含POSS侧基的偶氮侧链液晶共聚物的合成与性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多面齐聚物倍半硅氧烷(POSS)是一种新型的有机-无机杂化材料,因其高的热稳定性、阻燃性、机械性能和低的介电常数,使其在聚合物/POSS复合材料中具有广泛的应用前景。
     本论文通过分子设计,利用氨基POSS与丙烯酸的缩合反应合成了丙烯酸修饰POSS (AC-POSS)。然后以AIBN为引发剂,利用AC-POSS与甲基丙烯酸液晶单体的自由基共聚反应,合成了液晶高分子/POSS共聚物(LCP-POSS),并通过FT-IR和1H NMR确认了产物的化学结构。研究LCP-POSS溶液的紫外光致异构行为,发现随着紫外光照时间增加,LCP-POSS的偶氮基元发生由反式向顺式构型的转变,其吸光强度逐渐降低。LCP和LCP-POSS的光致异构化反应均表现为一级动力学,但POSS引入LCP基体中,由于其空间位阻效应,降低了偶氮苯基元的反-顺异构化速率常数。研究LCP-POSS的液晶行为发现,随POSS的含量逐渐增加,LCP-POSS液晶相变温度增加,偏振光下的液晶织构逐渐变小;而进一步增加POSS含量,将使LCP-POSS液晶性逐渐消失。这是由于POSS的空间位阻效应,降低了聚合物链的柔顺性和改变构象的能力,使LCP分子堆砌规整性降低,无序度增加,使液晶分子液晶性表现为随POSS含量增加而渐弱的趋势。
Polyhedral oligomeric silsesquioxane (POSS) as a novel organic-inorganic hybrid has many potential applications in polymers/POSS composites due to its high thermal stability, flame retardation, and mechanical properties as well as low dielectric constant.
     The acrylic acid modified POSS (AC-POSS) has been synthesized by the reaction of POSS containing amine groups with acrylic acid. A free radical polymeraztion was applied to synthesize liquid crystalline polymers (LCP)/POSS copolymer (LCP-POSS) in the presence of AC-POSS and liquid crystalline monomers using AIBN as an initiator. And the chemical structures of the above products were confirmed by FT-IR and NMR spectra. The trans-isomers of azobenzene moieties in LCP-POSS were gradually transformed to cis-isomers with increasing the UV-irradiation time, accompanied by a decrease in the absorbance. LCPs and LCP-POSS showed the first-order photoisomerization reaction. As compared with the LCPs, the photoisomerization rate constant of LCP-POSS decreases due to the incorporation of the POSS as rigid segment. The phase transition temperature of liquid crystalline in LCP-POSS increases with the content of POSS, and the size of liquid crystalline domain in LCP-POSS decrescs. As the POSS content in LCP-POSS further increases, the ordered structure of liquid crystalline phase is gradually destroyed, resulting in the final disappearance of LCPs’liquid crystllinity due to the rigidity of POSS.
引文
[1] Chem J P, Nogami M, Ikeda S. Layer by layer self-assembly of thin films of metal hexacyan of errae multilayers [J]. Langmuir, 2001, 17: 7468-7471.
    [2] Melinda K, Pherson F M, Emily R. L, et al. Surface-mediated photoalignment of discotic liquid crystals on azobenzene polymer films [J]. J Phys Chem B, 2005, 109: 9245-9254.
    [3]宋文,陈继诚.插层复合制备聚合物/粘土纳米复合材料研究新进展[J].中国石油化工,1999,10:5-8
    [4] Ni Y, Zheng S X, Fisher M A, et al. Novel Photocrosslinkable polyhedral oligomeric silsesquioxane and its nanocomposites with poly(vinyl cinnamate) [J]. Chem Mater, 2004, 16: 5141-5148.
