核子模式、空化初生及影响因素、空化机理进行了介绍,重点介绍了液压系统中的空化问题及研究现状。高速流场可视化技术在空化研究,特别是流场分析方面有着重要的作用,本章结合近几年的最新进展对该技术进行了详细阐述,最后根据本课题研究的目的和意义,给出了主要研究内容和研究难点。
     第二章介绍了空化现象的产生机理及空泡动力学的基本理论,静态气泡的生长主要是泡内外压力、温度及表面张力的作用,而运动中的气泡则受到更多因素的影响,除了压强和速度两项主要因素以外,还受到流体粘性、压力梯度以及壁面条件等多种因素干扰,深入了解各项参数对空化过程的作用是空化研究领域中最重要的基础问题之一。在空泡动力学的基础上对空化基本方程以及数值计算的数学模型作了相关介绍。
     第三章主要对研究过程中的实验手段以及数值计算方法作了介绍,在此基础上阐述了论文的研究思路。流场可视化观测是本课题研究的重要基础,本章对微距模式下的高速摄像技术进行了重点介绍,同时结合频谱测量方案介绍了实验系统的搭建过程。对复杂的节流槽结构进行了简化,并得到了简化结构的过流面积计算公式以及过流面积曲线,最后对流场数值计算的模型、网格划分及边界条件参数的设定情况等进行了说明。
     第四章运用高速摄像、噪声分析等手段对不同阀口空化流场及流动特性进行了分析,高速摄相机采用微距放大模式进行观测,结合大量观测结果总结出阀口空化的典型特征,以及和阀腔内部压力分布的相关关系,在此基础上研究了阀口结构及流动参数对空化形态、流量与噪声特性的影响。研究发现空化的产生与流动分离受背压的影响最为明显,进口压力对空化形态及噪声影响次之;对于不同阀口,空化初生位置一般位于节流边与孔壁相交的锐缘区附近,随着阀口开度及深度的变化,初生位置会有较大改变。
     第五章结合大量高速摄像结果,以及流场仿真对阀口内部空化初生情况及初生机理进行了分析,用可视化观测与频谱测量两种方法对空化初生进行了判断,讨论了空化初生的影响因素及预防措施,在此基础上总结出五种典型的空化初生模式,根据每种模式的初生特点给出了空化流场的物理描述,通过对阀口局部压力损失、弯管效应而产生的壁面剥离、沿程压力损失的分析,给出了阀口流动压阻模型,并对旋涡、脉动、流体脱离等因素对空化初生的作用机制进行了分析。
     第六章主要对空化状态下流量饱和现象进行了研究,分析了有无空化对阀口流量特性的影响,以及空化初生和流量饱和的关系。阀口的结构参数,包括阀口形式、开度与节流槽深度,以及流动参数,包括进出口压力等对阀口的空化状态以及流量饱和特性有着重要的决定作用,本章对此进行了专门讨论。在此基础上通过大量实验对阀口流量系数进行了修正,得到了空化状态下阀口流量的修正公式,空化发生后特别是流量饱和时,理论计算与实验结果完全吻合。
     第七章结合频谱测量与流场可视化方法对阀口空化噪声的基本特性进行了研究,分析了空化噪声各频率成分的变化同阀口结构、进出口压力以及空化形态的关系,发现并总结出空化状态下阀口高频噪声随结构及流动参数的变化规律,以及气泡流周期性脱落与噪声声级的内在联系,最后根据研究所得的结论,采用二级节流与回流增压等方法,从流量和噪声两个方面对阀口结构进行了优化设计。
     第八章对本论文的研究内容和成果进行了总结,展望了未来的研究工作。
In this paper, the flow simulation, high-speed observation and spectrum measurement methods are adopted to investigate the relationship of valve port structure, pressure gradient, flow pattern and cavitation characteristic from the microscopic point of view. Against the complex shape, small size, high velocity and dramatic change of flow structure, we studied the effect of structure and flow parameters on the state of cavitation, as well as the relations of cavitation distribution, flow discharge and noise characteristics from analyzing the cavitation status under various forms of valve port. The conclusions are that, the generation and development of cavitation are affected by both shear flow and eddy current. When the two states of flow occur simultaneously, cavitation is more susceptible to the vortex. Valve port transportation will cause dramatic change of the pressure gradient inside flow channel, thereby the cavitation inception location and cavitation type will transfer correspondingly. Through multi-parameter optimization method, we get the modified formula of discharge in the state of cavitation. At the same time, through the visualization and spectrum analysis of flow field, we found that the frequency of bubble flow's cyclical fluctuation is in coincidence with the high frequency of noise. The results are of great theoretical and practical values for the design of high-efficiency, low energy loss and low-noise hydraulic valves and piping system.
     The main contents of the thesis are as follows:
     In chapter 1, the nuclear model, cavitation inception and influencing factors, cavitation mechanism are introduced based on the history of the cavitation research. The emphasis is focused on the cavitation problem in the hydraulic system. High-speed visualization technology in the field of cavitation research, in particular the analysis of flow field, plays an important role. In this chapter, the technology is introduced in detail with the latest progress of last few years. In the end, according the purpose and significance of the study, the major contents and the difficulties of the subject are introduced.
     In chapter 2, the basic theory of cavitation inception mechanism and bubble kinetics are introduced. The growth of the static bubble is the interaction of internal and external pressure, temperature and surface tension. Movement bubbles are subject to more factors, apart from the pressure and speed, other factors such as the fluid viscous, pressure gradient and wall conditions are also of deep interference. Understanding the effect of parameters on cavitation is one of the most important problems in the area of cavitation research. On the basis of bubble kinetics, the fundamental equations and numerical models of cavitation are introduced.
