过渡金属氧属纳米半导体材料的液相合成、性能和潜在应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属氧属半导体纳米材料因普遍具有特殊的结构和及其卓越的物理化学性质,因而引起科研工作者越来越多的兴趣和关注。一维Ag2Mo3O10·1.8H20纳米线与一维β-AgVO3纳米带,属于层状过渡金属氧化物半导体材料。它们分别具有大约2.8eV和2.5eV的禁带宽度,在可见光区域具有强烈的吸收峰。通过光辐射的诱导作用,表面结构的改变导致材料具有可调控的光学性能,如发光、光催化活性及表面增强拉曼性能。两种纳米材料的层状结构中具有可以自由移动的银离子,所以具有一定的导电性,从而在微电子、纳米电子器件上具有潜在的应用价值。此外,这些氧化物材料具有优越的抗菌性和气敏性,因而可以用于食品产业中。
     另外所研究的半导体纳米材料是模拟生物磁小体的水溶性磁性Fe3S4纳米复合颗粒。它能够存在于自然界中,但通常情况下只能由藏身于海底或者湖底的趋磁细菌在无氧条件下合成。文中介绍了一种简单的液相合成方式,大量合成出具有磁性的Fe3S4纳米复合材料(Fe3S4MNCs)。β-环糊精(β-CD)和聚乙二醇(PEG)的加入使得材料具有很好的水溶性、稳定性和生物相容性;而这些性质使得该材料在纳米生物生物技术领域具有很好的应用前景。此外,作为硫铁化合物的一个衍生物半导体材料,硫铁-胺有机无机杂化材料,也越来越引起科研工作者的兴趣。这种材料具有特殊的“三明治”层状结构,且随着掺杂的有机物的变化,形貌与结构均发生微小变化。具体内容主要包括以下几个方面:
     1、利用简单的水热方法制得大量的超长三钼酸银(Ag2Mo3O10·1.8H2O)纳米线,并对其表征,探索出其具有的潜在的应用价值。通过对纳米线的热重和差热数据以及在不同温度下的物相收集,得到纳米线的热稳定性研究;再通过对其进行光辐射处理,得到此纳米线的光稳定性研究。但是,不管利用何种手段,大量的银都会从纳米线的骨架上原位析出。因此对此纳米线进行光辐射处理,并根据其光辐射前后所具有的独特性质,证明光辐射是可以导致材料物理化学性质发生变化的一种很有效的手段;同时,研究此光处理前后的纳米线,它们的发光特性、在可见光区域的光催化活性、表面增强拉曼检测以及单根线的电学特性,使得材料具有很重要的应用价值。研究结果表明,这种超长的三钼酸银可用作光催化剂、发光检测材料、表面增强拉曼衬底,以及在微电子或微传感器上也具有潜在的应用前景。
     2、利用一维单根β-AgV03内米带和一维Ag2Mo3O10内米线电学方面的独特性质,将其做成纳米电子器件,我们研究了多种因素对此一维半导体材料电导行为的影响。此两种银系过渡金属氧化物,由于银离子在其结构中的特殊位置而使得整个半导体材料具有离子导电作用。通过对纳米线/纳米带场效应晶体管应用的研究分析,这两种银系氧化物均为p型半导体材料;通过选取导电性较好的钒酸银材料,讨论这种材料中能够影响其电学性质的一些因素,得到半导体材料根数、直径及光处理时间对其导电性具有很大的调控作用。结果表明此两种半导体在电子器件方面具有潜在的应用价值。
     3、采用简单的溶剂热反应方式,制备了高产,水溶性很好的模拟生物磁小体Fe3S4纳米颗粒,并根据其良好的生物相容性研究其在生物领域的应用,如用作核磁共振造影剂和癌细胞抑制剂。通过X射线衍射光谱和高分辨透射显微所示,Fe3S4纳米颗粒具有高度的结晶性,且在空气中室温下保存一段时间后依然具有良好的稳定性。通过磁性分析得知这种纳米晶具有铁磁性行为。其良好的水溶性及生物相容性,使得它们在生物制药方面具有良好的应用价值,如核磁共振成像及癌细胞抑制。
     4、采用简单的水热反应方式合成出以有机胺为模板的FeS-amine有机无机杂化材料,采用扩展X光吸收精细结构(XAFS)的手段辅助分析杂化材料的特殊结构,并研究具有特殊结构的材料所具有的磁学特性,期望用于可调控的磁学器件。通过水热方法可以合成出大量的硫铁-胺无机有机杂化材料,它是一种窄禁带杂化半导体材料,具有独特的三明治形状的层状结构。研究了有机胺对材料的影响,发现此种杂化材料随着掺杂胺的不同而具有不同的形貌。采用XAFS手段分析此杂化材料的结构变化,发现无机硫铁层之间铁-胺结合物和独立胺分子随掺杂的胺材料的链长的增加而分别降低和增加。同时,结构的变化也严重影响了此杂化材料的磁性变化。结果表明铁-胺结合物的降低和独立胺分子的增加都加强了自旋玻璃态的作用力,使得其竞争力超过半导体材料在低温下的铁磁性行为,因而具有随胺变化而不断增加的矫顽力和阻隔温度。
During the past decades, as a family member of semiconductor nanomaterials, transitional-metal chalcogenides nano-semiconductors have been attracting much attention owing to their peculiar structures and excellent properties. Ag2Mo3010-1.8H20nanowires and β-AgVO3nanobelts are two semiconductors, which have band gaps of about2.8eV and2.5eV, respectively. Intense absorption peaks can appear in the visible-light region for these two nanostructures. Tunale optical properties can be obtained, such as luminescence, photo catalysis and surface-enhanced Raman scattering (SERS) properties, with the help of photo irradiation to modify the surface structures of these nanomaterials. Excellent electrical conductivities make them useful in nano-electronics, for example field-effect transistors based on semiconductor nanostructures (nano-FETs). Their perfect anti-bacterial and gas sensing properties could make them potentially be used in food industry.
