无粘结剂MCM-22沸石颗粒催化剂的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸石颗粒催化剂在石油化学工业中具有非常广泛的应用,而传统的制备方法中加入粘结剂成型会造成催化剂性能下降和利用率低的问题,因此亟需新的制备方法。本论文以MCM-22沸石为对象,对汽相法原位制备无粘结剂沸石颗粒催化剂进行研究,开发沸石催化剂制备的新途径。
     首先对无粘结剂MCM-22沸石颗粒催化剂的硅铝胶基质特性进行了系统的研究。研究了在不同的原料、制备方法、pH值和聚乙二醇20000含量的情况下对硅铝胶基质及晶化的影响。实验发现,在不同的硅铝胶基质的原料组合中,选择硅溶胶为硅源,NaAlO_2为铝源和硝酸做酸度调节剂更有利于无粘结剂MCM-22沸石颗粒催化剂的制备;采用干硅铝胶法、湿硅铝胶法和干粉直接混合法制备的三种硅铝胶基质都能制备无粘结剂MCM-22沸石颗粒催化剂;硅铝胶基质在pH值10.0附近硅源和铝源最有利于相互结合成[Si-O-Al~-],使硅铝胶基质有利于晶化成无粘结剂MCM-22沸石颗粒催化剂;通过对硅铝胶基质中添加扩孔剂聚乙二醇20000用量的控制,能有效的调控无粘结剂MCM-22沸石颗粒催化剂孔径分布。
     考察了汽相法制备无粘结剂MCM-22沸石颗粒催化剂的工艺条件。实验得到以硅溶胶和偏铝酸钠为原料汽相法制备无粘结剂MCM-22沸石颗粒催化剂条件为原料配比SiO_2:(0.02-0.033)Al_2O_3:(0.09-0.12)Na~+:1.0HMI:(5-30)H_2O,晶化温度150℃,晶化时间168 h。水热合成沸石过程中模板剂的回收利用及碱性废液的处理一直是个难题。对釜底残留液进行检测和分析发现,在汽相法制备无粘结剂MCM-22沸石颗粒催化剂过程中,有一部分模板剂并没有起到结构导向作用,仍保留在釜底残留液中,且化学特性没有变化。对釜底残留液中补充适量水和模板剂后,仍能成功制备无粘结剂MCM-22沸石颗粒催化剂。通过釜底残留液中模板剂和水的重复利用,有效的改善了汽相法制备无粘结剂MCM-22沸石颗粒催化剂中模板剂用量大的不足,减少了废液的排放,为沸石催化剂清洁制备提供了参考。
     在对无粘结剂MCM-22沸石颗粒催化剂的晶化过程进行表征的基础上,系统研究了无粘结剂MCM-22沸石颗粒催化剂多级孔道体系的形成与晶化机理。实验发现,在晶化前48 h,颗粒孔道仍然由无定形硅铝胶胶粒相互堆积组成,在晶化72 h到168 h之间,颗粒孔道是由MCM-22沸石晶片组成;通过汽相法168 h的晶化,整个由硅铝胶组成的低比表面积,低孔体积和孔道结构单一的颗粒转化成高比表面积,高孔体积和具有多级孔道结构的无粘结剂MCM-22沸石颗粒催化剂;汽相法制备无粘结剂MCM-22沸石颗粒催化剂晶化机理为液相转变机理。
     对传统方法和汽相法原位制备的MCM-22沸石颗粒催化剂进行了比较和催化性能的研究。汽相法原位制备的MCM-22沸石颗粒催化剂不但不需要加入粘结剂,而且比表面积和平均孔径达分别达到486.82 m~2/g和115.85 nm,酸量为1.01×10~(-3) mol/g。其比表面积,平均孔径和总酸量都比用传统方法制备的MCM-22沸石颗粒催化剂大;无粘结剂MCM-22沸石颗粒催化剂在苯和丙烯烷基化反应中,随着温度和苯烯比的提高,产物中异丙苯的含量增加,而二异丙苯和三异丙苯的含量下降,改变丙烯空速和反应时间对产物中异丙苯、正丙苯、二异丙苯和三异丙苯的分布没有明显影响;在苯和丙烯烷基化反应中,汽相法原位制备的无粘结剂MCM-22沸石颗粒催化剂对异丙苯选择性要比传统方法制备的MCM-22沸石颗粒催化剂高出约5%,而对二异丙苯的选择性要减少30%,对三异丙苯的选择性更是减少了约60%。
Zeolite catalysts are widely applied in petrochemical industries. Synthetic zeolites and related molecular sieves are generally produced as powders of relatively loosely bonded zeolite. The binder is indispensable in order to produce particles catalyst of optimal dimension and form and having a high mechanical resistance. In such particles catalyst, the fact that the zeolite is diluted with a material that in most instances is inert in the process reduces the effective surface area of the product. Moreover, negative effects, such as blocking of the micropores and active sites by the binder, are pronounced when zeolite powders are prepared by adding an inorganic binder. Therefore, some novel alternative technologies are desired. Self-bonded MCM-22 particles catalyst were in-situ prepared using vapor-phase transport method in this dissertation. And, properties of self-bonded zeolite MCM-22 particles catalyst were investigated by alkylation of benzene and propylene.