    [5] Ni Y, Zheng S X. Epoxy resin containing octamaleimidophenyl polyhedral oligomeric silsesquioxane [J]. Macromol Chem Phys, 2005, 206: 2075–2083
    [6] Zheng L, Farris R J, Coughlin E B, et al. Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers [J]. Macromolecules, 2001, 34: 8034-8039
    [7] Constable S A, Fasce D P, Williamis R J J. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol a with polyhedral oligomeric silsesquioxanes bearing of-functionalized organic substituents [J]. J Polym Sci Polym Phys,1998, 41: 1451-1461
    [8] Choi J, Harcup J, Yee A F, et al. Organic/inorganic hybrid composites fromcubic silsesquioxanes [J]. J Am Chem Soc, 2001, 123: 11420-11430
    [9] Stracke B A, Joachim H, Wendorff B, et al. Dietmar Janietz, and Sven Mahlstedt Functionalized liquid-crystalline donor±acceptor triple compounds containing azobenzene for optical storage [J]. Adv Mater, 1999, 11: 667-680
    [10] Laine R M, Choi J, Lee I, et al. Organic-inorganic nanocomposites with completely defined interfacial interactions [J]. Adv Mater, 2001, 13: 800-803
    [11] Haddad T S, Lichtenhan J D, Yee A F, et al. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers [J]. Macromolecules, 1996, 29: 7302-7304
    [12] Patel R R, Rajendran M, Charles U P. Properties of polystyrene and polymethyl methacrylate copolymers of polyhedral oligomeric silsesquioxanes:a molecular dynamics study [J], J Polym Sci Polym Phys, 2006, 44: 234-248
    [13] Sellinger A, Laine R M, Pellice S A, et al. Silsesquioxanes as synthetic platforms thermally curable and photocurable inorganic/organic hybrids [J]. Macromolecules, 1996, 29: 2327-2330
    [14] Lee A, Lichtenhan J D, Yee A F, et al. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems [J]. Macromolecules, 1998, 31: 4970-4974
    [15] Zheng E G, Chaffee K P, Haddad T S, et al. Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS -olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks [J]. Appl Organomet Chem, 1999, 13: 311-327
    [16] Yoon K H, Polk M B, Park J H, et al. Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane [J]. Polym Int, 2005, 54: 47–53
    [17] Mather P T, Jeon H G, Haddad T S, et al. Mechanical relaxation and microstructure of poly(norbornyl-poss) copolymers [J]. Macromolecules, 1999, 32: 1194-1203
    [18] Bharadwaj B K, Berry R J, Farmer B L, et al. Molecular dynamics simulation study of norbornene–POSS polymers [J]. Polymer, 2000, 41: 7209-7221
    [19] Lichtenhan J D, Vu N Q, Carter J A. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes [J], Macromolecules, 1993, 26: 2141-2142
    [20] Jeon H G, Mather P, Haddad T S. Shape memory and nanostructure in poly(norbornyl-POSS) copolymers [J]. Polym Int. 2000, 49: 453-457
    [21] Shan L, Verghese K N E, Robertson C G, et al. Effect of network structure of epoxy DGEBA-poly(oxypropylene)diamines on tensile behavior [J]. J Polym Sci Polym Phys, 1999, 37: 2815-2819
    [22] Radovanovic E, Pastore H O, Yoshida I V P, et al. Spiralling optical morphologies inspherulites of poly(hydroxybutyrate) [J]. J Polym Sci Polym Chem, 2000, 38: 1575-1583
    [23] Baney R H, Itoh M, Sakakibara A, et al. Silsesquioxanes [J]. Chem Rev, 1995, 95: 1409-1403
    [24] Harrison P G, Verghese K N E, Robertson C G, et al. Silicate cages: precursors to new materials [J]. J Organomet Chem, 1997, 542: 141-183
    [25] Shawn H. Phillips A, Haddad T S, et al. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers [J]. J Organomet Chem, 2004, 8: 21-29
    [26] Hasegawa I ,Sugahara G, Chuzo A, et al. Silicate anions formed in tetramethylammonium silicate methanolic solutions as studied by silicon-29 nuclear magnetic resonance [J]. Chem Commun, 1989, 4: 208-210
    [27] Zheng L, Hong S, Cardoen G E, et al. Polymer Nanocomposites through Controlled Self-Assembly of Cubic Silsesquioxan Scaffolds [J]. Macromolecules, 2004, 37: 8606-8611
    [28] Lee A, Sugahara B, Chuzo A. New approach in the synthesis of hybrid polymers grafted with polyhedral oligomeric silsesquioxane and their physical and viscoelastic properties [J]. Macromolecules, 2005, 38: 438-444
    [29] Strachota A, Kroutilova I R, Jana K R, et al. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes(POSS) thermomechanical properties [J]. Macromolecules, 2004, 37: 9457-9464