     Magnetic greigite (Fe3S4) nanocomposites, as a member of nanosemiconductors, can exist in the nature; however, they are always synthesized by the magnetotactic bacteria, which inhabits on the bottom of sea and lakes without no oxygen. This work introduces a simple solvent-based synthetic method, which can prepare a large scale of water-soluable Fe3S4nanocomposites. The presence of β-CD and PEG make them water-soluable, stable and biocompatible; as a result, they have potential application in biomedicine. As a ramification semiconductor of iron sulfides, the iron sulfide-amine hyrids have low band gaps and peculiar sandwiched structures, In this work, we demonstrated that they have exhibited changing morphologies, structures and magnetic properties with the variation of amine molecules. As a result, these hybrid semiconductors have potential application in magnetism devices owing to the tunable magnetic properties. The main results can be summarized as following:
     1. Ultralong one-dimensional Ag2Mo3010·1.8H2O nanowires can also be obtained by the facile hydrothermal synthesizing method, which have been characterized with XRD, SEM and HRTEM. TG-DTA analysis show the phase stability at selevtive temperatures; and photo irradiation on the nanowires help obtain the photo stability properties. Interestingly, a large amount of silver nanooparticles can be obtained by heating or photo irradiating the nanowires. Furthermore, we appove that photo irradiation can be an effective way of modifying the surface strutures of nanomaterials to get excellent properties. Besides, with the interesting optical properties, the nanowires with and without photoirradiation have potential application in many areas, such as optical materials, photocatalysis and SERS substrates. In addition, their perfect electrical propertie of a single nanowire makes these materials potentially be used in microelectronics or microsensors.
     2. According to the special electrical properties of β-AgVO3nanobelts and Ag2Mo3O10nanowires in previous works, electrics devices such as nano-field effect tubes (FETs) have been established with a single nanobelt and a nanowire. As to the silver based lamellar oxides, silver cations in the special structures can be able to move under appropriate conditions, which result in their conductivity. Notably, single β-AgVO3nanoblelt has been found to exhibit better conductivity than single Ag2Mo3010nanowire. Therefore, it is worthy to perform further experiments to control the conductivity of β-AgVO3nanoblelts by investigating several relative and important factors. All the results can confirm that both nanomaterials would have potential applications.
     3. Solvethermal method has been utilized to obtain a large scale of water-solubale Fe3S4nanocomposites (NCs). As-prepared Fe3S4NCs show high crystalline and excellent stability in the atmosphere. Through the magnetic measurements, the NCs exhibit ferromagnetic behavior. In the presence ofβ-CD and PEG, the NCs own wonderful water-solubility and biocompability; as a result, they have potential application in biomedicine, such as magnetic resonance imaging (MRI) and cancer inhibition.
     4. A large scale of molecule template-directed iron sulfide-amine hybrid semiconductors with low band gaps, sandwiched structures, and magnetic properties can be synthesized by a facile solvothermal method. X-ray absorption fine structure (XAFS) technique has been utilized to analyze the structural evolement and the results display the decrease of iron-amine complexing and increase of independent amine molecules. With the variation of amine molecules in these structures, the hybrid semiconductors show different morphologies, and tunable magnetic properties can as well be obtained with the variation of the structures, which makes it possible to be potentially used in magnetic devices. The magnetic results illuminate that the so-called spin-glass state can be enhanced with the decrease of iron-amine complexs and increase of independent amine molecules. The enhanced spin-glass state plays a crucile rule rather than the ferromagnetic behavior at low temperatures, which leads to the increasing blocking temperatures and coercivities.
引文
[1]罗莹,物理实验2000,21,3.
    [2]宋小杰,安徽化工 2008,34,14.
    [3]李淑娥,,堂润清,,刘汉忠,济宁师范专科学校学报2007,28,10.
    [4]李翔,,曹灿华,翟堃,,乔荣学,应用技术2011,39,154.
    [5]陈荣,中国科学基金2006,5,297.
    [6]L. T. Canham, Appl. Phys. Lett.1990,57,1046.
    [7]J. R. Haynes, W. C. Weitphal, Rhys. Rev.1956,101,1676.
    [8]W. Michaels, M. H. Pilkuhn, Phys. Status. Solidi 1969,36,311.
    [9]L. T. Canham, J. Phys. Chem. Solids 1986,47,363.
    [10]King. W. D., Boxall. D. L., L. C. M.,J. Cluster Sci.1997,8,267.
    [11]Ehbrecht M, Kohn. B., H. F., Phys. Rev. B 1997,56,6958.
    [12]Y. Cui., C. M. Lieber, Science 2001,291,851.
    [13]Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001,293,1289.
    [14]Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, C. M. Lieber, Science 2001,294, 1313.
    [15]J. Y. Yu, S. W. Chung, J. R. Health,J. Phys. Chem. B 2000,104,11864.
    [16]A. G. Cullis, L. T. Canham, P. D. J. Calcott,J. Appl. Phys.1986,59,3169.
    [17]S. Takagi, M. Takayanagi, A. Toriumi, IEEE Trans. Electron Dev.2000,47,999.
    [18]Y. Kamata, Mater. Today 2008,11,30.
    [19]B. R. Taylor, S. M. Kauzlarich, G. R. Delgado, H. W. H. Lee, Chem. Mater.1999,11, 2493.
    [20]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mater.2003,15,353.
    [21]X. Y. Fan, Z. G. Wu, P. X. Yan, B. S. Geng, H. J. Li, C. Li, P. J. Zhang, Mater. Lett. 2008,62,1805.
    [22]H. W. How, Y. Xie, Q. Li, Cryst. Growth Des.2005,5,201.
    [23]G. Malandrino, S. T. Finocchiaro, R. L. Nigro, C. Bongiorno, C. Spinella, L. L. Fragala, Chem. Mater.2004,16,5559.
    [24]X. G. Wen, W. X. Zhang, S. H. Yang, langmuir 2003,19,5898.