     In chapter 3, the experiment facility and numerical calculation method are presented. Based on this, the scheme of the study method is summarized. The technology of high speed observation, which is the key basis for the research, combined with the spectrum measurement system is introduced. At the same time, the complex structure of valve port is simplified. At the end of this chapter, the method for numerical simulation such as mesh division and the setting of boundary conditions are explained.
     In chapter 4, high-speed observation and noise analysis are adopted to investigate the typical characteristics of cavitation flow, and the relations with pressure distribution inside the valve chamber. Based on this, the effect of valve port structure on cavitation patterns, discharge and noise characteristics are revealed. Both the experimental and the numerical results reveal that the cavitation inception and flow separation have close relationship with the back pressure. As the secondary influencing factor, the change of inlet-pressure also affects the characteristics of cavitation and noise. To different valve port, the position of cavitation inception is invariably near the sharp-edged area where the throttling-edge crosses the side-wall of the orifice, and the inception position changes with the change of valve opening and depth.
     In chapter 5, with large high-speed camera results, as well as simulation of the flow field, the cavitation mechanism within the valve port is analyzed. Cavitation inception is judged by two methods: visual observation and noise spectrum. Based on this, five typical cavitation inception models are summarized. According to the primary characteristics of each model, physical description of flow field is given. Through analyzing the partial pressure loss, elbow effects and pressure loss along the channel, the pressure drag model and coefficient is derived. At last the effect of whirlpools, pulsating and flow separation on cavitation inception is discussed.
     In chapter 6, flow saturation with and without cavitation, as well as the relation of flow saturation and cavitation inception are studied. The structural parameters, including valve port forms, opening and depth, as well as the flow parameters, including inlet and outlet pressure are key factors which determines the cavitation status and flow saturation inside the valve port, the mechanism is discussed. On this basis, discharge coefficient is amended under the state of cavitation through large experiments; the theoretical calculation consistent well with the experimental results especially after the flow is saturated.
     In chapter 7, the characteristic of cavitation noise is studied, and the relations of different noise frequency components with valve port structure, inlet-outlet pressure and cavitation forms are discussed. Under the state of cavitation, the regularity of how high-frequency noise changes with structure and flow parameters, and the intrinsic relation between cyclical shedding bubble flow and sound pressure level are summarized. At last, according to the conclusions, two optimized design methods of valve port structure are proposed.
     In chapter 8, conclusions of the thesis are summarized and the future research proposals are suggested.
引文
1 E.A.Neppiras.Acoustic cavitation:an introduction.Ultronics,1984(22):25-28.
    2 J.Thornycroft and S.W.Barnaby.Torpedo boat destroyer.Proc.Inst.Civil Engrs.,1895(122):51.
    3 L.Rayleigh.On the pressure developed in a liquid during the collapse of a spherical cavity.Phil Mag,1917(34):94-98.
    4 D.Riaboushinsky.Proc.Int.Congress Appl.Mechanics,Stokholm,1930.
    5 M.S.Plesset.The dynamics of cavitation bubbles,J.Appl.Mech,1949(16):277-282.
    6 F.G.Blake.The onset of cavitation in liquids.Tech.Memo.No.12.Acoustical Research Laboratory,Harvard University,Cambridge,Massachusetts,Sep 1949.
    7 B.E.Noltingk and E.A.Neppiras.Cavitation produced by ultrasonics.Proc.Phys.Soc.,London,1950,63B:674-685.
    8 E.A.Neppiras and B.E.Noltingk.Cavitation produced by ultrasonics:theoretical conditions for the onset of cavitation.Proc.Phys.Soc.,London,1951,64B:1032-1038.
    9 H.Poritsky.The collapse or growth of a spherical bubble or cavity in a viscous fluid.Proc.First Nat.Cong.In Appl.Math,1952:813-821.
    10 C.E.Brennen.Cavitation and bubble dynamics.Oxford University Press,1995.
    11 D.Chatterjee and V.H.Amkeri.Towards the concept of hydrodynamic cavitation control,J.Fluid Mech.,1997,332:377-394.
    12 F.E.Fox and K.F.Herzfeld.Gas bubbles with organic skin as cavitation nuclei,J.Acoust.Soc.Am.,1954(26):984-989.
    13 M.G.Sirotyuk.Stabilization of gas bubbles in water.Soy.Phys.Acoust.,1970(16):237-240.
    14 D.E.Yount.Skins of varying permeability:a stabilization mechanism for gas cavitation nuclei,J.Acoust.Soc.Am.,1979(65):1429-1439.
    15 D.E.Yount,E.W.Gillary,and D.C.Hoffman.A microscopic investigation of bubble formation nuclei.J.Acoust.Soc.Am.,1984(76):1511-1521.
    16 E.N.Harvey,D.K.Barnes,W.D.McEIroy,A.H.Whiteley,D.C.Pease and K.W.Cooper.Bubble formation in animals.J.Cell Comp.Physiol.,1944(24):1-22.
    17 A.A.Atchley and A.Prosperetti.The crevice model of bubble nucleation,J.Acoust.Soc.Am.,1989(86):1065-1084.
    18 J.Frenkel.Kinetic theory of liquids.Dover,New York.,1955.
    19 D.H.Trevena.Cavitation and the generation of tension in liquids.J.Phys.D.,1984(17):2139-2164.
    20 朱自强.应用计算流体力学.北京:北京航空航天大学出版社,1998.
    21 何永森,刘邵英.机械管内流体数值预测.北京:国防工业出版社,1999.
    22 傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002.
    23 P.Giovanneschi and D.Dufresne.Experimental study of laser-induecd cavitation bubbles,Journal of Applied Physics,1985,58(2):651-652.
    24 I.Akhatov,O.Lindau,A.Topolnikov and R.Mettin etc.Collapse and rebound of a laser-induced cavitation bubble.Physics of fluid,2001,13(10):2805-2819.