     The characters of the aluminosilicate gel were firstly studied. It was found that self-bonded zeolite MCM-22 particles catalyst could be obtained by dry gel, hydrated gel, and dry powder method when the aluminosilicate gels were prepared using colloidal silica as silica sources, sodium aluminate as aluminum sources. Colloidal silica and sodium aluminate could be dissolved more easily and facilitate preparation self-bonded zeolite MCM-22 particles catalyst when the pH value of the aluminosilicate gel was 10.0. By adding polyethylene glycol to the aluminosilicate gel, the pore size distributions of zeolite particles catalyst could be adjusted.
     Based on the experimental results of in-situ preparation self-bonded zeolite MCM-22 particles catalyst, the suitable conditions are as follows: the ratio of material is SiO_2:(0.02-0.033)Al_2O_3:(0.09-0.12)Na~+:1.0HMI: (5-30)H_2O, crystallization temperature 150℃and crystallization periods 168 h. The surplus liquid, chemical properties of which have not change after preparation self-bonded zeolite MCM-22 particles catalyst by the vapor-phase transport method, still contained only hexamethyleneimine and H_2O. Re-adding of hexamethyleneimine and deionized water, the surplus liquid could be reused. It could effectively improve the vapor-phase transport method's disadvantage of a large quantity of waste water and made the vapor-phase transport method become a cleaner process.
     The as-synthesized products obtained at different crystallization periods were carefully characterized and the crystallization process of self-bonded zeolite MCM-22 particles catalyst was discussed. It was found that the as-synthesized products were amorphous at 48 h and the amorphous phase disappeared at 72 h. The zeolite particles catalyst, prepared by aluminosilicate gel, had been transformed into hierarchical self-bonded zeolite MCM-22 particles catalyst after 168 h of crystallization. The crystallization proceeded via solution phase nucleation mechanism.
     Compared with the conventional method, the zeolite MCM-22 particles catalyst prepared by the new method, for which the total acid sites, the specific surface area and the average pore diameter reached 1.01×10~(-3) mol/g, 486.82 m~2/g and 115.85 nm respectively avoided binder accession. The distributions of products were discussed at different reaction conditions in in alkylation of benzene and propylene reaction. In the experiments, self-bonded zeolite MCM-22 particles catalyst possessed excellent reaction stability. The selectivity of cumene increased with increasing the reaction temperature and benzene/propylene ratio, the change of space velocity and reaction time had little influence on the selectivity of products. Self-bonded zeolite MCM-22 particles catalyst were more conducive to the purpose product in alkylation of benzene and propylene reaction. The selectivity of cumene could be improved about 5%. The selectivity of diisopropylbenzene and triisopropylbenzene Gould be reduced about 30% and 60%, respectively.