    [25]A. O. Musa, T. Akomolafe, M. J. Carter, Sol. Energy Mater. Sol. Cells 1998,51,305.
    [26]E. Olson, G. C. Spalding, A. M. Goldman, M. J. Rooks, Appl. Phys. Lett.1994,65,2740.
    [27]T. Muller, K. H. Heinig, B. Schmidt, Nucl. Instrum. Meth. B 2001,175,468.
    [28]H. Wang, A. J. Patil, K. Liu, S. Petrov, S. Mann, M. A. Winnik, I. Manners, Adv. Mater. 2009,21,1805.
    [29]C. J. Murphy, N. R. Jana, Adv. Mater.2002,14,80.
    [30]M. Reches, E. Gazit, Science 2003,300,625.
    [31]E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 1998,391,775.
    [32]R. Tsukamoto, M. Muraoka, M. Seki, H. Tabata, I. Yamashita, Chem. Mater.2007,19, 2389.
    [33]H. Ogihara, M. Sadakane, Y. Nodasaka, W. Ueda, Chem. Mater.2006,18,4981.
    [34]Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 2000,317,504.
    [35]B. C. Satishkumar, A. Govindaraj, M. Nath, C. N. R. Rao, J. Mater. Chem.2000,10, 2115.
    [36]C.-H. Cui, H.-H. Li, S.-H. Yu, Chem. Commun.2010,46,940.
    [37]H.-W. Liang, X. Cao, F. Zhou, C.-H. Cui, W.-J. Zhang, S.-H. Yu, Adv. Mater.2011,23, 1467.
    [38]Z.-A. Zang, H.-B. Yao, Y.-X. Zhou, W.-T. Yao, S.-H. Yu, Chem. Mater.2008,20,4749.
    [39]M. Zhang, Y. Lu, J.-F. Chen, T.-K. Zhang, Y.-Y. Liu, Y. Yang, W.-T. Yao, S.-H. Yu, Langmuir 2010,26,12882.
    [40]J. R. Heath, F. K. Legoues, Chem. Phys. Lett.1993,208,263.
    [41]X. Wang, Y. D. Li,J. Am. Chem. Soc.2002,124,2880.
    [42]Q. Y. Lu, F. Gao, D. Y. Zhao, Nano Lett.2002,2,725.
    [43]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998,14,3160.
    [44]S. T. Lee, N. Wang, C. S. Lee, Mat. Sci. Eng. A-Struct.2000,286,16.
    [45]Y. Xie, P. Yan, J. Lu, W. Z. Wang, Y. T. Qian, Chem. Mater.1999,11,2619.
    [46]W. Z. Wang, Y. Geng, P. Yan, F. Y. Liu, Y. Xie, Y. T. Qian, J. Am. Chem. Soc.1999, 121,4062.
    [47]A. Ghezelbash, B. A. Korgel, Langmuir 2005,21,9451.
    [48]A. Ghezelbash, M. B. Sigman, B. A. Korgel, Nano Lett.2004,4,537.
    [49]J. H. L. Beal, S. Prabakar, N. Gaston, G. B. Teh, P. G. Etchegoin, G. Williams, R. D. Tilley, Chem. Mater.2011,23,2514.
    [50]J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. X. Wu, J. Z. Zhang, T. Hyeon, J. Am. Chem. Soc.2003,125,11100.
    [51]L. Li, N. Sun, Y. Huang, Y. Qin, N. Zhao, J. Gao, M. Li, H. Zhou, L. Qi, Adv. Funct. Mater.2008,18,1194.
    [52]L. Cademartiri, R. Malakooti, P. G. O'Brien, A. Migliori, S. Petrov, N. P. Kherani, G. A. Ozin,Angew. Chem. Int. Edit.2008,47,3814.
    [53]G. Gao, X. Liu, R. Shi, K. Zhou, Y. Shi, R. Ma, E. Takayama-Muromachi, G. Qiu, Cryst. Growth Des.2010,10,2888.
    [54]H. Yang, D. Hasegawa, M. Takahashi, T. Ogawa, IEEE Trans. Magn.2008,44,3895.
    [55]L. Hu, C. de Montferrand, Y. Lalatonne, L. Motte, A. Brioude, J. Phys. Chem. C 2012, 116,4349.
    [56]S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. X. Li, J. Am. Chem. Soc.2004,126,273.
    [57]T. L. da Silva, L. C. Varanda, Nano Research 2011,4,666.
    [58]D. C. Lee, A. Ghezelbash, C. A. Stowell, B. A. Korgel,J. Phys. Chem. B 2006,110, 20906.
    [59]Y. J. Zhang, N. L. Wang, S. P. Gao, R. R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, Chem. Mater.2002,14,3564.
    [60]P. D. Yang, C. M. Lieber, Science 1996,273,1836.
    [61]S. H. Wang, S. H. Yang, Chem. Mater.2001,13,4794.
    [62]P. L. McEuen, M. S. Fuhrer, H. K. Park, IEEE Trans. Nanotechnol.2002,1,78.
    [63]D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, H. S. P. Wong, Proc. IEEE 2001,89,259.
    [64]C. M. Lieber, MRS Bull.2003,28,486.
    [65]P. S. Peercy, nature 2000,406,1023.
    [66]Y. Cui, X. F. Duan, J. T. Hu, C. M. Lieber, J. Phys. Chem. B 2000,104,5213.
    [67]M. Meuris, EE Times 2003.
    [68]J. R. Heath, J. J. Shiang, A. P. Alivisatos, J. Chem. Phys.1994,101,1607.
    [69]M. Burghard, H. Klauk, K. Kem, Adv. Mater.2009,21,2586.
    [70]K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, P. M. Fauchet, Nature 1996,384,338.
    [71]I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan,J. Appl. Phys.2001,89,5815.
    [72]J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, X. M. Meng, Appl. Phys. Lett.2004,85,2361.
    [73]J. C. Johnson, H. Q. Yan, P. D. Yang, R. J. Saykally, J. Phys. Chem. B 2003,107,8816.