    25 E.A.Brujan,G.S.Keen,A.Vogel and J.R.Blake.The final stage of the collapse of a cavitation bubble close to a rigid boundary.Physics of Fluids,2000,14(1):85-92.
    26 P.B.Robinson,J.R.Blake,T.Kodama,A.Shima and Y.Tomita.Interaction of cavitation bubbles with a free surface.Journal of Applied Physics,2001,89(12):8225-8237.
    27 H.G.Flynn.Physics of acoustic cavitation in liquids.In:Physical Acoustics,Part B.Academic Press,New York,1964(1):57-172.
    28 P.S.Espstein and M.S.Plesset.On the stability of gas bubbles in liquid-gas solution.J.Chen Phys,1950(18):1505-1509.
    29 K.A.Morch.Cavitation nuclei and bubble formation-a dynamic liquid-solid interface problem.Proceedings of the ASMF/JSME Fluids Engineering Division Summer Meeting,San Francisco,July 18-23,1999.
    30 J.W.Holl.Nuclei and Cavitation.Journal of Basic Engineering,1970,681-687.
    31 R.E.A.Arndt.Cavitation in fluid machinery and hydraulic structures.Ann.Rev.Fluid Mech.,1981(13):273-328.
    32 D.D.Joseph.Cavitation and the state of stress in a flowing liquid.J.Fluid Mech.,1998(366):367-378.
    33 R.Knapp.J.W.Daily and F.Hammit.Cavitation.McGraw Hill,1970.
    34 M.Plesset.Tensile strength of liquids.Office of Naval Res.Rep.,1969,85-4.
    35 J.C.Fisher.The fracture of liquids.J.Appl.Phys,1948(19):1062-1067.
    36 T.Kuhl,M.Ruths,Y.Chen and J.Israelachvili.Direct visualization of cavitation and damage in ultrathin liquid films.J.Heart Valve Disease(suppl.Ⅰ),1994(3):117-127.
    37 T.G.Leighton.The acoustic bubble.Academic Press,San Diego,California,1997.
    38 黄继汤,空化与空蚀的原理及应用.清华大学出版社,1991.
    39 S.Gopalan,J.Katz and O.Knio.The flow structure in the near field of jets and its effect on cavitation inception.J.Fluid Mech.,1999,398:1-43.
    40 J.H.Konrad.An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions.PhD thesis,Caltech.1976.
    41 R.E.Breidenthal.Structure in turbulent mixing layers and wakes using a chemical reaction.J.Fluid Mech.,1981,116:1-24.
    42 J.Jimenez.A spanwise structure in the plane mixing layer.J.Fluid Mech.,1983,132:319-336.
    43 L.P.Bernai.The coherent structure in turbulent mixing layers.Ⅱ.Secondary streamwise vortex structure.PhD thesis,Caltech.1981.
    44 L.P.Bernal and A.Roshko.Streamwise vortex structure in plane mixing layers.J.Fluid Mech.,1986,170:499-525.
    45 J.C.Lasheras,J.S.Cho and T.Maxworthy.On the origin and evolution of streamwise vortical structures in a plane,free shear layer.J.Fluid Mech.,1986,172:231-258.
    46 R.W.Kermeen and B.R.Parkin.Incipient cavitation and wake flow behind sharp-edged disks.Cal.Inst.Tech.,Hydrodyn.Lab.Rep.1957:85-4.
    47 K.K.Ooi and A.J.Acosta.The utilization of specially tailored air bubbles as static pressure sensors in a jet.Trans.ASME Ⅰ:J.Fluids Engng,1983,106:459-465.
    48 V.E.Johnson,G.L.Chahine,W.T.Lindenmuth,A.E Conn,G.S.Frederick and G.J.Giacchino.Cavitating and structured jets for mechanical bits to increase drilling rate.ASME Paper 82-Pet-13,Energy Sources Technology Conference and Exhibition,March 7-10,1982,New Orleans,LA.
    49 J.Katz.Cavitation phenomena within regions of flow separation.J.Fluid Mech.,1984,140:497-536.
    50 J.Katz and T.J.O'Hern.Cavitation in large scale shear flows.Trans ASME Ⅰ:J.Fluids Engng,1986, 108:373-376.
    51 T.J.O'Hern.An experimental investigation of turbulent shear flow cavitation.J.Fluid Mech.,1990,215:365-391.
    52 B.Ran and J.Katz.The response of microscopic bubbles to sudden changes in ambient pressure.J.Fluid Mech.,1991,224:91-115.
    53 B.Ran and J.Katz.Pressure fluctuations and their effect on cavitation inception within water jets.J.Fluid Mech.,1994,262:223-263.
    54 B.Belahadji,J.P.Franc and J.M.Michel.Cavitation in the rotational structures of a turbulent wake.J.Fluid Mech.,1995,287:383-403.
    55 J.Pauchet,A.Retailleau and J.Woillez.The prediction of cavitation inception in turbulent water jets.ASME Cavitation and Multiphase Flow Forum,1992,135:149-158.
    56 R.E.A.Arndt.Vortex cavitation in fluid vortices.Springer,1995:731-782.
    57 R.Kobayashi.Effect of cavitation on the discharge coefficient of standard flow nozzles.Trans.ASME D:J.Basic Engng,1967,89(3):677-655.
    58 J.H.J.Vander Maeulen.Cavitation Suppression by Polymer Injection.ASME Cavitation and Polyphase Flow Forum,1973.
    59 胡明龙,紊动剪切流中气核振荡对空化的作用.水动力学研究与进展,1994,9(2):182-189.
    60 J.W.Holl and G.F.Wislicenus.Scale Effects on Cavitation.ASME Journal of Basic Engineering,1961,83:385-398.
    61 M.L.Billet and J.W.Holl.Scale effects on various types of limited cavitation.Journal of Fluids Engineering,1981,103:405-414.