引文
[1]Onida B,Geobaldo F,Testa F,Creab F,Garrone E.FTIR investigation of the interaction at 77 K of diatomic molecular probes on MCM-22 zeolite[J].Micro.Meso.Mater.,1999,30(1):119-127
    [2]Kumara G S,Saravanamurugan S,Hartmann M,Palanichamy M,Murugesan V.Synthesis,characterisation and catalytic performance of HMCM-22 of different silica to alumina ratios[J].J.Mol.Catal.A,2007,272(1-2):38-44
    [3]Wu Y J,Ren X Q,Lu Y D,Wang J.Crystallization and morphology of zeolite MCM-22influenced by various conditions in the static hydrothermal synthesis[J].Micro.Meso.Mater.,2008,112(1-3):138-146
    [4]Mintova S,H61zl M,Valtchev V,Mihailova B,Bouizi Y,Bein T.Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica[J].Chem.Mater.,2004,16(25):5452-5459
    [5]Shen D,Rees L V C.Diffusivities of Benzene in HZSM-5,Silicalite-1,and NaX Determined by Frequency Response Techniques[J].Zeolites,1991,11(7):666-671
    [6]Magalhaes F D,Lawrence R L,Conner W C.Diffusion of Cyclohexane and Alkyl-cyclohexanes in Silicalite[J].J.Phys.Chem.B,1998,102(13):2317-2324
    [7]Weisz P B.Some classical problems of catalytic science:resolution and implications[J].Micro.Meso.Mater.,2000,35:1-9
    [8]Weisz P B,Frilette V J.Intracrystalline and Molecular-shape-selective Catalysis by Zeolite Salts[J].J.Phys.Chem.,1960,64(3):382
    [9】 方云明.多级孔道沸石分子筛的合成、表征及催化应用[D】.大连理工大学博士学位论文,2007,2-3
    [10]Wilson S T,Lok B M,Messina C A,Cannan T R,Flanigen E M.Aluminophosphate molecular sieves:a new class of microporous crystalline inorganic solids[J].J.Am.Chem.Soc.,1982,104(4):1146-1147
    [11]Weckhuysen B M,Rao R,Martens J A,Schoonheydt R A.Transition metal ions in microporous crystalline aluminophosphates:Isomorphous substitution[J].Eur.J.Inorg.Chem.,1999,4:565-577
    [12】 闵恩泽.工业催化剂的研制与开发-我的实践与探索[J】.化工时刊,1998,12(4):33-41
    [13]许越.催化剂设计与制各工艺[M】.北京:化学工业出版社,2003,3-6
    [14】 闵恩泽,杜泽学.石化催化技术的技术进步与技术创新-总结历史经验指导未来[J].当代石油石化,2002,11(11):1-6
    [15]顾伯锷.工业催化过程导论[M].北京:高等教育出版社,1990,2
    [16]黄仲涛主编.工业催化剂手册[M].北京:化学工业出版社,2004,80
    [17]成卫国,王祥生,李钢.钛硅分子筛挤条成型催化剂研究[J].大连理工大学学报,2004,44(4):482-485
    [18]丁春华,傅吉全.添加扩孔剂对β沸石催化剂性能的影响[J].北京服装学院学报(白然科学版),2002,22(2):25-27
    [19]He Y J,Nivarthy G S,Eder F.Synthesis,characterization and catalytic activity of the pillared molecular sieve MCM-36[J].Micro.Meso.Mater.,1998,25(1-3):207-224
    [20]Lawton S L,Fung A S,Kennedy C.Zeolite MCM-49:A three-dimensional MCM-22anoalogue synthesized by in situ crystallization[J].J.Phys.Chem.,1996,100(9):3788-3796
    [21]Xie S J,Peng J B,Xu L Y.Synthesis of MCM-49 zeolite and its catalytic properties for alkylation[J].Chin.J.Catal.,2001,22(6):601-603
    [22】 许宁,吴通好,王东阳.层状分子筛MCM-56的合成与表征[J】.高等学校化学学报,2001,11(22):1898-1900
    [23】 周斌,高焕新,方华,顾瑞芳.丙烯和苯液相烷基化反应中分子筛性能的研究[J】.石油化工,2002.31(11):883-886.
    [24]Corma A,Fornes V,Guil J M,Pergher S,Maesen T L M,Buglass J G.Preparation,characterisation and catalytic activity of ITQ-2,a delaminated zeolites[J].Micro.Meso.Mater.,2000,38(2-3):301-309
    [25]Corma A,Fornes V,Garcia H.Prevalence of the external surface over the internal pores in thespontaneous generation of tetrathiafulvalene radical cationincorporated in the novel delaminated ITQ-2 zeolite[J].Phys.Chem.Chem.Phys.,2001,3(7):1218-1222
    [26]Zhu G Q,Li Y S,Chen H L,Liu J,Yang W.An in situ approach to synthesize pure phase FAU-type zeolite membranes:effect of aging and formation mechanism[J].J.Mater.Sci.2008,43(9):3279-3288
    [27]Perdana I,Creasera D,Bendiyasa I M,Wikan T B.Modelling NOx adsorption in a thin NaZSM-5 film supported on a cordierite monolith[J].Chem.Eng.Sci.,2007,62(15):3882-3893
    [28]Madhusoodana C D,Das R N,Kameshima Y.Preparation of ZSM-5 thin film on cordierite honeycomb by solid state in situ crystallization[J].Micro.Meso.Mater.,2001,469(2-3):249-255