    [30] Kim K M, Yu K O, Chujo Y S. Synthesis of organic-inorganic star-shaped polyoxazolines using octafunctional silsesquioxane as an initiator [J]. Polymer Bulletin, 2003, 49: 341-348
    [31]袁长友,胡春野.笼形八聚(五甲基二硅氧)倍半硅氧烷[J].有机硅材料,2001,15:1-4
    [32] Feher F J, Budzichowski T A, Blanski R L, et al. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3],and [(c-C7H13)6Si6O7(OH)4][J]. Organometallics, 1991, 10: 2526-2528
    [33] Feher F J, Soulivong D, Lewis G T. Facile framework cleavage reactions of acompletely condensed silsesquioxane framework [J]. J Am Chem Soc, 1997, 119: 11323-11324
    [34] Feher F J, Nguyen F, Soulivong D, et al. A new route to incompletely condensed silsesquioxanes: acid-mediated cleavage and rearrangement of (c-C6H11)6Si6O9 to C2-[(c-C6H11)6Si6O8X2] [J]. Chem Commun, 1999, 17: 1705-1706
    [35] Feher F J, Soulivong D, Soulivong D, et al. Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R8Si8O12 framework [J]. Chem Commun, 1998, 12: 1279-1280
    [36] Gidden J, Jackson A T, Bowers M T, et al. Gas-phase conformations of cationized poly(styrene) oligomer s[J]. J Am Soc Mass Spectr, 2002, 13: 499-505
    [37] Zhang C, Laine R M. Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species[J]. J Organomet Chem, 1998, 521: 199-201
    [38] Schwab J J, Joseph D, Jackson A T, et al. Polyhedral oligomeric silsesquioxane(poss)-based polymers [J]. Appl Organometal Chem, 1998, 12: 707–713
    [39] Li G Z, Wang L, Toghiani H, et al. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends [J]. Macromolecules, 2001, 34: 8686-8693
    [40] Zhang R Y, Salacinski Y, Groot J D. The antithrombogenic potential of a polyhedral oligomeric silsesquioxane nanocomposite [J]. Biomacromolecules, 2006, 7: 215-223
    [41] Laine A, Lichtenhan J D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems [J]. Macromolecules, 1998, 31: 4970-4974
    [42] Neumann E , Erba A, Roberto J J W, et al. Poly(silsesquioxanes) derived from the hydrolytic condensation of organotrialkoxysilanes containing hydroxyl groups [J]. J Organome Chemistry, 2003, 686: 42-51
    [43] Choi J, Kim S G, Laine R M. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems [J]. Macromolecules, 2004, 31: 4970-4974
    [44] Neumann E, Harcup J, Yee A F, et al. Organic/inorganic hybrid composites fromcubic silsesquioxanes [J]. J Am Chem Soc, 2001, 123: 11420-11430
    [45] Laine R M, Choi J, Lee I. Organic-inorganic nanocomposites with completely defined interfacial interactions [J]. Adv Mater, 2001, 13: 800-803
    [46] Haddad T S, Lichtenhan J D. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers [J]. Macromolecules, 1996, 29: 7302-7304
    [47] Romo U A, Mather P T, Haddad T S, et al. Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane(POSS) copolymers [J]. J Polym Sci Polym, 1998, 36: 1857-1872
    [48] Xia T, Li C, Yue Z. Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystallineazobenzene-containing diblock copolymers [J]. Macromolecules, 2004, 37: 3101-3112
    [49] Barral L, Diez F J, GarciaG S, et al. Thermodegradation kinetics of a hybrid inorganic–organic epoxy system [J]. Eur Polym J, 2005, 41: 1662-1666
    [50] Dodiuk H, Kenig S, Blinsky I, et al. Nanotailoring of epoxy adhesives by polyhedral-oligomeric-sil-sesquioxanes (POSS) [J]. Int J Adhes, 2005, 25: 211-218
    [51] Li G Z, Wang L, Toghiani H, et al. Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS–styrene copolymers [J]. Polymer, 2002, 43: 4167-4176
    [52] Liu H, Zhang W, Zheng S. Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxy resin [J]. Polymer, 2005, 46: 157-165
    [53] Lichtenhan J D, Otonari Y A, Carr M J. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers [J], Macromolecules, 2003, 28: 8435-8440
    [54] Jeon H G, Mather P T, Haddad T S. Shape memory and nanostructure in poly(norbornyl-POSS) copolymers [J]. Polym Int, 2000, 49: 453-457
    [55] Zheng L, Farris R J, Coughlin E B. Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization [J]. J Polym Sci Polym Chem, 2001, 39: 2920-2928
    [56] Haddad T S, Lee A, Phillips S H. Physical hydrogels from short diblock polypeptide amphiphiles in dilute solution [J]. Polym Prepr, 2001, 42920: 88-89
    [57] Haddad T S, Lee A, Phillips S H, et al. Chemical substituent effects on morphological transitions in styrene-butadiene-styrene triblock copolymer grafted with polyhedral oligomeric silsesquioxanes [J]. Macromolecules, 2006, 39: 1854-1863