    [74]Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, S. T. Lee, Adv. Funct. Mater.2007, 17,1795.
    [75]J. S. Jie, W. J. Zhang, S. T. Lee, App. Phys. Let.2006,89,223117.
    [76]Z. L. Wang, ACS Nano 2008,2,1987.
    [77]A. Zappettini, N. Spano, M. Mazzera, G. M. Guadalupi, C. Paorici, J. Cryst. Growth 2008,310,2080.
    [78]W. S. Kuhn, D. Angermeier, R. Druilhe, W. Gebhardt, R. Triboulet,J. Cryst. Growth 1998,183,535.
    [79]Q. Wu, M. Litz, X. C. Zhang, Appl. Phys. Lett.1996,68,2924.
    [80]J. Zhang, P.-C. Chen, G. Shen, J. He, A. Kumbhar, C. Zhou, J. Fang, Angew. Chem. Int. Edit.2008,47,9469.
    [81]J. Schrier, D. O. Demchenko, L.-W. Wang, Nano Lett.2007,7,2377.
    [82]H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, L. F. Fei, Langmuir 2006,22,3830.
    [83]J. Y. Woo, K. N. Kim, S. Jeong, C.-S. Han, Nanotechnology 2010,21.
    [84]I. O. Oladeji, L. Chow, Thin Solid Films 2005,474,77.
    [85]A. Olea, P. J. Sebastian, Sol. Energy Mater. Sol. Cells 1998,55,149.
    [86]J. F. Weng, J. C. Ren, Curr. Med. Chem.2006,13,897.
    [87]V. A. Oleinikov, Russ. J. Bioorg. Chem.2011,37,151.
    [88]V. A. Oleinikov, Bioorganicheskaia khimiia 2011,37,171.
    [89]Z.-H. Li, J. Peng, H.-L. Chen, J. Nanosci. Nanotechnol.2011,11,7521.
    [90]Y. Xing, Z. Xia, J. Rao, IEEE Trans. Nanobiosci.2009,8,4.
    [91]Y. Ghasemi, P. Peymani, S. Afifi, Acta bio-medica:Atenei Parmensis 2009,80,156.
    [92]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005,307,538.
    [93]G. Xiaohu, N. Shuming, NANOSENSING:MATERIALS AND DEVICES 2004,5593,478.
    [94]E. B. Voura, J. K. Jaiswal, H. Mattoussi, S. M. Simon, Nat. Med.2004,10,993.
    [95]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998,281,2013.
    [96]A. P. Alivisatos,J. Phys. Chem.1996,100,13226.
    [97]M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACSNano 2008,2,889.
    [98]J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew.Chem. Int. Edit.2008,47,8438.
    [99]Y.-W. Jun, J.-H. Lee, J. Cheon, Angew.Chem. Int. Edit.2008,47,5122.
    [100]Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc.2005,127,12387.
    [101]G. Bertolini, L. Paleari, A. Catassi, L. Roz, A. Cesario, G. Sozzi, P. Russo, Current Pharmaceutical Analysis 2008,4,197.
    [102]S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol.2004,22,93.
    [103]X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, Nat. Biotechnol. 2004,22,969.
    [104]B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science 2002,298,1759.
    [105]Y. Lu, C. Shi, M.-J. Hu, Y.-J. Xu, L. Yu, L.-P. Wen, Y. Zhao, W.-P. Xu, S.-H. Yu, Adv. Funct. Mater.2010,20,3701.
    [106]J. Wan, W. Cai, X. Meng, E. Liu, Chem. Commun.2007,5004.
    [107]C. T. Lefevre, N. Menguy, F. Abreu, U. Lins, M. Posfai, T. Prozorov, D. Pignol, R. B. Frankel, D. A. Bazylinski, Science 2011,334,1720.
    [108]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev.1995,95,69.
    [109]J. C. Ireland, P. Klostermann, E. W. Rice, R. M. Clark, Appl. Environ. Microb.1993,59, 1668.
    [110]R. X. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto, A. Fujishima, Cancer Res.1992, 52,2346.
    [111]K. E. Karakitsou, X. E. Verykios, J. Phys. Chem.1993,97,1184.
    [112]J.-X. Guo, F. Chen, Journal of Qingdao University of Science and Technology (Natural Science Edition) 2010,31,361.
    [113]X. Zhang, S. Chen, X. Quan, H. Zhao, Sep. Purif. Technol.2009,64,309.
    [114]H. Xu, H. Li, C. Wu,J. Chu, Y. Yan, H. Shu, Z. Gu, J. Hazard. Mater.2008,153,877.
    [115]H. Li, C. Liu, K. Li, H. Wang, J. Mater. Sci.2008,43,7026.
    [116]X. Cao, L. Gu, X. Lan, C. Zhao, D. Yao, W. Sheng, Mater. Chem. Phys.2007,106,175.
    [117]M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, J. Am. Chem. Soc.2012,134, 2930.
    [118]H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Edit.2011,50,10969.
    [119]Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater.2011,10, 780.
    [120]C.-H. Cui, H.-H. Li, S.-H. Yu, Chem. Sci.2011,2,1611.
    [121]Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang, Z. L. Wang,Adv. Funct. Mater.2008,18,1131.
    [122]V. Juttukonda, R. L. Paddock, J. E. Raymond, D. Denomme, A. E. Richardson, L. E. Slusher, B. D. Fahlman, J. Am. Chem. Soc.2006,128,420.
    [123]Y. L. Wang, X. C. Jiang, Y. N. Xia, J. Am. Chem. Soc.2003,125,16176.
    [124]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 1997,276,1395.
    [125]L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, T. Yu, Nanotechnology 2009,20.
    [126]G. Zhu, Y. Liu, H. Xu, Y. Chen, X. Shen, Z. Xu, CrystEngComm 2012,14,719.
    [127]L. Mai, L. Xu, Q. Gao, C. Han, B. Hu, Y. Pi, Nano Lett.2010,10,2604.