    [29]Alfaro S,Arruebo M,Coronas J,Menendezb M,Santamaria J.Preparation of MFI type tubular membranes by steam-assisted crystallization[J].Micro.Meso.Mater.,2001,50(2-3):195-200
    [30】 关乃佳,单学蕾,曹翔,项寿鹤.Cu-ZSM-5/堇青石整体式催化剂上NO的吸附态及分解反应机理[J].催化学报,2001,22(3):245-249
    [31]王爱琴,梁东白,徐长海,孙孝英,关文,张涛.堇青石蜂窝陶瓷载体上ZSM-5及Anacime沸石的原位合成[J].催化学报,2000,21(1):19-22
    [32]Igor Y,Albert R,Lioubov k.Zeolite/sintered metal fibers composites as effective structured catalysts[J】.Appl.Catal.A,2005,281(1-2):55-60
    [33】 邹新华,李英霞,曾建令,陈标华.用水热法在铁铬铝合金片上原位合成MCM-22沸石膜[J].催化学报,2004,27(6):506-510
    [34]Li Y S,Yang W S.Microwave synthesis of zeolite membranes[J].J.Memb.Sci.,2008,316(1-2):3-17
    [35]Gorgojo P,Iglesia D,Coronas J.Preparation and Characterization of Zeolite Membranes[J].Memb.Sci.Tech.2008,13:135-137
    [36]Franklin K R,Lowe B M.Preparation and properties of gel particle silicalite[J].Zeolites,1987,7(2):135-147
    [37]Luca P D,Crea F,Fonseca A,Najy J B.Direct formation of self-bonded pellets during the synthesis of mordenite and ZSM-11 zeolites from low water content systems[J].Micro.Meso.Mater.,2001 42(1):37-48
    [38]Thoma S G,Trudell D E,Bonhomme F,Nenoff T M.Vapor phase transport synthesis of un-supported ZSM-22 catalytic membranes[J].Micro.Meso.Mater.,2001,50(1):33-39
    [39]Naik S P,Chem J C,Chiang A S T.Synthesis of silicalite nanocrystals via the steaming of surfactant protected precursors[J].Micro.Meso.Mater.,2002,54(3):293-303
    [40]Naik S P,Chiang A S T,Thompson R W,Huang F C.Formation of Silicalite-1 Hollow Spheres by the Self-assembly of Nanocrystals[J].Chem.Mater.,2003,15:787-792.
    [41]Vuono D,Luca P D,Nagy J B,Nastro A.Synthesis and characterization of self-bonded ETS-4 and ETS-10 pellets[J].Micro.Meso.Mater.,2008,109(1-3):118-137
    [42]龙英才.一种无粘结剂疏水硅沸石吸附剂及其制备[P].中国专利:CN1105906,1995
    [43】 李善安,柯跃珍,唐超,赵尔玉.无粘结剂球状A型分子筛制备方法【P].中国专利:CN87105499,1988
    [44]王德举,刘仲能,杨为民,谢在库.无粘结剂沸石分子筛的制备和应用进展[J].石油化工,2007,36(10):1061-1066
    【45]王德举,刘仲能,谢在库.汽相转化法制备无粘结剂小晶粒ZSM-5沸石[J].无机材料学报.2008.23(3):592-596
    [46]Dong A G,Wang Y J,Tang Y,Ren N,Zhang Y H,Gao Z.Hollow Zeolite Capsules A Novel Approach for Fabrication and Guest Encapsulation[J].Chem.Mater.,2002,14(8):3217-3219
    [47]李英霞,陈标华,穆致君,李成岳,干文兴.VPT法制备MCM-22分子筛催化剂颗粒及其烷基化性能[J].化工学报,2004,55(12):2015-2019
    [48]孙红书.高岭土微球原位晶化合成ZSM-5沸石催化剂及其表征、应用[D].兰州大学博士学位论文,2006,38
    [49】 孙书红,马建泰,庞新梅.高岭土微球合成ZSM-5佛石及其催化裂化性能[J].硅酸盐学报,2006,34(6):757-761
    [50]Liu C H,Sun,Gao K H,Zhang Z D,Zhang H,Sun S,Deng Y.Surface modification of zeolite Y and mechanism for reducing naphtha olefinformation in catalytic cracking reaction[J].Appl.Catal.A,2004,264(2):225-228
    [51]ExxonMobil Chemical Patents Inc.Hydrocarbon Conversion Process Using a Zeolite B ound Zeolite Catalyst[P].US:6458736,2002
    [52]Rubin,Mae K,Chu,Pochen.Composition of synthetic porous crystalline material,its synthesis and use[P].US:4954325,1990
    [53]Leonowica M E,Lawton J A,Lawton S L,Rubin M K.MCM-22:A molecular sieve with two independent multidimensional channel systems[J].Science,1994,264(24),1910-1913
    [54]Corma A,Fornes V,Fomi L,Moscottib D.2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites[J].J.Catal.,1998,179(2):451-458
    [55]Corma A,Fornes V,Martinez-Triguero J,Pergher S B.Delaminated Zeolites:Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses[J].J.Catal.,1999,186(1):57-63
    [56]Corma A,Diaz U,Fornes V,Pergher S B.Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2[J].J.Catal.,2000,191(1):218-224
    【57】 刑海军.MCM-22族分子筛的合成、后处理及其在甲烷、丙烷芳构化反应中的催化性能研究[D].吉林大学博士毕业论文,2008,3
    [58]Lawton S L,Leonowica M E,Partridge R.D,Rubin M K.Twelve-ring pockets on the external surface of MCM-22 crystals[J].Micro.Meso.Mater.,1998,23(1-2):109-117
    [59]袁忠勇,张怀彬,王敬中,李赫喧.沸石分子筛MCM-22的合成与表征[J].石油学报,1998,14(2):28-31
    [60]Unverricht S,Hunger M,Ernst S.Zeolite MCM-22:Synthesis,Dealumination and structural characterization[J].Stud.Surf.Sci.Catal.,1994,84:37-44.
