氰酸酯树脂基新型人工介质材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工介质材料是脉冲多普勒(PD)雷达罩的关键夹层材料,其应具有轻质、耐热、介电常数可调、力学性能优良的特点。为适应高性能PD雷达罩的发展,高性能人工介质材料的研发具有重要意义。人工介质材料主要由树脂基体和功能性填料组成,属于一类复合材料。由于树脂基体不仅是复合材料的基本组成,而且是决定材料性能(如耐热性、介电性能、工艺性、层间剪切强度等)的关键因素,因此高性能人工介质材料的研制必须以高性能树脂为基体。
     氰酸酯树脂(CE)树脂是含有两个或两个以上氰酸酯官能团(-OCN)的衍生物,它具有优异的介电性能,特别在较宽的温度(0-220℃)和频率(0-1011Hz)范围内具有非常低且稳定的ε和tanδ值,还具有高耐热性、低吸湿率、粘接性佳、加工性好等,因此被认为是“二十一世纪制备高性能的结构/功能材料最具有竞争力的树脂品种”,在航空航天、电子信息、交通运输等尖端工业领域显示出巨大的应用潜力。
     本文首次提出基于CE树脂研制新型高性能人工介质材料的新思路,设计与制备了CE基二元复合材料和三元复合材料,首次深入探讨影响CE基二元复合材料(金红石/CE、空心玻璃微珠/CE)和三元复合材料(金红石/空心玻璃微珠/CE)结构与性能的主要影响因素,初步阐明了CE基人工介质材料结构与性能之间的规律,为获得新型高性能人工介质材料提供新的理论和实际依据。本文的研究内容尚未见诸报道。
     对于金红石/CE复合材料,探讨了金红石的表面性质与含量对CE固化反应性及其机械物理性能的影响。研究结果表明,金红石的表面性质对CE固化反应有显著影响。经过硅烷偶联剂KH550和钛酸酯偶联剂NDZ-401处理的金红石(分别记为Rutile(KH550)和Rutile(NDZ-401))因表面带有活性基团,可以有效低地加速CE的凝胶。另一方面,金红石的存在也增加了固化反应活化能,使得凝胶后CE固化需要更大的活化能,但所有复合材料与CE具有相同的反应级数。复合材料的介电常数可以通过控制Rutile(KH550)的含量在2.95-8.81之间调节。当Rutile(KH550)含量低于40wt%时,可以采用Lichteneker方程对介电常数进行预测。Rutile(KH550)的含量对复合材料的介电损耗也有显著的影响,当Rutile(KH550)含量低于30wt%时,复合材料的介电损耗低于CE树脂的介电损耗值,随着Rutile(KH550)含量的增至40 wt%时,复合材料的介电损耗趋于稳定。而后趋于稳定。此外,Rutile(KH550)有助于提高材料的热稳定性。
     对于空心玻璃微珠/CE复合材料,重点探讨了空心玻璃微珠的表面性质与含量对CE基复合材料的密度、静态力学性能、动态力学性能、热性能和介电性能的影响。研究结果表明,不论空心玻璃微珠的表面性质如何,它们均可降低CE树脂的ε、tanδ和CTE,但是影响幅度不同。HGB(KH550)的加入对降低材料CTE的作用更为显著,而HGB对降低材料的ε和tanδ值略微更显优势。HGB(KH550)能够有效地降低材料的密度和吸水率。4wt%HGB(KH550)可以略微提高材料的初始分解温度,随着HGB(KH550)含量的增加,复合材料的最大分解速率峰温度与CE树脂的相应值相比,变化不大,但实际残留率较理论残留率高。
     对于Rutile(KH550)/HGB(KH550)/CE复合材料,重点研究了材料组成的配比对复合材料的密度、介电性能、热膨胀系数及动态力学性能的影响。研究结果表明,Rutile(KH550)/HGB(KH550)/CE复合材料的ε和tanδ值均低于CE树脂的相应值,并可根据Rutile(KH550)和HGB(KH550)与CE的配比进行有效调节。当填料与树脂的质量比为1:3时,通过调节Rutile(KH550)和HGB(KH550)的质量比在0.2:1 ~ 1:0.2之间变化,则复合材料的密度介于0.68~1.17g/cm3,tanδ介于0.004~0.010,ε介于2.90~3.74。Rutile(KH550)/HGB(KH550)/CE复合材料的CTE值明显低于CE树脂的相应值。Rutile(KH550)/HGB(KH550)/CE复合材料的动态损耗峰均呈现为一个主峰加一个小肩峰的形状,主峰与肩峰所对应的Tg值几乎不随着组成配比而变化。
Manual dielectrics are key materials for Pulse Doppler (PD) radar redome, which should have low density, good thermal resistance, adjustable dielectric constant and high mechanical properties. It is important to develop high performance manual dielectrics to meet the requirements for advanced PD redoes. In general, manual dielectrics are composites made up of organic matrix and functional fillers. It is known that the matrix is not only the basic component of a composite, but also the key factor for determining the main properties of the composites such as thermal resistance, dielectric property, processing characteristics and interfacial shear strength, so high performance matrices must be employed to develop advanced manual dielectrics.