    [128]X. Chen, Z. Guo, W.-H. Xu, H.-B. Yao, M.-Q. Li, J.-H. Liu, X.-J. Huang, S.-H. Yu, Adv. Funct. Mater.2011,21,2049.
    [129]L. Jia, W. Cai, Adv. Funct. Mater.2010,20,3765.
    [130]徐明,材料导报 2006,20,12.
    [131]H. Ohno, F. Matsukura, Y. Ohno, JSAP International 2002.
    [132]J. Urdanivia, F. likawa, M. Z. Maialle, J. A. Brum, P. Hawrylak, Z. Wasilewski, Phys. Rev. B 2002,65.
    [133]M. Wu, J. Rhee, T. J. Emge, H. Yao, J.-H. Cheng, S. Thiagarajan, M. Croft, R. Yang, J. Li, Chem. Commun.2010,46,1649.
    [134]X. C. Jiang, T. Herricks, Y. N. Xia, Nano. Lett 2002,2,1333.
    [1]S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, Adv. Funct. Mater.2003,13, 639.
    [2]B. G. Hyde, S. Andersson, Wiley, New York,1989.
    [3]N. Liegeois-Duyckaerts, P. Tarte, Spectrochim. Acta, Part A 1972,28.
    [4]P. Kozma, R. Bajgar, Radiat. Phys. Chem.2002,65,127.
    [5]T. Oi, K. Takagi, T. Fukazawa, Appl. Phys. Lett.1980,36,278.
    [6]L. G. Van Uitert, S. Preziosi, J. Appl. Phys.1962,33,2908.
    [7]J. G. Rushbrooke, R. E. Ansorge, Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 1989,280,83.
    [8]K. Tanaka, T. Miyajima, N. Shirai, Q. Zhuang, R. Nakata, J. Appl. Phys.1995,77,6581.
    [9]W. M. Qu, W. Wlodarski, J. U. Meyer, Sensors Actuat. B-Chem.2000,64,76.
    [10]H. Ehrenberg, H. Weitzel, C. Heid, H. Fuess, G. Wltschek, T. Kroener, J. vanTol, M. Bonnet, J. Phys.-Condens. Mat.1997,9,3189.
    [11]S. A. Driscoll, U. S. Ozkan, New Developments in Selective Oxidation Ⅱ1994,82,367.
    [12]X. J. Cui, S. H. Yu, L. L. Li, L. Biao, H. B. Li, M. S. Mo, X. M. Liu, Chem. Eur. J.2004,10, 218.
    [13]S. H. Yu, M. Antonietti, H. Colfen, M. Giersig, Angew. Chem. Int. Edit.2002,41,2356.
    [14]H. W. Liao, Y. F. Wang, X. M. Liu, Y. D. Li, Y. T. Qian, Chem. Mater.2000,12,2819.
    [15]L. Cheng, Q. Shao, M. Shao, X. Wei, Z. Wu, J. Phys. Chem. C 2009,113,1764.
    [16]W. Lasocha, A. Lasocha, S. A. Hodorowiez, Cryst. Res. Technol.1985,20,713.
    [17]S. Bhattacharya, A. Ghosh, Phys. Rev. B 2007,75,092103.
    [18]S. Bhattacharya, A. Ghosh, J. Appl. Phys.2006,100,114119.
    [19]S. S. Sunu, V. Jayaraman, E. Prabhu, K. I. Gnanasekar, T. Gnanasekaran, Ionics 2004,10, 244.
    [20]A. K. Arof, K. C. Seman, A. N. Hashim, R. Yahya, M. J. Maah, S. Radhakrishna, Mat. Sci. Eng. B-Solid 1995,31,249.
    [21]K. Hariharan, C. Sangamithra, Mater. Chem. Phys.1992,32,240.
    [22]E. Prabhu, S. Muthuraja, K. I. Gnanasekar, V. Jayaraman, S. Sivabalan, T. Gnanasekaran, Surf. Eng.2008,24,170.
    [23]C. Brechignac, P. Cahuzac, N. Kebaili, A. Lando, A. Masson, M. Schmidt, J. Chem. Phys. 2004,121,9617.
    [24]E. Wenda,J. Therm. Anal. Calorim.1998,53,861.
    [25]G. Nagaraju, G. T. Chandrappa, J. Livage, Bull. Mater. Sci.2008,31,367.
    [26]W. Gulbinski, T. Suszko, Wear 2006,261,867.
    [27]M. Zhu, P. Chen, M. Liu, ACS Nano 2011,5,4529.
    [28]Z. Zhaoke, H. Baibiao, Q. Xiaoyan, Z. Xiaoyang, D. Ying, W. Myung-Hwan,J. Mater. Chem. 2011,21,9079.
    [29]P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M.-H. Whangbo, Chem. Eur J.2009,15,1821.
    [30]H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Chem. Mater.2008,20,6543.
    [31]J. Yu, G. Dai, B. Huang, J. Phys. Chem. C 2009,113,16394.
    [32]J. Li, J. Xu, W.-L. Dai, K. Fan, J. Phys. Chem. C 2009,113,8343.
    [33]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Angew. Chem. Int. Edit.2008,47,7931.
    [34]Y. Tian, T. Tatsuma, Chem. Commun.2004,1810.
    [35]Z. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano Lett.2007,7,1081.
    [36]Y. Cao, X. T. Zhang, W. S. Yang, H. Du, Y. B. Bai, T. J. Li, J. N. Yao, Chem. Mater.2000,12, 3445.
    [37]P. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, H. Jin, J. Wei, M.-H. Whangbo, Chem. Eur. J. 2008,14,10543.
    [38]W. Zeyan, H. Baibiao, D. Ying, Q. Xiaoyan, Z. Xiaoyang, W. Peng, L. Haixia, Y. Jiaoxian, J. Phys. Chem. C 2009,113,4612.
    [39]S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, J. Catal 2009,262, 144.
    [40]H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Langmuir 2010,26,6618.
    [41]O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, Nanotechnology 2010,21, 045203.