    62 B.W.McCormick.On Cavitation Produced by a Vortex Trailing From a Lifting Surface.Journal of Basic Engineering,1962:369-379.
    63 K.J.Farrell and M.L.Billet.A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps.Journal of Fluids Engineering,1994,116:551-557.
    64 B.W.McCormick,J.L.Tangler and H.E.Sherrieb.Structure of trailing vortices.Aircraft,1968.
    65 A.P.Keller.New Scaling Laws for Hydrodynamic Cavitation Inception.The Second Int.Symp on Cavitation,Tokyo,Japan,1994.
    66 A.P.Keller and H.Rott.The Effect of Flow Turbulence on Cavitation Inception.ASME FED Summer Meeting,Vancouver,1997.
    67 A.Pauehet,M.L.Briancon and D.H.Fruman.Recent Results on the Effect of Cross Section on Hydrofoil Tip Vortes Occurrence at High Renolds Numbers.Cavitation and Multiphase Flow Forum,Washington,D.C.,1993.
    68 X.Viot,C.H.Jeanson and D.H.Fruman.Tip Vortex Cavitation Effect of Hydrofoil Fractionation.Thrid Int.Symp on Cavitation,Grenoble,1998.
    69 倪汉根.初生空化数比尺效应的修正.水利学报,1999(9):28-32.
    70 F.Numachi.Uber die Kavitationsentstehung mit besonderen Bezug auf den Luftgehalt des Wassers.Tech.Rept of Tohoku Imp.University,Vol.Ⅻ,No.3,1937.
    71 F.G.Hammitt.Cavitation and Multiphase Flow Phenomena.McGraw-Hill Inc.,1980.
    72 何国庚,罗军,黄素逸.空化初生的热力学影响研究.华中理工大学学报,1999,27(1):66-68.
    73 J.H.J.Vander Meulen.A holographic study of cavitation on:axisymmetric bodies and the influence of polymer additives.NSMB Publication,No.509,Wegeningen,1976.
    74 J.W.Holl,R.E.Holl,A.Amdt,M.D.Billet and C.B.Buker.Cavitation research at Garfield Thomas water Tunnel.Proc of Conference on Cavitation Inst of Mech,Mech Eng,Edinburgh,1974.
    75 Y.Lecoffre.Cavitation Bubble Trackers.A.A.Balkema.Brookfield.VT.1999.
    76 Y.Kawanami,H.Kato,M.Tanimura and Y.Tagaya.Mechanism and Control of Cloud cavitation.J.Fluid Eng.T.ASME.,1997,119:788-794.
    77 S.Gopalan and J.Katz.Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation.Phys.Fluids,2000,12(4):895-911.
    78 I.N.Kirschner.Results of Selected Experiments Involving Supercavitating Flows.VKI Lecture Series on Supereavitating Flows.VKI Press.Brussels.Belgium.2001.
    79 E.P.Rood.Review-mechanisms of cvitation inception.Journal of Fluids Engineering,1991,113:163-175.
    80 V.H.Arakeri and A.J.Aeosta.Viscous Effects in the Inception of Cavitation on Axisymmetric Bodies.J.Fluid Eng.T.ASME,1973,95(4):519-527.
    81 V.H.Arakeri.Viscous Effects on the Position of Cavitation Separation from Smooth Bodies.Journal of Fluid Mechanics Digital Archive,1975.
    82 J.P.Franc and J.M.Michel.Attached Cavitation and the Boundary Layer:Experimental Investigation and Numerical Treatment.Journal of Fluid Mechanics,1985,154:63-90.
    83 A.Kubota,H.Kato,H.Yamaguehi and M.Maeda.Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique.J.Fluid Eng-T.ASME,1989,111:204-210.
    84 Y.K.De Chizelle,S.L.Ceceio and C.E.Brennen.Observation and scaling of traveling bubble cavitation.J.Fluid Mech,1995,293:96-126.
    85 C.Y.Li and S.L.Ceecio.Interaction of single traveling bubbles with the boundary layer and attached cavitation.J.Fluid Mech,1996,322:329-353.
    86 Z.Liu and C.E.Brennen.Cavitation nuclei population and event rates.Trans.ASME Ⅰ:J.Fluids Engng,1998,120:728-737.
    87 S.Ceceio,S.Gowing and Y.T.Shen.The effects of salt water on bubble cavitation.J.Fluid Eng-T.ASME,1997,119:155-163.
    88 B.Stutz and J.L.Reboud.Two-phase flow structure of sheet cavitation.Phys.Fluids,1997,9(12):3678-3686.
    89 B.Stutz and J.L.Reboud.Experiments on unsteady cavitation.Exp.Fluids,1997,22:191-198.
    90 G.E.Reisman,Y.C.Wang and C.E.Brennen.Observations of shock waves in cloud cavitation.J.Fluid Mech,1998,355:255-283.
    91 M.Callenaere,J.P.Franc,J.M.Michel and M.Riondet The cavitation instability induced by the development of a re-entrant jet.J.Fluid Mech,2001,444:223-256.
    92 Warjito,O.Mochizuki,M.Kiya.Bubbly flow undergoing a steep pressure gradient.Experiments in Fluids 2002,33:620-628.
    93 林建亚,何存兴.液压元件.北京:机械工业出版社,1993.
    94 路甬祥等.电液比例控制技术.北京:机械工业出版社,1988.
    95 吴根茂,邱敏秀,王庆丰等.实用电液比例技术.杭州:浙江大学出版社,1993.
    96 李运华,史维祥.液压技术现状及发展趋势.机床与液压,1994,(4):187-193.
    97 杨尔庄.二十一世纪液压技术现状及发展趋势(续).液压与气动,2000(4):1-3.
    98 T.Hirohisa.Fluid power control technology—present and near future.JSME International Journal,Series C,1994,37(4):629-637.