     Cyanate esters (CEs) are derivatives of compounds containing two or more cyanate (-OCN) functional groups, which have excellent dielectric properties, especially low and stable dielectric constant and dielectric loss over a wide range of temperature (0-220℃) and frequency. (0-1011Hz), outstanding thermal and moisture resistance, good adhesion as well as good processing characteristics, so CE resins have been considered as“the most competitive resins for developing structural/functional materials in 21st century”, showing great potential in many fields including aviation and aerospace, electric and transportation.
     In this thesis, the new idea of developing high performance manual dielectrics based on CE resins is proposed in the first time, binary composites and ternary composites were designed and prepared. The main factors which have influences on structure and properties of these composites were intensively discussed, and the structure-property relationship was primly developed to supply new theoretic and technological bases. No similar investigations have been found in the literatures.
     For Rutile/CE composites, the effects of the surface nature and content of rutile on the curing behavior and physical/mechanical properties were discussed. Results show that the surface nature of rutile has significant influences on the curing behavior of CE. The rutiles treated by the coupling agent, KH550 or NDZ-401, coded as Rutile(KH5500) or Rutile (NDZ-401), respectively, have active groups, so they can effectively catalyst the gelation of CE. On the other hand, the presence of rutiles also increases the activation energy of the curing reaction, so the resultant system requires greater activation energy for curing after gelation. In addition, CE and all composites have the same reaction order. The dielectric constant of compostes can be adjusted between 2.95 and 8.81 by controlling Rutile(KH550) content. When Rutile(KH550) content is not bigger than 40wt%, the Lichteneker equation can be used to predict the dielectric constant of the composites. Rutile(KH550) content also has obvious effect on the dielectric loss of composites. When Rutile(KH550) content is less than 30wt%, the dielectric loss of the composite is lower than that of CE resin; when Rutile(KH550) content increases to 40wt%, the dielectric loss of composites tends to have stable value. At last the addition of Rutile(KH550) into CE resin is beneifical to improve the thermal stability.
     For hollow glass beads/CE composites, the effects of the surface nature and content of hollow glass beads on the density, statistic and dynamic mechanical properties, thermal and dielectric properties were mainly discussed. Results show that no matter what their nature is, hollow glass beads can decrease dielectric constant (ε), dielectric loss (tanδ)and thermal expansion coefficient (CTE). HGB(KH550) has bigger influence on decreasing the density, water-absorption of composites than HGB, while HGB tends to have slightly bigger ability to decrease both values ofεand tanδ. HGB(KH550) can effectively decrease the density and water-absorption of materials. 4wt%HGB(KH550) slightly increases the initial decomposition temperature; with continuous increase of HGB(KH550) content, the temperature for the maximum decomposition rate of composites is similar as that of CE resin, but the char yields of composites are greater than the theoretical data
     For Rutile(KH550)/HGB(KH550)/CE composites, the effect of the formulations of composites on the density, dielectric properties, thermal expansion coefficient and the dynamic mechanical properties of the composites were emphasized investigated. Results show that bothεand tanδvalues as well as CTE of Rutile(KH550)/HGB(KH550)/CE composites are lower than those of CE resin, and can be effectively adjusted by controlling the formulations of composites.. When the weight ratio of fillers and resin is 1:3, by varying the weight ratio of Rutile(KH550) and HGB(KH550) from 0.2:1 to 1:0.2, then the density, tanδorεof composites change between 0.68 and 1.17g/cm3, 0.004-0.010 or 2.90-3.74, respectively. The damping factor peaks of all Rutile(KH550)/HGB(KH550)/CE composites are made up of a main peak plus a small shoulder, their corresponding Tg values almost do not change with the formulation of the composites.