    [42]D. Rui-Xuan, C. Chin-Cheng, L. Jiang-Jen, J. Mater. Chem.2009,19,2184.
    [43]H. Jiang, K.-S. Moon, F. Hua, C. P. Wong, Chem. Mater.2007,19,4482.
    [44]N. J. Yang, K. Aoki, H. Nagasawa, J. Phys. Chem. B 2004,108,15027.
    [45]T. Tamai, M. Watanabe, T. Teramura, N. Nishioka, K. Matsukawa, Macromol. Symp.2010, 288,104.
    [46]C. Hu, T. Peng, X. Hu, Y. Nie, X. Zhou, J. Qu, H. He, J. Am. Chem. Soc.2010,132,857.
    [47]M.-W. Shao, L. Lu, H. Wang, S. Wang, M.-L. Zhang, D.-D.-D. Ma, S.-T. Lee, Chem. Commun.2008,2310.
    [48]T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.-P. Jolivet, J. Phys. Chem. C 2011,115,5657.
    [49]X. Li, J. Ye,J. Phys. Chem. C 2007, 111,13109.
    [50]H. B. Fu, C. S. Pan, W. Q. Yao, Y. F. Zhu, J. Phys. Chem. B 2005,109,22432.
    [51]T. Watanabe, T. Takizawa, K. Honda,J. Phys. Chem.1977,81,1845.
    [52]G. Agostini, S. Usseglio, E. Groppo, M. J. Uddin, C. Prestipino, S. Bordiga, A. Zecchina, P. L. Solari, C. Lamberti, Chem. Mater.2009,21,1343.
    [53]J. Zeng, H. Jia, J. An, X. Han, W. Xu, B. Zhao, Y. Ozaki, J. Raman Spectrosc.2008,39, 1673.
    [54]X. Zou, S. Dong, J. Phys. Chem. B 2006,110,21545.
    [55]A. Phuruangrat, T. Thongtem, S. Thongtem, J. Cryst. Growth 2009,311,4076.
    [56]J. W. Yoon, J. H. Ryu, K. B. Shim, Mat. Sci. Eng. B-Solid 2006,127,154.
    [57]J. M. Wang, L. Gao, J. Mater. Chem.2003,13,2551.
    [58]A. S. Al-Kady, M. Gaber, M. M. Hussein, E.-Z. M. Ebeid, J. Phys. Chem. A 2009,113,9474.
    [59]H. Qu, L. Cao, G. Su, W. Liu, Y. Sun, B. Dong,J. Appl. Phys.2009,106,093506.
    [60].B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997,101,9463.
    [61]H. Watanabe, N. Hayazawa, Y. Inouye, S. Kawata, J. Phys. Chem. B 2005,109,5012.
    [62]P. Hildebrandt, M. Stockburger, J. Phys. Chem.1984,88,5935.
    [63]H. Okamoto, K. Imura,J. Mater. Chem.2006,16,3920.
    [64]A. Sanson, F. Rocca, C. Armellini, S. Ahmed, R. Grisenti, J. Non-Cryst. Solids 2008,354, 94.
    [65]A. Raimondo, A. Mandanici, M. A. Ramos, J. G. Rodrigo, C. Armellini, M. Cutroni, S. Vieira, Philos. Mag.2008,88,3973.
    [66]A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, New J. Phys.2007,9,8.
    [67]J.-M. Song, Y.-Z. Lin, H.-B. Yao, F.-J. Fan, X.-G. Li, S.-H. Yu, ACS Nano 2009,3,653.
    [68]S.-J. Bao, Q.-L. Bao, C.-M. Li, T. P. Chen, C.-Q. Sun, Z.-L. Dong, Y. Gan, J. Zhang, Small 2007,3,1174.
    [69]L. Q. Mai, C. S. Lao, B. Hu, J. Zhou, Y. Y. Qi, W. Chen, E. D. Gu, Z. L. Wang, J. Phys. Chem.B 2006,110,18138.
    [70]S. Chakraborty, M. K. Bera, G. K. Dalapati, D. Paramanik, S. Varma, P. K. Bose, S. Bhattacharya, C. K. Maiti, Semicond. Sci. Technol.2006,21,467.
    [71]G. Golan, A. Axelevitch, B. Sigalov, B. Gorenstein, J. Optoelectron. Adv. Mater.2004,6, 189.
    [1]J. Lee, S. Cha, J. Kim, H. Nam, S. Lee, W. Ko, K. L. Wang, J. Park, J. Hong, Adv. Mater. 2011,23,4183.
    [2]D. Wu, Y. Jiang, L. Wang, S. Li, B. Wu, X. Lan, Y. Yu, C. Wu, Z. Wang, J. Jie, Appl. Phys. Lett.2010,96.
    [3]J. Cai, J. Jie, P. Jiang, D. Wu, C. Xie, C. Wu, Z. Wang, Y. Yu, L. Wang, X. Zhang, Q. Peng, Y. Jiang, PCCP 2011,13,14663.
    [4]Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, S.-T. Lee, Adv. Funct. Mater.2007,17, 1795.
    [5]J. S. Jie, W. J. Zhang, Y. Jiang, S. T. Lee, Appl. Phys. Lett.2006,89,223117.
    [6]L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, T. Yu, Nanotechnology 2009,20,085203.
    [7]G. Wang, S. Chu, N. Zhan, Y. Lin, L. Chernyak, J. Liu, Appl. Phys. Lett.2011,98.
    [8]Y.-B. Tang, X.-H. Bo, J. Xu, Y.-L. Cao, Z.-H. Chen, H.-S. Song, C.-P. Liu, T.-F. Hung, W.-J. Zhang, H.-M. Cheng, I. Bello, S.-T. Lee, C.-S. Lee, ACSNano 2011,5,3591.
    [9]W. Guoping, C. Sheng, Z. Ning, Z. Huimei, L. Jianlin, Appl. Phys. A 2011,103,951.
    [10]M. Feng, M. Zhang, J.-M. Song, X.-G. Li, S.-H. Yu, ACSNano 2011,5,6726.