    [61]Corma A,Corell C,Fornes V.Infrared spectroscopy,thermoprogrammed desorption,and nuclear magnetic resonance study of the acidity,structure,and stability of zeolite MCM-22[J].zeolites,1995,15(7):576-582
    [62]Meloni D,Laforge S,Martin D,Guisnet M,Rombi E,Solinas V.Acidic and catalytic properties of H-MCM-22 zeolites:1.Characterization of the acidity by pyridine adsorption[J].Appl.Catal.A,2001,215(1-2):55-66
    [63]Lawton J A,Lawton S L,Leonowicz M E.The framework topology of zeolite MCM-22[J].Studi.Surf.Sci.Catal.,1995,98:250-251
    [64]Wu Y J,Ren X Q,Wang J.Effect of microwave-assisted aging on the static hydrothermal synthesisof zeolite MCM-22[J].Micro.Meso.Mater.,2008,116(1-3):386-393
    [65]Delitala C,Alba M D,Becerro A I.Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural,morphological and textural characterisation[J].Micro.Meso.Mater.,2008,118(1-3):1-10
    [66]Wang B Y,Wu J M,Yuan Z Y.Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure[J].Ultrasonics Sonochemistry,2008,15(4):334-338
    [67]Corma A,Corell C,Perez-Pariente J.Synthesis and characterization of the MCM-22zeolite[J].Zeolite.1995,15(1):2-8
    【68】 许宁,阚秋斌,李雪梅,刘庆生,吴通好.低钠条件下MCM-22分子筛的动态合成及其在甲烷无氧芳构化中的催化性能[J].高等学校化学学报,2000,21(6):949-951
    [69]G(u|¨)ray I,Warzywoda J,Bac N,Sacco JA.Synthesis zeolite MCM-22 under rotating and static conditions[J].Micro.Meso.Mater.,1999,31(3):241-251
    [70]Xu W,Dong J,Li J,Wu E A novel method for the preparation of zeolite ZSM-5[J].J.Chem.Soc.,Chem.Commun.,1990:755-756
    [71]Inagaki S,Hoshino M.,Kikuchi E.,Matsukata M.,Synthesis of MCM-22 zeolite by the vapor-phase transport method[J].Stud.Surf.Sci.Catal.,2002,142:53-60
    [72]Masahiko M,Norikazu N,Korekazu U.Crystallization of FER and MFI zeolites by a vapor-phase transport method[J].Micro.Mater.,1996,7(2-3):109-117
    [73]Sano T,Kiyozumi Y,Mizukami E In-situ observation of crystal growth of zeolite ZSM-5under steaming conditions by optical microscopy[J].Micro Mater,1993,1:353-357
    [74]Iwasaki A,Hirata M,Kudo I,SanoT,Sugawar S,Ito M WatanabeM.In situ measurement of crystal growth rate of zeolite[J].Zeolites,1995,15(4):308-314
    [75】 陈诵英,陈蓓,王琴.金属离子水化学—溶胶凝胶法制备固体催化材料的化学基础[J].燃料化学学报,2001,29:211-213
    [76】 沈钟,_于果庭.胶体与表面化学【M].第二版,北京:化学工业出版社,2001,133-137
    [77】 邹新华,李英霞,李建伟,李成岳,陈标华.凝胶制备对气相合成MCM-22沸石的影响[J].燃料化学学报,2006,34(3):1-4
    [78】 魏苗菊,张坤,陈启明.二氧化硅胶体晶体组装形貌研究[J].化学通报,2007,3:207-211
    [79]Thoma S G,Nenoff T M,Vapor phase transport synthesis of zeolites from sol-gel precursors[J].Micro.Meso.Mater.,2000,41(1-3):295-305
    [80】 朱建华.沸石化学的新进展[J].大学化学,1997,12(2):6-9
    [81】 白杰,谢素娟,王清遐,徐龙伢,陈巍,吴治华.MCM-22分子筛的合成和应用[J].石油与天然气化工,2000,29(3):110-113
    [82]彭建彪,谢素娟,徐龙伢,王清遐.MCM-22分子筛的结构、性质及合成和应用前景【J】.天然气化工,2001,26(2):42-47
    [83】 刘中清,王一萌,傅军,何鸣元.静态水热晶化法高效合成MCM-22分子筛[J].催化学报.2002,23(5):439-442