    99 B.Wolfgang.Concerning:research and development in fluid power technology.Proc.of 1~(st) FPNI-PhD Symp.Hamburg,2000:9-21.
    100 王东,李壮云.水液压系统的特性及关键技术的研究分析.现代机械,2000(4):45-49.
    101 周华,杨华勇.重新崛起的现代水压传动技术.液压气动与密封,2000,4:6-9.
    102 路甬祥.流体传动与控制技术的历史进展与展望.机械工程学报,2001,37(10):1-9.
    103 郁凯元,路甬祥.闭环控制先导比例溢流阀压力—流量特性计算机仿真.中国机械工程,2000,11(6):658-661.
    104 王庆国,苏东海.二通插装阀控制技术.北京:机械工业出版社,2001.
    105 周福章等.高速开关阀的设计和研究.机械工程学报,1998,34(5):101-105.
    106 施光林,钟廷修.高速开关阀的研究与应用.机床与液压,2000(2):7-9.
    107 夏春林,丁凡,路甬祥,超磁致伸缩电一机械转换器模型分析.中国机械工程,2000,11(11):1299-1291.
    108 张显奎,许耀明.光控伺服系统及在流体控制中的应用研究现状与发展.液压与气动,1996(3):15-18.
    109 杨曙东,吴双成等.工程塑料在水压元件中的应用研究.中国机械工程,2000,11(10):93-1195.
    110[日]濑良恭史.陶瓷涂层齿轮泵的特点.液压与气动,1989(1):49-53.
    111 刘文艳,胡国清.陶瓷液压系统综述—目前液压发展的新方向.液压与气动,1998(6):3-6.
    112 I.Fumihiro,O.Eisuke,et al.Experimental study on control valve cavitation.(3rd Report,vortex shedding and cavitation inception on a contoured plug),Transactions of the Japan Society of Mechanical Engineers,Part B,1993,59(562):1905-1912.
    113 S.Washio,S.Takahashi et al.Study on cavitation inception in hydraulic oil flow through a long two-dimensional constriction.Journal of Engineering Tribology,2001,15(4):373-386.
    114 I.Avrahami,M.Rosenfeld and S.Einav.Can vortices in the flow across mechanical heart valves contribute to cavitation.Medical & Biological Engineering & Computing,Jan.2000,38(1):93-97.
    115 W.Guoyu,C.shuliang,I.Toshiaki.Vortex cavitation mechanisms in shear layer flow.Journal of Tsinghua University,2001,41(10):62-64,89.
    116 D.Becher and S.Helduser.Innovative pump design to reduce pressure pulsations of axial piston pumps.Workshop on Power Transmission and Motion Control,University of Bath,Bath,England,2000,127-138.
    117 T.M.Pham,F.Larrarte and D.H.Fruman.Investigation of unsteady sheet cavitation and cloud cavitation mechanism.Journal of fluid engineering,1999,121:289-296.
    118 S.Hongqi.Experimental investigation of inception cavitation in liquid-solid two phase turbulent flow.Journal of Hydrodynamics,1991,3(4):118-122.
    119 S.Cerutti,O.M.Knio and J.Katz.Numerical study of cavitation inception in the near field of an axisymmetdc jet at high Reynolds number.Physics of Fluids,2000:2444-2460.
    120 Y.Ventikos and G.Tzabiras.A numerical method for the simulation of steady and unsteady cavitating flows.Computers and Fluids,2000,29(1):63-88.
    121 D.Philippe and C.Ernesto.Numerical prediction of the cavitation in pumps.American Society of Mechanical Engineers,Fluids Engineering Division(Publication),2002,257(2):825-833.
    122 F.Moritz,S.Sudolf,et al.Numerical and experimental investigations of the cavitating flow in a centrifugal pump impeller.American Society of Mechanical Engineers,Fluids Engineering Division (Publication),2002,257(1):361-368.
    123 A.Ficarella and D.Laforgia.Experimental and numerical investigation on cavitating flows in diesel injection systems.Meccanica,1998,33(4):407-425.
    124 D.McCloy and A.Beck.Some cavitation effects in spool valve orifices.Proceedings Institution Mechanical Engineers,Part 1,1967-1968,182(8):163-174.
    125 D.MeCloy and A.Beck.Flow Hysteresis in spool valves.Proceedings of the First BHRA Fluid power Symposium,Cranfield,1969:170-182.
    126A.Lichtarowiez and I.D.Pearce.Cavitation and Aeration effects in long orifices.Cavitation Conference,Institution Mechanical Engineers,Edinburgh,Sept.3-5,1974:129-144.
    127 D.C.Wiggert,C.S.Martin and H.Medlarz.Cavitation damage mechanisms:review of literature,Technical Report AFAPL-TR-79-2125,U.S.Air Force Aero Propulsion Laboratory,Feb.1980.
    128 Y.Aoyama,Y.Matsuoka,M.Yamamoto,et al.The cavitation performance of an oil hydraulic poppet valve.Transactions of the Japan Society of Mechanical Engineers,Part B,1988,54(503):1710-1715.
    129 Y.Aoyama,Y.Matsuoka,M.Yamamoto,et al.Cavitation near orifice in oil hydraulic equipment (converging flow in poppet valve).Transaction of the Japan society of Mechanical Engineers,1983,49(447):2282-2291.
    130 Oshima,Ryoichiro.Simple rule of cavitation inception in large butterfly-valves.Nippon Kikai Gakkai Ronbunshu,B Hen,1988,54(504):1885-1890.
    131 Y.S.Liu,Y.Huang,Z.Y.Li.Experimental investigation of flow and cavitation characteristics of a two-step throttle in water hydraulic valves.Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,,2002,216:105-111.