    [11]J.-M. Song, Y.-Z. Lin, H.-B. Yao, F.-J. Fan, X.-G. Li, S.-H. Yu, ACSNano 2009,3,653.
    [12]G. Nagaraju, G. T. Chandrappa, J. Livage, Bull. Mater. Sci.2008,31,367.
    [13]S.-J. Bao, Q.-L. Bao, C.-M. Li, T. P. Chen, C.-Q. Sun, Z.-L. Dong, Y. Gan, J. Zhang, Small 2007,3,1174.
    [14]S. S. Sunu, V. Jayaraman, E. Prabhu, K. I. Gnanasekar, T. Gnanasekaran, Ionics 2004,10, 244.
    [15]H. Lin, P. A. Maggard, Inorg. Chem.2008,47,8044.
    [16]M.-W. Shao, L. Lu, H. Wang, S. Wang, M.-L. Zhang, D.-D.-D. Ma, S.-T. Lee, Chem. Commun.2008,2310.
    [17]L. Cheng, Q. Shao, M. Shao, X. Wei, Z. Wu, J. Phys. Chem. C 2009,113,1764.
    [18]M. I. Bertoni, N. J. Kidner, T. O. Mason, T. A. Albrecht, E. M. Sorensen, K. R. Poeppelmeier, J. Electroceram.2007,18,189.
    [19]R. Konta, H. Kato, H. Kobayashi, A. Kudo, PCCP 2003,5,3061.
    [20]L. Q. Mai, C. S. Lao, B. Hu, J. Zhou, Y. Y. Qi, W. Chen, E. D. Gu, Z. L. Wang, J. Phys. Chem. B 2006,110,18138.
    [21]S. Chakraborty, M. K. Bera, G. K. Dalapati, D. Paramanik, S. Varma, P. K. Bose, S. Bhattacharya, C. K. Maiti, Semicond. Sci. Technol.2006,21,467.
    [22]G. Golan, A. Axelevitch, B. Sigalov, B. Gorenstein, J. Optoelectron. Adv. Mater.2004,6, 189.
    [1]R. Lakes, Nature 1993,361,511.
    [2]R. P. Blakemore, Science 1975,190,337.
    [3]L. J. El-Jaick, D. Acosta-Avalos, D. M. De Souza, E. Wajnberg, M. P. Linhares, Eur. Biophys. J.2001,29,579.
    [4]B. A. Maher, Proc, R. Soc. Lond. B 1998,265,733.
    [5]M. Winklhofer, E. Holtkamp-Rotzler, M. Hanzlik, G. Fleissner, N. Petersen, Eur. J. Mineral. 2001,13,659.
    [6]M. M. Walker, T. P. Quinn, J. L. Kirschvink, C. Groot, J. Exp. Biol.1988,140,51.
    [7]S. Mann, N. H. C. Sparks, M. M. Walker, J. L. Kirschvink, J. Exp. Biol.1988,140,35.
    [8]J. L. Kirschvink, A. Kobayashikirschvink, B. J. Woodford, Proc. Natl. Acad. Sci. U. S. A. 1992,89,7683.
    [9]J. Zoeger, J. R. Dunn, M. Fuller, Science 1981,213,892.
    [10]A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, T. Matsunaga, J. R. Soc. Interface 2008,5, 977.
    [11]S. L. Simmons, K. J. Edwards, Environ. Microbiol.2007,9,206.
    [12]S. Mann, N. H. C. Sparks, R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, Nature 1990, 343,258.
    [13]M. Farina, D. M. S. Esquivel, H. Debarros, Nature 1990,343,256.
    [14]C. T. Lefevre, N. Menguy, F. Abreu, U. Lins, M. Posfai, T. Prozorov, D. Pignol, R. B. Frankel, D. A. Bazylinski, Science 2011,334,1720.
    [15]E. F. Delong, R. B. Frankel, D. A. Bazylinski, Science 1993,259,803.
    [16]C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, V. L. Colvin, Science 2006,314,964.
    [17]J. M. Nam, C. S. Thaxton, C. A. Mirkin, Science 2003,301,1884.
    [18]S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. Int. Edit. 2004,43,5645.
    [19]A. H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Angew. Chem. Int. Edit.2004,43,4303.
    [20]Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc.2005,127,12387.
    [21]J. W. M. Bulte, T. Douglas, B. Witwer, S. C. Zhang, E. Strable, B. K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B. M. Moskowitz, I. D. Duncan, J. A. Frank, Nat. Biotechnol.2001, 19,1141.
    [22]I. Koh, L. Josephson, Sensors 2009,9,8130.
    [23]D. W. Elliott, W. X. Zhang, Abstracts of Papers of the American Chemical Society 2003,225, U971.
    [24]A. P. Roberts, L. Chang, C. J. Rowan, C.-S. Horng, F. Florindo, Rev. Geophys.2011,49.
    [25]A. A. Bharde, R. Y. Parikh, M. Baidakova, S. Jouen, B. Hannoyer, T. Enoki, B. L. V. Prasad, Y. S. Shouche, S. Ogale, M. Sastry, Langmuir 2008,24,5787.
    [26]X. F. Qian, X. M. Zhang, C. Wang, Y. Yie, W. Z. Wang, Y. T. Qian, Mat. Sci. Eng. B-Solid 1999,64,170.
    [27]Y. Zhang, Y. Du, H. Xu, Q. Wang, CrystEngComm 2010,12,3658.
    [28]J. Ma, L. Chang, J. Lian, Z. Huang, X. Duan, X. Liu, P. Peng, T. Kim, Z. Liu, W. Zheng, Chem. Commun.2010,46,5006.
    [29]X. Y. Chen, Z. J. Zhang, X. X. Li, C. W. Shi, Chem. Phys. Lett.2006,422,294.
    [30]C. E. Strattan, Biopharm-the Technology & Business of Biopharmaceuticals 1991,4, 44.