引文
[1]杨邦朝.高频印制电路基板[J].电子与封装, 2001,12(2):1-7.
    [2]张龙庆.高性能BT树脂基覆铜板的研制[J].电子元件与材料, 2003,22(9):27-29.
    [3]袭锴.低介电常数聚合物材料的研究进展[J].高分子材料科学与工程, 2004, 20 (4):1-5.
    [4]杨国成.氟塑料及其在电线电缆中的应用[J].1994-2007china academic journal electronic publishing house.
    [5]黄娆,刘之景.新型低介电常数材料研究进展[J].纳米材料与结构,2003,40(9): 11-14.
    [6]安超,李盛涛,李建英.无机半导体颗粒填充聚合物复合材料的研究进展[J].材料导报,2003,17(12):66-69.
    [7] S.J. Martin, P. James Godschalx, E.Michael Mills, O.Edward Shaffer II, H. Paul Townsend, Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnects advanced materials [J].Adv Mater, 2000,12(23):1769 -1774.
    [8] T. Fujiwara. Shinba Yoichi, Sugimoto Kazunori, Tomikawa Masao. Novel high Tg low dielectric constant coil-shaped polymer [J].J Photo polym Sci.Tech, 2005, 18(2):289-95.
    [9] G. Maier. Low dielectric constant polymers for microelectronics [J].Prog Polym Sci, 2001, 1(26):3-65.
    [10]黄集权.钛酸钡基多相复合高介电材料研究.浙江大学博士学位论文,浙江.
    [11]李杰,韦平,汪根林,江平开.高介电复合材料及其介电性能的研究[J].绝缘材料,2003, 5(36):3-6.
    [12]朱宝库,谢曙辉,徐又一,徐志康.高介电常数聚酰亚胺/钛酸钡复合膜的制备与性能研究[J].功能材料,2005,36(4):546-561.
    [13] Yang Rao, Takahashi, Atsushi; C.P. Wong. Di-block copolymer surfactant study tooptimize filler dispersion in high dielectric constant polymer-ceramic composite. [J]. Compos PartA: Appl Sci Manuf, 2002, 25(1):123-129.
    [14] Milind Arbatti, Shan Xiaobing, Cheng Zhongyang. Ceramic-Polymer Composites with high Dielectric Constant [J].Adv. Mater.2007, 19(10):1369-1372.
    [15] Popielarz Roman., C.K. Chiang. Polymer composites with the dielectric constant comparable to that of barium titanate ceramics [J].Mater Sci Eng B, 2007, 139(1):48-54.
    [16] J.Yacubowicz M.Narkis. Dielectric behavior of carbon black filled polymer composite [J].Polym Eng Sci, 1986, 26(22):1568-1573.
    [17] C.Calberg, S.Blacher, F.Gubbels, F.Brouers, R.Deltour, R.Jér?me, Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends [J].J Phys D, 1999, 32(13):1517-1525.
    [18] S.N. Lawandy, K.N Abdelnour. Dielectric properties and stress-strain measure- -ments of chloroprene rubber based on different carbon black fillers [J].J Appl Polym Sci, 1986, 31(3):841-848.
    [19] J.Yacubowicz, M. Narkis,, L. Benguigui, Electrical and dielectric properties of se- -regated carbon black-polyethylenesystems [J].Polym Eng Sci, 1990, 30(8):459-468.
    [20] Xu Jianwen, Wong Michelle, C.P. Wong, Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics [J].2004 Electric components and technology conference.
    [21] Y.C.Chen, Y.Zhao, X.C.Zhang, N. Raravikar, P.Ajayan, T-M. Lu, L.Wang, Ultra fast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm [J].Appl Phys Lett, 2002, 81(6):975-978.
    [22] Emmanuel Kymakis, A.J.Gehan Amaratunga. Electrical properties of single-wall carbon nanotube-polymer composite films [J].J. Appl. Phys.2006, 99(8):084302-08 43207.