    [84]Cheng M,Tan D L,Liu X M,Han X W,Bao X H,Lin L W.Effect of aluminum on the formation of zeolite MCM-22 and kenyaite[J].Micro.Meso.Mater.,2001,42(2-3):307-316
    [85]Ravishankar R,Sen T,Ramaswmy V.Synthesis,Characterization and Catalytic properties of Zeolite PSH-3/MCM-22[J].Stud.Surf.Sci.Catal.,1994,84:331-338
    [86]彭建彪,谢素娟,王清遐,徐龙伢.几种分子筛转晶和混晶的控制及单一晶体的优化合成[J】.催化学报,2002,23(4):363-366
    [87]Barrer R M,Denny P J,Flanigen E M.Molecular Sieve Adsorbents[P].US3306922,1962
    [88]段林海.沸石分子筛的吸附扩散及应用[D].兰州大学博士学位论文.2006.1
    [89]Matsukata M,Osaki T,Ogura M,Kikuchi E.Crystallization behavior of zeolite beta during steam-assisted crystallization of dry gel[J].Micro.Meso.Mater.,2002,56(1):1-10
    [90]Breck D W,Flanigen E M.In Molecular Sieves[M].Society of Chemical Industry:London,1968,47
    [91]Breck D W.Crystalline molecular sieves[J].J.Chem.Ed.,1964,41(12):678-689
    [92]Zhdanov S E Problems of zeolite crystallization[J].ACS.Adv.Chem.Ser.,1971,101:20-43
    [93]Gabelica Z,Derouane,E G,Blom N.Factors affecting the synthesis of pentasil zeolites[J],ACS Symp.Ser.,1984,248:219-251
    【94】 董晋湘,董平,刘光焕,曹景慧.在水蒸汽气氛中合成沸石分子筛及其特征[J].燃料化学学报,1997,25(1):7-10
    【95]徐如人,庞文琴.分子筛与多孔材料化学[M】.北京:科学出版社,2004,356
    [96]Sridevi U,Bokade V V,Satyanarayana C V V,Raob S,Pradhan N C,Raob K B.Kinetics of propylation of benzene over H-beta and SAPO-5 catalysts:a comparison[J].J.Mol.Catal.A,2002,181(1-2):257-262
    [97】 杜泽学,闵恩泽.异丙苯生产技术进展[J].石油化工,1999,28(8):562-564
    [98】 魏文德.有机化工原料大全(下卷)[M].北京:化学工业出版社,1999,113-1381
    [99]Perego C,Lngallina P.Recent advances in the industrial alkylation of aromatics:new catalysts and new processes[J].Catat.Today,2002,73(1-2):3-22
    [100]Corma A.,Martinez-Soria V,Schnoeveld E.Alkylation of benzene with short-chain olefins over MCM-22 zeolite:catalytic behaviour and kinetic mechanism[J].J.catal.,2000(192):163-173
    [101]Xie S J,Wang Q X,Xu L Y,Chen W,Bai J,Lin L W.Synthesis of MCM-22 Type Zeolite and its Catalytic Performance for Cumene Production[J].Cui Hua Xue Bao,1999,20(6):583-584
    【102]白杰,刘盛林,谢素娟,徐龙伢,林励吾.Mg的添加对Mo/ZSM-5催化剂催化甲烷芳构化性能的影响[J].催化学报,2004,25(1):70-74
    [103]Cheng J C,Fung A D,Klocke D J.Process for preparing short chain alkyl aromatic compounds[P].US5453554,1995
    [104]Wang L L,Wang Y,Liu Y M,Chen L,Gao G H,He M Y,Wu P.Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J].Micro.Meso.Mater.,2008,113(1-3):435-444
    [105】 王晓溪,于晓东,曹钢.MCM-22分子筛的合成及在苯和丙烯烷基化反应中的应用[J].化工设备与防腐蚀,2005,2:1-4
    [106】 杨平,潘履让,李赫喧.β分子筛的酸性和苯-丙烯烷基化反应的研究[J].燃料化学学报,1990,18(1):16-22
    【107]陈标华,林世雄,杨立英,傅吉全,王红霞,张吉瑞.二异丙苯与苯烷基转移反应中Y型沸石催化剂的研究[J].分子催化,1997,11(2):113-120
    【108】 曹玉华,杨一青,陆丽元,周斌,方永成.改性Y分子筛对苯-丙烯烷基化反应中副产物正丙苯的影响[J].石油学报(石油加工),2001,17(2):79-84
    [109]Horsley J A.Producing bulk and fine chemicals using solid acids[J].Chemtech,1997,27(10):45-49