    [58] Xu H Y, Yang B H, Wang J F, et al. Preparation, thermal properties, and Tg increase mechanism of poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites [J]. Macromolecules, 2005, 38: 10455-10460
    [59] Patel E, M. Some interesting things about polysiloxanes [J]. Acc Chem Res, 2004, 37: 946-953
    [60] Zheng W H, Bruce X F, Seo Y, et al. Effect of methylmethacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends [J]. Macromolecules, 2002, 35: 8029-8038
    [61] Yei K. Controlled radical polymerization. Proceedings of a Symposium at the 21th ACS National Meeting, 685: 483-484
    [62] Lamm M H, Chen T, Sharon C, et al. Simulated assembly of nanostructured organic/inorganic networks [J]., J Am Chem Soc, 2003, 4: 2136-2148
    [63] Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization atomtransfer radical polymerization in the presence of transition-metal complexes [J]. J Am Chem Soc, 1995, 117: 5614-5615
    [64] Pyun J, Matyjaszewski K. The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers [J]. Macromolecules, 2000, 33: 217-220
    [65] Matyjaszewski K, Xia J A. Transfer radical polymerization [J]. Chem Rev, 2001, 101: 2921-2990
    [66] Pyun T E, Matyjaszewski K. Copper(I)-catalyzed atom transfer radical polymerization [J]. Acc Chem Res, 1999, 32: 895-903
    [67] Pyun T E, Steven X B, Ishiang S. Field-effect mobilities of polyhedral oligomeric silsesquioxanes anchored semiconducting polymers [J], Polymer, 2004, 221: 358-363
    [68] Yei D R, Kuo S W, Chang F C. Enhanced thermal properties of PS nanocompositesformed from inorganic POSS-treated montmorillonite [J]. Polymer, 2004, 45: 2633-2640
    [69] Koh K, Sugiyama S , Morinaga T, et al. Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate) [J]. Macromolecules, 2005, 38: 1264-1270
    [70] Mather P T, Jeon H G, Haddad T S, et al. Mechanical relaxation and microstructure of poly(norbornyl-poss) copolymers [J], Macromolecules, 1999, 32: 1194-1203
    [71] Mather P T, Khosravi E, Schrock R R, et al. Living ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes by Mo(:CHBu-tert) (:NC6H3Pr-iso2-2,6) (OBu-tert)2 [J]. J Am Chem Soc, 1990, 112: 8378-8387
    [72] Constable G S, Lesser A J , Coughlin E B, et al. Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes [J]. Macromolecules, 2004, 37: 1276-1282
    [73] Leu C M, Reddy G M, Wei K H, et al. Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites [J]. Chem. Mater, 2003, 15: 2261-2265
    [74] Striolo A, Cabe C M, Peter T C. Thermodynamic and transport properties of polyhedral oligomeric sislesquioxanes in poly(dimethylsiloxane) [J]. J Phys Chem B, 2005, 109: 14300-14307
    [75] Zheng L, Kasi R M, Farris R J, et al. Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane[J]. J Polym Sci Part A: Polym Chem, 2002, 40: 885-891
    [76] Leu C M, Laine Y T, Wei K H. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications [J]. Chem Mater, 2003, 15: 3721-3727
    [77] Mehl G H, Laine Y T. Liquid-crystalline, substituted octakis(dimethlsiloxy)octasilsesquioxanes: oligomeric supermolecular materials with defined topology [J]. Angew Chem Int Ed, 1996, 35: 2641-2643
    [78] Kim K M, Chujo Y J. Liquid-crystalline organic-inorganic hybrid polymers withfunctionalized silsesquioxanes [J]. Polym Sci Part A: Polym Chem, 2001, 39: 4035-4043
    [79] Kondo M, Yu Y, Ikeda T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? [J]. Angew. Chem Int Ed, 2006, 45: 1378-1372
    [80] Tong X, Wang G, Yavrian A, et al. Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals [J]. Adv Mater, 2005, 17: 370-374
    [81] Zhao Y, Bai S, Asatryan K, et al. Holographic recording in a photoactive elastome r[J] Adv Funct Mater, 2003, 13: 781-788
    [82] Han M, Ichimura K. Tilt orientation of p-methoxyazobeneze side chains in liquid crystalline polymer films by irradiation with nonpolarized light [J]. Macromolecules, 2001, 34: 82-89
    [83] Furumi S, Kidowaki M, Ogawa M, et al. Surface-mediated photoalignment of discotic liquid crystals on azobenzene polymer Films [J]. J. Phys Chem B, 2005, 109: 9245-9254
    [84] Zheng L, Waddon A J,. Farris R J, et al. X-ray Characterizations of polyethylene polyhedral oligomericsilsesquioxane copolymers [J]. Macromolecules, 2002, 35: 2375-2379