    [23] M.Lanetra Clayton, P.Julie Harmon, K.Arun Sikder, CinkeMartin, Meyyappan Meyya, G. Timofey. Gerasimov ; Transparent poly (methyl methacrylate)/single--walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants [J].Adv Funct Mater, 2005, 15(1):101-106.
    [24]王岚,党志敏.碳纳米管填充的高介电常数聚合物基电介质材料[J].电工技术学报,2006, 21(4):24-28.
    [25]党志敏,沈洋,范丽珍,赵淑金,南策文.不同填料填充的聚合物复合材料的介电特性研究[J].稀有金属材料与工程,2002, 31:429-433.
    [26] Lai Qi, I. Burtrand, Sihai Chen; D. Samuels, William, J.Exarhos Gregory. High dielectric constant silver/epoxy composites as embedded dielectrics [J].Adv Mater, 2005, 17(14):1777-1781.
    [27]孙文兵.聚苯胺导电材料的制备及表征[J].化工新型材料, 2007, 35(4):69-71.
    [28]徐任信,陈文,王钧,周静,杨小利.聚苯胺改性PVDF薄膜的结构与介电性能研究[J].塑料科技,2006, 34(2):18-21.
    [29] Jiongxin Lu, Kyoung-Sik Moon , Byung-Kook Kim; C.P. Wong. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications [J].Polym, 2007, 48(6):1510-1516.
    [30] Eun-Sub Lim, et al. Dielectric characteristics of polymer-ceramic-metal composites for the application of embedded passive devices [J].Integr Ferroelectr, 2005, 74:53-60.
    [31]李杰,韦平.高介电复合材料及其介电性能的研究[J].绝缘材料,2003, 5(36):3-6.
    [32] Yiwang Chen, Wencai Wang, W. Yu, Zeliang Yuan, En-Tang Kang; Koon-Gee Neoh Berit Krauter, Andreas Greiner. Nanoporous low-κpolyimide films via poly (amic acid) s with grafted poly (ethylene glycol) side chains from a reversible addition- -fragmentation chain-transfer-mediated process [J].Adv Funct Mater, 2004, 14:471- 478.
    [33] Yi-Che Su, Wan-Chun Chen, Kai-Lin Ou, Feng-Chi Chang. Study of the morphologies and dielectric constants of Nanoporous materials derived from benzoxaine-terminated poly (ε-caprolactone)/polybenzoxaine co-polymers. [J].Poly- -m, 2005, 46(11):3758-3766.
    [34] GuoDong Fu, Zeliang Yuan, En-Tang Kang, Koon-Gee Neoh, Doreen Meiying Lai.Nanoporous Ultra-Low dielectric constant fluoropolymer films via selective UVdecomposition of poly (pentafluorostyrene)-block-poly (methyl methacrylate) copolymers prepared using atom transfer radical polymerization [J].Adv Funct Mater, 2005, 15(2):315-322.
    [35] Min-hang Weng, HungWei Wu, Yan-Kuin Su,RuYuan Yang, ChengYuan Hung. Evaluation of microwave material of low-k interconnection for RF package [J]. Microwave Opt Technol Lett, 2006, 48(8):1675-1678.
    [36] Hui-juan Chu, Bao-Ku Zhu, You-Yi Xu. Preparation and dielectric propteries of polyimide foams containing crosslinked structures [J].Polym Adv Technol, 2006, 17(5):366-371.
    [37] Wen-li Qu, KO Tze Man. Studies of dielectric characteristics and surface energies of spin-coated polyimide films [J].J Appl. Polym.Sci., 2001, 82(7):1642-1652.
    [38] Ruiz, M. Laura. Fluorinated polyimide low dielectric coatings [J].International SAMPE Symposium and Exhibition (Proceedings), 1989, 3: 209-218.
    [39] Jingjing Lin, Xiao DongWang. Novel low-k polyimide/mesoporous silica composite film: preparation, microstructure and properties [J].Polym, 2007, 48(1): 318-329.
    [40] Yi-He Zhang, Sheng-Guo Lu, Yuan-Qing Li. Novel silica tube/polyimide composite films with variable low dielectric constant [J].Adv mater, 2005, 17(8):1056-1059.
    [41] Md Abdul Wahab, Yi Mya Khine, Chaobin He. Synthesis, morphology and proper- -ties of hydroxyl terminated-POSS/ polyimide low-k nanocomposites films [J].J Polym Sci A: Polym Chem., 2008, 46(17):5887-5896.