    [110]Bellussi G,Pazzuconi G,Perego C,Girotig G.Liquid-phase alkylation of benzene with light olefins catalyzed by β zeolites[J].J.catal.,1995,157:227
    [111]Kushnerick,John D,Marler.Process for preparing short chain alkyl aromaticcompounds[P].US4992606,1991
    [112]Hydrocarbon Process.Cumene,1995,76(3):121
    【113]北京燕化公司化学品事业部.异丙苯法生产苯酚丙酮研究与开发资料汇编[M】.北京:北京化工学会,2006,105
    【114]李东风,范金钢,汪展文,金涌,曹钢.液相法合成异丙苯中试的研究[J].石油化工,2002.3:24-27
    [115】 申东明,赵国新,孙英淑.β分子筛催化剂在异丙苯生产中的应用研究[J].化工科技,2006,14(3):38-4
    [116]Mirth G,Lercher J A.In Situ IR spectroscopic study of the surface species during methylation of toluene over HZSM-5[J].J.Catal.1991,132(1):244-252
    [117]Geatti A,Lenarda M,Storaro L,Perissinotto M.Solid acid catalysts from clays:Cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminum pillared clays[J].J.Mol.Catal.A,t997,121(1):111-118
    [118]Siffert S,Gailtard L,Su B L.Alkylation of on a series of Beta toward a better understanding of the mechanisms[J].J.Mol.Catal.A,2000,153(1-2):267-279
    [119】 韩明汉,林世雄,陈曙.β沸石催化剂上苯与丙烯烷基化催化剂的失活机理[J].石油化工,1999,28(2):73-76
    [120】 卢焕章.石油化工基础数据手册[M】.北京:化学工业出版社,1984,205
    [121]Harris R K,Samadi-Maybodi A,Smith W.The incorporation of aluminum into silicateions in alkaline aqueous solutions,studied by aluminum-27 NMR[J].Zeolites,1997,19(2-3):147-155
    [122]Cheng M J,Tan D J,Bao X H.Oriented growth of MCM-22 zeolite films[J].Chem.Commun.,2000,1713-1714
    [123]Wu Y J,Ren X Q,Wang J.Facile synthesis and morphology control of zeolite MCM-22via a two-step sol-gel route with tetraethyl orthosilicate as silica source[J].Mater.Chem.Phy.,2009,113(2-3):773-779
    [124]Zhao H L,Hiragushi K,Mizota Y.~(27)Al and ~(29)Si MAS-NMR studies of structural changes in hybrid aluminosilicate gels[J].J.Eur.Ceram.Soc.,2002,22(9-10):1483-1491
    [125]Wang L Q,Mattigod S V,Parker K E,Hobbs D T.Nuclear magnetic resonance studies of aluminosilicate gels prepared in high-alkaline and salt-concentrated solutions[J].J.Non-Crys.Solids,2005,351(43-45) 3435-3442
    [126]Sinko K,Mezei R,Rohonczy J,Fratzl P.Gel Structures Containing AI(Ⅲ)[J].Langmuir,1999,15(20):6631-6636
    [127]Shang Y C,Yang P P,Jia M J,Zhang W X,Wu T H.Modification of MCM-22 zeolites with silylafion agents:Acid properties and catalytic performance for the skeletal isomerization of n-butene[J].Catal.comm.,2008,9(5):907-912
    [128]OKumura K,Hashimoto M,Mimura T,Niwa M.Acid properties and catalysis of MCM-22 with different Al concentrations[J].J.Catal.,2002,206(1):23-28
    [129]Zhuravlev L T.The surface chemistry of amorphous silica.Zhuravlev model[J].Collo.Surf.A,2000,173:1-38
    [130]Groppo E,Lamberti C,Bordiga S,Spoto G,Zecchina A.The Structure of Active Centers and the Ethylene Polymerization Mechanism on the Cr/SiO_2 Catalyst:A Frontier for the Characterization Methods[J].Chem.Rev.,2005,105(1):115-183.