    [31]F. Cao, W. Hu, L. Zhou, W. Shi, S. Song, Y. Lei, S. Wang, H. Zhang, Dalton Trans.2009, 9246.
    [32]H. Zhubing, Y. Shu-Hong, Z. Xiaoyuan, L. Xiaoguang, Q. Jifeng, Adv. Funct. Mater.2006, 16.
    [33]G. Subias, J. Garcia, J. Blasco, Phys. Rev. B 2005,71.
    [34]A. S. Krylov, J. F. Poliakoff, M. Stockenhuber, PCCP 2000,2,5743.
    [35]E. Makovicky,2006,61,7.
    [36]S. Boursiquot, M. Mullet, M. Abdelmoula, J. M. Genin, J. J. Ehrhardt, Phys. Chem. Miner. 2001,28,600.
    [37]R. B. Herbert, S. G. Benner, A. R. Pratt, D. W. Blowes, Chem. Geol.1998,144,87.
    [38]D. Rickard, G. W. Luther, III, Chem. Rev.2007,107,514.
    [39]M. Nath, A. Choudhury, A. Kundu, C. N. R. Rao, Adv. Mater.2003,15,2098.
    [40]W. Xian-Wen, Z. Guo-Xing, L. Yuan-Jun, N. Yong-Hong, S. You, X. Zheng, Chem. Mater. 2008,20.
    [41]Y. Leng, Y. Li, X. Li, S. Takahashi, J. Phys. Chem. C 2007,111,6630.
    [1]M. Wu, J. Rhee, T. J. Emge, H. B. Yao, J.-H. Cheng, S. Thiagarajan, M. Croft, R. G. Yang, J. Li, Chem. Commun.2010,46,1649.
    [2]M. R. Gao, W. T. Yao, H. B. Yao, S. H. Yu, J. Am. Chem. Soc.2009,131,7486.
    [3]Z. A. Zang, H. B. Yao, Y. X. Zhou, W. T. Yao, S. H. Yu, Chem. Mater.2008,20,4749.
    [4]J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, J. Am. Chem. Soc.2005,127, 15595.
    [5]M. Nath, A. Choudhury, C. N. R. Rao, Chem. Commun.2004,2698.
    [6]X. Huang, J. Li, J. Am. Chem. Soc.2007,129,3157.
    [7]M. C. Lonergan, Science 1997,278,2103.
    [8]Y. Zhang, G. M. Dalpian, B. Fluegel, S. H. Wei, A. Mascarenhas, X. Y. Huang, J. Li, L. W. Wang, Phys. Rev. Lett.2006,96,026405.
    [9]C. Y. Moon, G. M. Dalpian, Y. Zhang, S. H. Wei, Chem. Mater.2006,18,2805.
    [10]B. Fluegel, Y. Zhang, A. Mascarenhas, X. Huang, J. Li, Phys Rev B 2004,70,205308.
    [11]X. Y. Huang, J. Li, Y. Zhang, A. Mascarenhas,J. Am. Chem. Soc.2003,125,7049.
    [12]Z. X. Deng, L. B. Li, Y. D. Li, Inorg. Chem.2003,42,2331.
    [13]S. H. Yu, M. Yoshimura, Adv. Mater.2002,14,296.
    [14]X. Y. Huang, H. R. Heulings, V. Le, J. Li, Chem. Mater.2001,13,3754.
    [15]H. R. Heulings, X. Y. Huang, J. Li, T. Yuen, C. L. Lin, Nano Lett.2001,1,521.
    [16]X. Y. Huang, J. Li, H. X. Fu, J. Am. Chem. Soc.2000,122,8789.
    [17]M. Bauer, J. Phys. Chem. A 2010,114,12870.
    [18]B. D. Yuhas, S. E. Habas, S. C. Fakra, T. Mokari, ACS Nano 2009,3,3369.
    [19]A. S. Krylov, J. F. Poliakoff, M. Stockenhuber, PCCP 2000,2,5743.
    [20]M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J. C. Hanson, A. I. Frenkel, J. A. Rodriguez, J. Phys. Chem. C 2009,113,14411.
    [21]A. P. Grosvenor, J. E. Greedan,J. Phys. Chem. C 2009,113,11366.
    [22]T. E. Westre, P. Kennepohl, J. G. DeWitt, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc.1997,119,6297.
    [23]A. P. Grosvenor, R. G. Cavell, A. Mar, J. Solid State Chem.2007,180,2702.
    [24]W. Olszewski, K. Szymanski, P. Zaleski, D. A. Zajac,J. Phys. Chem. A 2011,115, 13420.
    [25]J. A. Sigrist, M. W. Gaultois, A. P. Grosvenor, J. Phys. Chem. A 2011,775,1908.
    [26]M. L. Neidig, J. Sharma, H.-C. Yeh, J. S. Martinez, S. D. Conradson, A. P. Shreve, J. Am. Chem. Soc.2011,133,11837.
    [27]N. Ichikuni, Y. Wakai, T. Hara, S. Shimazu, J. Phys.:Conf. Ser.,2009,790,012169.
    [28]J. Z. Jiang, R. K. Larsen, R. Lin, S. Morup, I. Chorkendorff, K. Nielsen, K. Hansen, K. West, J. Solid State Chem.1998,138,114.
    [29]Y. Fei, C. T. Prewitt, Covalent Ceramics Iii-Science and Technology of Non-Oxides, 1996,410,223.
    [30]A. Kumar, R. P. Tandon, V. P. S. Awana, J. Appl. Phys.2011,110.
    [31]H. Tueysuez, E. L. Salabas, C. Weidenthaler, F. Schueth,J. Am. Chem. Soc.2008,130, 280.
    [32]Y. Pan, J. Gao, B. Zhang, X. Zhang, B. Xu, Langmuir 2010,26,4184.
    [33]R. H. Kodama, A. E. Berkowitz, E. J. McNiff, S. Foner, Phys. Rev. Lett.1996,77,394.
    [34]B. Martinez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Phys. Rev. Lett.1998,80, 181.