    [42] Bor-Kuan Chen, Yu-Ting Fang, Jing-Ru Cheng. Synthesis of low dielectric constant polyetherimide films [J].Macromol Sympos, 2006, 242:34-39.
    [43]王洋,牟建新,祝存生,姜振华.新型低介电常数聚芳醚酮的合成及性能研究[J].高等学校化学学报,2005, 26(3):586-588.
    [44] Yiwang Chen, En-Tang Kang. New approach to nanocomposites of polyimides containing polyhedraloligomeric silsesquioxane for dielectric applications [J].Mater Lett, 2004, 58:3716–3719.
    [45]陈义旺,王晓峰.含氟聚酰亚胺接枝低聚倍半硅氧烷制备超低介电材料[J].应用化学,2006, 23(5):484-488.
    [46]阎福胜,梁国正.氰酸酯树脂的研究进展[J].高分子材料,1997, 2(4):l4-17.
    [47]江辉.国外航天结构新材料发展简述[J].宇航材料工艺,1998, 28(4):1-8.
    [48] Ian Hamerton, N.John Recent developments in the chemistry of cyanate esters [J].Polym int, 1998, 47(4):465-473.
    [49]陈祥宝.高性能树脂基体[M],北京:化学工业出版社,1999.
    [50] Yu Feng, ZhengPing Fang, Aijuan Gu. Toughening of cyanate ester resin by carboxyl terminated nitrile rubber [J].Polym advan techno, 2004, 15: 628–631.
    [51] I. Harismendy, M. DelRío, C. Marieta, J. Gavalda, I. Mondragon. Dicyanate Ester-Polyetherimide Semi-Interpenetrating Polymer Networks. II. Effects of Morphology on the Fracture Toughness and Mechanical Properties [J].J Polym Sci., 2001, 80:2759–2767.
    [52] Iijima Takao, Maeda Takanori, Tomoi Masao. Toughening of cyanate ester resin by N-phenylmaleimide-styrene copolymers [J].J Polym Sci., 1999, 74:2931-2939.
    [53] S. A. Srinivasan, J. E McGrath. Amorphous phenolphthalein-based poly (arylene ether) modified cyanate ester networks: I. Effect of molecular weight and backbone chemistry on morphology and toughenability [J].Polym, 1998, 39:2415-2427.
    [54] C A. Fyfe, J. Nm, S J. Rettg, et al, NMR investigations of the possible cross reactions between cyanate and epoxy resins [J].J Polym Sci, Part A: Polym Chem, 1994, 32:2203-2221.
    [55] Morio Gaku, Kazuhiro Suzuki, Nakamichi, Curable resin of cyanate esters, USP 4 110364, 1978.
    [56] J. Fan, X. Hu, C.Y.Yue, Static and dynamic mechanical properties of modified bismaleimide and cyanate ester interpenetrating polymer networks [J].J Appl. Polym. Sci., 2003, 88:2000-2006.
    [57] R H. Lina, W.H.Lub, C.W.Lina, Cure reactions in the blend of cyanate ester with maleimide [J].Polym, 2004, 45 (13): 4423-4435.
    [58]杨洁颖,梁国正,唐玉生,房红强.硼酸铝晶须增强氰酸酯树脂的性能[J].材料研究学报,2005, 6(19): 625-630.
    [59] Yu Feng, Zhengping Fang, Wei Mao, Aijuan Gu. Study on the structure and properties of cyanate ester/bentonite nanocomposites [J].J Appl. Polym. Sci., 2005, 96(3):632-637.
    [60] Zhengping Fang, Jianguo Wang , Aijuan Gu . Structure and properties of multiwalled carbon nanotubes/cyanate ester composites [J].Polym Eng Sci, 2006, 46(5):670-679.
    [61]曲远方.功能陶瓷及应用[M].北京:化学工业出版社,2003.
    [62] Oliver Georjon, Jean-Pierre Pascault. Isothermal curing of an uncatalyzed dicyanate ester minomer: kinetics and modeling [J].J App Polym Sci.1993, 49:1441-1452.
    [63] J?rg Bauer. Curing of cyanates with Primary Amines [J].Macromol Chem Phy, 2001, 202:2213-2220.
    [64] E. Homer Kissinger. Reaction kinetics in differential thermal analysis [J].Analytical Chemistry, 1957, 29:1702-1706.