    [131]Saalw(a|¨)chter K,Krause M,Gronski W.Study of Molecular Interactions and Dynamics in Thin Silica Surface Layers by Proton Solid-State NMR Spectroscopy[J].Chem.Mater.,2004,16(21):4071-4079
    [132]王趁义,毕树平,张彩华,张振超,杨伟华.铝盐水解聚合及其形态转化过程的电位滴定曲线研究【J].分析测试学报,2004,23(5):1-6.
    [133]Mora-Fonz M J,Catlow C R A,Lewis D W.Modeling aqueous silica chemistry in alkali media[J].J.Phys.Chem.C,2007,111(49):18155-18158
    [134]Kollar M,Mihalyi R M,Valyon J.Micro/mesoporous aluminosilicate composites from zeolite MCM-22 precursor[J].Micro.Meso.Mater.,2007,99(1):37-46
    [135]穆致君.MCM-22沸石气相转移法合成工艺及在整体式催化剂制备中应用的初步探讨[D].北京化工大学硕士毕业论文,2006,43
    [136]Vtjurina I M,Khvoshchev S S,Karetina I V.Synthesis of high-silica MWW zeolite[J].Stud Surf Sci Catal,2002,144:671-678
    [137]Cheng Z L,Chao Z S,Wan H L.Preparation of NaA Zeolite Membrane with High Permeability by Using a Modified VPT Method[J].Chem.Lett.,2006,35(9):1056
    [138]Liu L,Cheng M J,Ma D,Hu G,Pan X L,Bao X H.Synthesis,characterization,and catalytic properties of MWW zeolite with variable Si/A1 ratios[J].Micro.Meso.Mater.,2006,94(1-3):304-312
    [139]Frontera P,Testa F,Aiello R,Candamano S,Nagy J B.Transformation of MCM-22(P)into ITQ-2:The role of framework aluminium[J].Micro.Meso.Mater.,2007,106(1-3):107-114
    [140]Perez-Ramirez J,Christensen C H,Egeblad K,Christensen C H,Groen J C.Hierarchical zeolites:enhanced utilisation of microporous crystals in catalysis by advances in materials design[J].Chem.Soc.Rev.,2008,37(11)2530-2542
    [141]Zeng H C.Synthetic architecture of interior space for inorganic nanostructures[J].J.Mater.Chem.,2006,16:649-662
    [142]Tao Y S,Kanoh H,Abrams L.Mesopore-Modified Zeolites:Preparation, Characterization, and Applications[J]. Chem. Rev., 2006, 106 (3):896-910
    [143] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation[J]. J. Phys. Chem. B, 1999, 103 (37):7743-7746
    [144] Cheng X W, Wang J, Yu H, Guo J, He H Y, Cai Yi. Fine structure investigations on seeded dry gel and FER zeolite in a novel VPT process[J]. Micro. Meso. Mater., 2008, 118(1-3):152-162
    [145] Meza L I, Anderson M W, Agger J R, Plaisted R J. Controlling relative fundamental crystal growth rates in silicalite: AFM observation[J]. J. Am.Chem. Soc., 2007, 129 (49): 15192-15198
    [146] Camblor M A, Mifsud A, Perez-Pariente J. Influence of the synthesis conditions on the crystallization of zeolite Beta [J]. Zeolites, 199,11(8):792-797
    [147] Wu P, Komatsu T, Yashima T. Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts [J]. Micro. Meso. Mater., 1998, 22(1-3):343.
    [148] Pradhan A R, Rao B S. Transalkylation of di-isopropylbenzenes over large pore zeolites[J]. Appl Catal. A, 1993, 106(1):143-157
    [149] Fu J Q, Ding C H. Study on alkylation of benzene with propylene over MCM-22 zeolite catalyst by in situ IR[J]. Catal. Comm., 2005, 6(12):770-776
    [150] Biswas J, Maxwell I E. Octane enhancement in fluid catalytic cracking: I. Role of ZSM-5 addition and reactor temperature[J]. Appl. Catal., 1995, 58 (1) : 1-18
    [151] Sasidharan M, Reddy K R, Kumar R. Isopropylation of Benzene with 2-Propanol over High-Silica Large-Pore Zeolite: NCL-1[J]. J. Catal, 1995, 154(2): 227-234
    [152] Han M H, Lin S X, Roduner E. Study on the alkylation of benzene with propylene over Hp zeolite[J]. Appl. Catal. A, 2003, 243 (1): 175-184