    132 S.Oshima,T.Leino,M.Linjama.Experimental study on cavitation in water hydraulic poppet valve.Transactions of the Japan Fluid Power System Society,2002,33(2):29-35.
    133 Y.Ishii,Y.Yonezawa,T.Tsukiji and S.Ishii.Flow visualization in a three-dimensional poppet valve.The 4~(th) triennial international symposium on fluid control,fluid measurement and visualization 1994TOULOUSE-FRANCE.1994:1095-1099.
    134 S.T.Weber,Johnston,K.A.Edge.Flow visualization of a load control valve.The Seventh Scandinavian International Conference on Fluid Power,SICFP'01,Sweden,2001:87-102.
    135 C.S.Martin,H.Medlarz,D.C.Wiggert.Cavitation inception in spool valve.Journal of fluid engineering,Transaction of the ASME,1981,103:564-574.
    136 C.S.Martin and P.R.Veerabhardra.Application of signal analysis to cavitation.Transaction of the ASME,1984,106:342-346.
    137 H.A.Heron.The control of cavitation in valve.The 7~(th) international fluid power symposium,Sept 16-18,1986,England,275-283.
    138 S.Oshima,T.Ichikawa.Cavitation phenomena and performance of oil hydraulic poppet valve(1rd report,Mechanism of generation of cavitation and flow performance).Bulletin of JSME,1985,28(244):2264-2271.
    139 S.Oshima,T.Ichikawa.Cavitation phenomena and performance of oil hydraulic poppet valve(2ed report,influence of the chamfer length of the seat and the flow performance).Bulletin of JSME,1985,28(244):2272-2279.
    140 S.Oshima,T.Ichikawa.Cavitation phenomena and performance of oil hydraulic poppet valve(3rd report,influence of the poppet angel and oil temperature on the flow performance).Bulletin of JSME,1986,29(249):743-750.
    141 S.Oshima,T.Ichikawa.Cavitation phenomena and performance of oil hydraulic poppet valve(5rd report,influence of the dimensions of valve on the thrust force characteristics).Bulletin of JSME,1986,29(251):1427-1433.
    142 S.Oshima,T.Leino,M.Linjama,et al.Effect of cavitation in water hydraulic poppet valves.International journal of fluid power,2001,2(3):5-13.
    143 K.Horinouchi,T.Yonekawa,I.Shigo,et al.Numerical Study of Flow Cavitation.SAE Transactions,1990,99(6):1133-1140.
    144 H.Ueno,A.Okajima,H.Tanaka,et al.Noise Measurement and Numerical Simulation of Oil Flow in Pressure Control Valves.JSME International Journal,series B,1994.37(2):336-341.
    145 T.Tetsuhiro,S.Hirokazu,S.Takashi and S.Takehiko.Flow visulazation in hydraulic holding valve.Proceedings of the Third JHPS International Symposium on Fluid Power,Yokohama,4-6 Nov.1996:437-441.
    146 陈寿阳,金朝铭,陈卓如.圆管阻尼器的气穴研究.机床与液压,1998,4:24-25.
    147 高红,傅新,杨华勇,築地徹浩.锥阀阀口气穴流场的数值模拟与试验研究.机械工程学报,2002,38(8):27-30.
    148 G.Hong,F.Xin,Y.Huayong,T.Tsukiji.Numerical investigation of cavitating flow behind the cone of a popoet valve in water hydraulic systerm.Journal of Zhejiang University SCIENCE,2002,3(4):395-400.
    149 冀宏,傅新,杨华勇,王庆丰.非全周开口滑阀压力分布测量研究.机械工程学报,2004,40(4):99-102.
    150 冀宏,傅新,杨华勇,王庆丰.节流槽型阀口噪声特性试验研究.机械工程学报,2004,40(11):42-46.
    151 曹秉刚,郭卯应,中野和夫,史维祥.锥阀流场的边界元法解析.机床与液压,1991(2):2-10.
    152 S.Weixiang,C.Binggang and T.Zhiyong.Review and progress on flow force of a poppet valve.Fluid Power,Proceedings of the second JHPS international symposium on fluid power Tokyo,6-9 september,1993:423-428.
    153 胡国清,罗任飞.ASM和K-E模型对比研究液压集成块流道.水动力学研究与进展,A辑,1998,13(1):8-13.
    154 高殿荣.液压技术中复杂流道流场的数值模拟与可视化研究.燕山大学博士学位论文,2001.01.
    155 陈卓如,李元勋,金朝铭.液压马达端面配流副径向密封带压力场数值求解及分析.中国机械工程,1996,7(2):38-41.
    156 王林祥,陈鹰,路甬祥.液压阀道中的三维流体流动的数值分析.中国机械工程,1999,10(2):127-129.
    157 袁新明,毛根海,张土乔.阀门流道流场的数值模拟及阻力特性研究.水利发电学报,1999,67(4):60-66.
    158 K.K.Lau,K.A.Edge,D.N.Johnston.Impedance characteristics of hydraulic orifices.Proc Instn Mech Engrspart 1:Journal of Systems and Control Engineering,1995,209:241-253.
    159 M.M.Rahman,J.L.F.Porteiro,S.T.Weber.Numerical simulation and animation of oscillating turbulent flow in a counterbalance valve.The 32~(nd) Intersociety Energy Conversion Engineering Conference(IECEC-97),1997,Honolulu,Hawaii,July 27-Aug.02,1997.
    160 H.Toshiyuki,C.Ping and H.Satoru.Numerical analysis of transient flow through a pipe orifice(time constant for the setting flow).JSME International Journal,Series B,1995,38(2):157-163.
    161 K.Schr(o|¨)der,H.Gelbe.Two and three-dimensional CFD-simulation of flow-induced vibration excitation in tube bundles.Chemical Engineering and Processing,1999,38:621-629.