    [65] L W Crane, P. J. Dynes, D. H. Kaelble. Analysis of curing kinetics in polymer compo- -sites [J].J Polym Sci:Polym Letter Edition, 1973, 11:533-540.
    [66] Lisardo Nunez,Kinetic and thermodynamic studies of an epoxy system diglycidyl ether of bisphenol A [J].J Appl Poly Sci, 1999, 75:291-305.
    [67] M. Clara Gomez, B. Ileana Recalde, I?aki Mondragon. Kinetic parameters of a cyanate ester resin catalyzed with different proportions of nonylphenol and cobalt acetylacetonate catalyst [J]. J Eur Polym, 2005, 41:2734-2741.
    [68] S.L.Simon, J.K.Gillham. Conversion temperature property diagram for a liquid dicyanate ester/high-Tg polycyanurate thermosetting system [J].J Appl Polym Sci 1994, 51(10):1741-1752.
    [69]闻荻江.复合材料原理[M],武汉:武汉工业大学出版社,1997.
    [70] J?rg Bauer, Cyanate ester based resin systems for snap-cure applications [J].Microsyst Techno, 2002, 8(1):58-62.
    [71] D.A.Shimp, S.J.Ising, Metal carboxylate/alcohol curing catalyst for Polycyanate ester of poly--hydric phenol [P],USP 4, 608, 434, 1986.
    [72] T.Sato, Y.Tsujii, Y.Kita, T.Fukuda, T.Miyamoto. Dielectric relaxation of liquidcrystalline cyanoethylated O-(2,3-dihydroxypropyl) cellulose [J].Macromol, 1991, 24:4691-4697.
    [73] Z.Y.Cheng, Dana Olson, T. Mai, Q. M. Zhang, H. Xu, Ferroelectric and electromech- -anical properties of poly (vinylidene-fluoride- trifluoroethylene-chlorotrifluoroethy- -lene) terpolymer [J].Appl Phys Left, 2001, 78:2360-22362.
    [74] J.Bauer, M. Bauer, Cyanate ester based resin systems for snap-cure applications [J].Micro Tech, 2002, 8:58-62.
    [75]王德生,杨士勇,刘斌,陈维,陈寿田.橡胶增韧环氧树脂的界面极化研究[J].复合材料学报,2002,19(4):7-10.
    [76] Dipa Ray, Bhattacharya Debadrita, Amar K. Mohanty, Lawrence T. Drzal, Manjusri Mishra .Static and dynamic mechanical properties of vinylester resin matrix composites filled with fly ash [J].Macromol Mater Eng, 2006, 291(7):784-792.
    [77] J.Bauer, M.Bauer, Curing of Cyanates with Primary Amines [J].Macro Chem Phy, 2001, 202(11):2213-2220.
    [78] J.Bauer, J.Neumann Rodekirch, M.Bauer, Polymelamines from cyanurates and ami- -nes: I. Reactionkinetics of model compounds [J].Macro Chem Phy, 1998, 199(1): 103-108.
    [79] A. Laly Pothana, Zachariah Oommenb, Sabu Thomasc.Dynamic mechanical analysis of banana fiber reinforced polyester composites [J].Compos Sci and Tech, 2003, 63:283–293.
    [80] E. Vassileva, K. Friedrich. Epoxy/alumina nanoparticle composites: I.Dynamic mechamical behavior [J].J Appl Polym Sci, 2003, 89(14):3774-3785.
    [81]吕方,朱光明,胡巧青,刘代军.玻璃微珠填充改性聚合物研究进展[J].高分子通报,2004, 5:1-7.
    [82]胡传群,曾黎明,胡兵.空心玻璃微珠在复合材料中的应用研究[J].化学建材,2008, 24(3):46:48.
    [83] Soo-Jin Park, Fan-Long Jin, Chang Jin Lee. Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins [J].Mater Sci Eng A, 2005, 402:335–340.
    [84] Ho Sung Kim. Fracture surface morphology in thermosets modified with hollow microspheres [J].J Appl Polym Sci, 2007, 6(105):3287-3294.
    [85]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002.
    [86]李寅彦,毛昌辉,杨志民.空芯玻璃微球表面改性及其介电性能研究[J].稀有金属,2005, 29(3):257-260.