    162 M.Koch,A.G.R.Evans,A.Brunnschweiler.Simulation and fabrication of micomachined cantilever valves.Sensors and Actuators A,1997,62:756-759.
    163 D.C.Pountney,W.Weston,M.R.Banieghbal.A numerical study of turbulent flow characteristics of servo-valve orifices.Proceedings of the Institution of Mechanical Engineers,Part A.Power and process engineering,1989,203:139-147.
    164 T.Uchiyama.Numerical simulation of cavitating flow using the upstream finite element method.Applied Mathematical Modelling,1998,22:235-250.
    165 V.S.Moholkar and A.B.Pandit.Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation.Chemical Engineering Science,2001,56:1411-1418.
    166 J.Murphy,D.Schmidt,S.P.Wang and M.L.Corradini.Multi-dimensional modelling of multiphase flow physics:high-speed nozzle and jet flows—a case study.Nuclear Engineering and Design,2001,204:177-190.
    167 Y.Weixing,S.J(u|¨)rgen and H.S.G(u|¨)nter.Modeling and computation of unsteady cavitation flows in injection nozzles.Mec.Ind.,2001(2):383-394.
    168 D.Collins.The Story of KODAK.New York:Harry Abrams.1995.
    169 E.J.Marey.Determination experimental du mouvement del ailes des insects pendant le vol.C.R.Acad.Sci.,1868,67:1341-1345.
    170 A.M.Worthington.A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate.Proc.R.Soc.London,1876,25:498-503.
    171 C.V.Boys.On electric spark photographs;or,photography of flying bullets,etc.,by the light of the electric spark.Nature,1893,47:415-421.
    172 H.E.Edgerton,J.R.Killian.Flash! Seeing the Unseen by Ultra High-Speed Photography.Cambridge,MA:MIT Press,1954.
    173 E.Jussim,G.Kayafas.Stopping Time:The Photographs of Harold Edgerton.New York:Harry Abrams,1987.
    174 W.S.Boyle,G.E.Smith.Charge-coupled semiconductor devices.Bell Syst.Tech.J.,1970,49:587-93.
    175 F.L.J.Sangster,K.Teer.Bucket-brigade electronics.IEEE J.Solid-State Circuits,1969,4:131-136.
    176 A.L.Yarin.Drop iMPact dynamics:splashing,spreading,receding,bounding.Annu.Rev.Fluid Mech,2006,38:159-192.
    177 E.Villermaux.Fragmentation.Annu.Rev.Fluid Mech,2007,39:419-446.
    178 X.Chen,S.Mandre,J.J.Feng.Partial coalescence between a drop and a liquidliquid interface.Phys.Fluids,2006,18:051705.
    179 Y.H.Chen,H.Y.Chu.Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap.Phys.Rev.Lett.,2006,96:034505.
    180 T.Gilet,K.Mulleners,J.P.Lecomte,N.Vandewalle and S.Dorbolo.Critical parameters for the partial coalescence of a droplet.Phys.Rev.E,2007,75:036303.
    181 S.T.Thoroddsen and K.Takehara.The coalescence cascade of a drop.Phys.Fluids,2000,12:1265-1267.
    182 R.A.Menchaca,D.A.Martinez,R.Nunez,S.Popinet and S.Zaleski.Coalescence of liquid drops by surface tension.Phys.Rev.E,2001,63:046309.
    183 S.T.Thoroddsen,K.Takehara and T.G.Etoh.The coalescence speed of a pendent and a sessile drop.J.Fluid Mech.,2005,527:85-114.
    184 M.Wu,T.Cubaud,C.M.Ho.Scaling law in liquid drop coalescence driven by surface tension.Phys.Fluids,2004,16:51-54.
    185 S.T.Thoroddsen,T.G.Etoh,K.Takehara and N.Ootsuka.On the coalescence speed of bubbles.Phys. Fluids,2005,17:071703.
    186 W.D.Ristenpart,P.M.McCalla,R.V.Roy and H.A.Stone.Coalescence of spreading droplets on a wettable substrate.Phys.Rev.Lett.,2006,97:064501.
    187 J.C.Burton and P.Taborek Role of dimensionality and axisymmetry in fluid pinchoff and coalescence.Phys.Rev.Lett.,2007,98:224502.
    188 R.Rioboo,C.Tropea and M.Marengo.Outcomes from a drop iMPact on solid surfaces.At.Sprays,2001,11:155-165.
    189 A.Rozhkov,B.Prunet-Foch,M.Vignes-Adler.IMPact of water drops on small targets.Phys.Fluids,2002,14(3):485-501.
    190 L.Xu,W.W.Zhang,S.R.Nagel.Drop splashing on a dry smooth surface.Phys.Rev.Lett.,2005,94:184505.
    191 S.T.Thoroddsen,T.G.Etoh and K.Takehara.Crown-breakup by Marangoni instability.J.Fluid Mech.,2006,557:63-72.
    192 A.U.Chen,P.K.Notz and O.A.Basaran.Computational and experimental analysis of pinch-off and scaling.Phys.Rev.Lett.,2002,88:174501.
    193 J.C.Burton,R.Waldrep and P.Taborek.Scaling and instabilities in bubble pinch-off.Phys.Rev.Lett.,2005,94:184502.
    194 N.C.Keim,P.MΦler,W.W.Zhang and S.R.Nagel.Breakup of air bubbles in water:memory and breakdown of cylindrical symmetry.Phys.Rev.Lett.,2006,97:144503.
    195 S.T.Thoroddsen,T.G.Etoh and K.Takehara.Experiments on bubble pinch-off.Phys.Fluids,2007,19:042101.
    196 S.T.Thoroddsen,T.G.Etoh and K.Takehara.Microjetting from wave focusing on oscillating drops.Phys.Fluids,2007,19:052101.
    197 T.B.Benjamin and A.T.Ellis.The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries.Philos.Trans.R.Soc.A,London,1966,260:221-240.
    198 Y.Tomita and A.Shima.High-speed photographic observations of laser-induced cavitation bubbles in water.Acustica,1990,71:161-71.
    199 E.A.Brujan,K.Nahen,P.Schmidt and A.Vogel.Dynamics of laser-induced cavitation bubbles near an elastic boundary.J.Fluid Mech.,2001,433:251-281.
    200 O.Lindau and W.Lauterborn.Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall.J.Fluid Mech.,2003,479:327-348.
    201 R.P.Tong,W.P.Schiffers,S.J.Shaw,J.R.Blake and D.C.Emmony.The role of 'splashing' in the collapse of a laser-generated cavity near a rigid boundary.J.Fluid Mech.,1999,380:339-361.
    202 J.R.Blake,M.C.Hooton,P.B.Robinson and R.P.Tong.Collapsing cavities,toroidal bubbles and jet iMPact.Philos.Trans.R.Soc.A,London,1997,355:537-550.
    203 S.J.Putterman and K.R.Weninger.Sonoluminescence:how bubbles turn sound into light.Annu.Rev.Fluid Mech.,2000,32:445-476.
    204 M.P.Brenner,S.Hilgenfeldt and D.Lohse.Single-bubble sonoluminescence.Rev.Mod.Phys.,2002,74:425-484.
    205 C.D.Ohl,O.Lindau and W.Lauterborn.Luminescence from spherically and aspherically collapsing laser induced bubbles.Phys.Rev.Lett.,1998,80:393-396.
    206 B.C.Khoo,E.Klaseboer and K.C.Hung.A collapsing bubble-induced micropump using the jetting effect.Sens.Actuators A,2005,118:152-161.
    207 N.Bremond,M.Arora,C.D.Ohl and D.Lohse.Controlled multibubble surface cavitation.Phys.Rev.Lett.,2006,96:224501.
    208 T.Hori and J.Sakakibara.High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids.Meas.Sci.Technol,2004,15:1067-1078.
    209 J.W.Shah and P.E.Dimotakis.Reynolds-number effects and anisotropy in transverse-jet mixing.J.Fluid Mech.,2006,566:47-96.
    210 J.Sheng,E.Malkiel,J.Katz.Single beam two-view holographic particle image velocimetry.Appl.Opt.,2003,42:235-250.
    211 C.E.Brennen.FUNDAMENTALS OF MULTIPHASE FLOW.Cambridge University Press,2005.
    212 杨庆.空化初生机理及比尺效应研究.博士学位论文,四川大学,2005.
    213 FLUENT,User's Guide Version 6.Fluent Inc.,2003.
    214 V.Yakhot and S.A.Orszag.Renormalization Group Analysis of Turbulence.Basic theory.Journal of scientific computing,1986,1:39-51.
    215 L.M.Smith and W.C.Reynolds.On the Yakhot-orszag Renormalization Group Method for Deriving Turbulences Statics and Models.Physics of Fluid A,1992,4(4):364-390.
    216 B.E.Launder and D.B.Spalding.The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    217 M.Wolfstein.The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient.Int.J.Heat Mass Transfer,1969,12:301-318.
    218 H.C.Chen and V.C.Patel.Near-Wall Turbulence Models for Complex Flows Including Separation.AIAA Journal,1988,26(6):641-648.
    219 B.U.Chandra and S.R.Chakravarthy.Experimental investigation of cavity-induced acoustic oscillations in confined supersonic flow.Journal of Fluids Engineering(Transactions of the ASME),2005,127(44):761-769.
    220 王国玉,曹树良,赵令家等.高速水流中旋涡空化所引起的空蚀和振动.工程热物理学报,2002,23(6):707-710.
    221 Z.Bikai,H.Yan,Z.Tiehua,et al.Experimental investigation of the flow characteristics of small orifices and valves in water hydraulics.Journal of Process Mechanical Engineering,2002,216(4):235-245.
    222 冀宏.液压阀芯节流槽气穴噪声特性的研究.浙江大学博士学位论文,2004年12月.
    223 张三喜,姚敏,孙卫平.高速摄像及其应用技术.国防工业出版社,2006年1月.
    224 沙占祥主编.摄影手册.中国摄影出版社,2004年1月.
    225 M.L.Billet.Cavitation nuclei measurement-a review.Proc.ASME Cavitation and Multiphase Flow Forum,1985,31-38.
    226 B.R.Parkin and R.W.Kermeen.Incipient cavitation and boundary layer interaction on a streamline body.Calif Inst.Tech.Hydrodyn,Lab.1953,Rep,E-35.2.
    227 R.E.A.Arndt.Pressure fields and cavitation.Proc.IAHR,Symposium on Hydraulic Machinery,Equipment and Cavitation,Vienna,1974,4(1),1-20.
    228 路甬祥主编.液压气动技术手册.机械工业出版社,2002.
    229 H.Nguyen-Schaefer,P.Sprafke and N.Mittwollen.Study on the flow in a typical seat valve of mobile hydraulics.SAE Special Publications,Febr,1997,1229:11-22.
    230 T.Koivula.ON CAVITATION IN FLUID POWER.Proc.Of the 1~(st) FPNI-PhD Symp.Hamburg,2000:371-382.
    231 T.S.Koivula and A.U.Ellman.Cavitation behaviour of hydraulics orifices and valves.SAE paper 982038,1998:387-393.
    232 A.Lichtarowiez,R.K.Diggins and E.Markland.Discharge Coefficients for Incompressible Non-Cavitating Flow through Long Orifices.J.Mech.Eng.Sci.,1965,7(2):210-219.
    233 D.P.Schmidt and M.L.Corradini.Analytic Prediction of the Exit Flow of Cavitating Orifices.Atomization and Sprays,1997,7:603-616.