紫外光辐射对有机硅氧烷水解缩合过程的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用烷氧基硅烷作为前驱体进行溶胶-凝胶反应制备无机氧化物和有机-无机杂化材料应用于光学器件、电子元件、化学传感、信息存储、功能涂层和薄膜等方面是当今非常活跃的研究领域。在有机硅氧烷前驱体中,甲基丙烯酸丙酯三甲氧基硅烷(MAPTMS)由于分子存在形成C-C链的可聚合烯键和形成Si-O-Si键的硅氧烷,而使有关该前驱体的研究被广泛关注,其中以该前驱体为主要成分通过水解和光引发聚合制备有机-无机杂化膜材料是非常重要的研究课题。
     通过传统的溶胶-凝胶反应制备的材料在反应后期的干燥和热处理过程会对得到的材料产生显著影响,主要表现在干燥和热处理对产物缩合作用产生影响而导致产物性能出现缺陷。而同等条件下采用光照法制得的产品则可以有效的避免或者减少上述缺陷。即光处理和传统的热处理对产物的影响表现出明显的差异。大部分研究者认为造成这种差异性的主要原因在于:(1)光照能加速硅氧烷的水解和缩合反应;(2)光辐射作用可引起有机基团光解而发生结构重排反应。上述作用均被归结为与光照产生自由基有关,但一直未有对这种推测证实性的试验报导。同时,大部分研究集中在光敏剂存在下的光引发有机端烯键聚合,然而,光辐射对无机端的水解缩合产生的影响并未得到关注。基于光辐射对有机硅氧烷水解缩合会产生显著影响的实验事实,其对MAPTMS水解缩合反应产生的影响是不应忽视的。因此,本论文以甲基丙烯酸丙酯三甲氧基硅烷(MAPTMS)为前驱体,对光照和非光照条件下体系的水解缩合作用进行了研究,旨在探讨紫外光辐射与自由基对有机硅氧烷水解缩合反应影响的相关性。
     为此,本论文开展了相关的工作,主要包括以下两部分内容:
     (1)以MAPTMS为前驱体,对比性地研究了在光照与非光照条件下MAPTMS在酸性条件下的水解缩合过程。红外光谱、核磁共振氢谱在线检测结果表明:紫外光辐射对MAPTMS无机端的水解缩合反应具有显著的影响,表现为短时间内发生由液体溶胶到固体凝胶的转化;而在非光照的情况下,放置一年的反应体系仍保持液体状态;同时,光辐射并未对有机端的烯键聚合产生显著影响。光辐射可以调节水解与缩合反应的相对速率,具有明显促进前驱体水解而产生较多硅羟基的作用,从而使具有较多硅羟基的水解产物形成高度交联的空间网状结构并最终形成固化产物。在非光照情况下体系水解和缩合反应同时进行,导致前驱体生成不彻底的水解产物,形成的线性缩合物分子缩合程度较低而观察不到胶凝现象的出现。本研究结果对于很难胶凝的MAPTMS形成凝胶和固化状产物具有重要的借鉴意义。
     (2)研究了自由基对MAPTMS水解体系胶凝行为的影响。利用Fenton反应产生的羟基自由基,考察了羟基自由基对MAPTMS水解缩合反应产生的影响。同时,利用FT-IR和~1H-NMR等表征手段研究了MAPTMS纯品和Fenton试剂与MAPTMS共存时体系的溶胶凝胶反应。结果表明:羟基自由基可以显著促进MAPTMS水解缩合体系的胶凝作用,证实了紫外光辐射与自由基对有机硅氧烷水解缩合反应影响的相关性。
It has been an increasing interest in employing Ormosils (Organically Modified Siloxanes) as precursors to prepare various Organic-Inorganic materials through sol-gel processing. Those materials with chemical inertness, mechanical stability and optical transparency are becoming more and more widely used for optical and electrical materials, chemical/biomedical sensors, catalyst, multifunctional coatings and films, and so forth. 3-methacryloxypropyltri-methoxysilanesilane (MAPTMS) has attracted widespread attention because of its special properties. This precursor has two reactive parts in such a way that it offers a two-step polymerization process. A mineral network can be fabricated by hydrolysis and poly-condensation of the sol-gel part of the precursor (-Si (OR)_3) and an organic network can be created by UV photo-polymerization of a double bond present in the R' group.
     The heating temperature and atmosphere in the conventional sol-gel process were found to be significant factors affecting the prepared materials via sol-gel process. The usual sol-gel process (heat-treated sample) and a sol-gel process using photo-irradiation (photo-irradiated sample) have different properties on their behaviors. All heat-treated samples included some defects, but the photo-irradiated samples lacked such defects and formed superior structure instead. Most of the researchers hold the reasons as that: (1) it was attributable that the hydrolysis and condensation of silicon alkoxide was accelerated by photo-irradiation. (2) Structural rearrangement reaction can be induced when treated by photo-irradiation through photolysis of the organic group. The effect mentioned above is attributed to the free radicals produced by photo-irradiation. However, most of the researches were focused on material preparation; no final conclusion of progress of reaction kinetics has yet been reached. The photo-assisted sol-gel method is attracting attention for its ability to form inorganic films at low temperature and at low cost. Most of the general work is based on the synthesis of a new generation of organic-inorganic materials whose organic part is photo-polymerized using cationic way. The effect of photo-irradiation on the sol-gel part of the precursor (-Si (OR)_3) is a question not explored before. But as a basic principle of the results of experiments this effect shall not be neglected. But it provided no more structure information on the molecular level which is necessary to study further.
     According to the information mentioned above, the main contents of this research include two aspects as follows:
     The first section: A method, employing 3-methacryloxypropyltri-methoxysilanesilane (MAPTMS) as a precursor and HC1 as a catalyst, a comparative study between irradiation and non-irradiation at different times has been carried out. Additionally, the processes of the hydrolysis and condensation of MAPTMS under irradiation and non-irradiation were followed using ~1H-NMR and FT-IR Spectrum. The convert time from sol to gel is very short when the hydrolysis system is treated with ultra-violet light from a high pressure mercury lamp at room temperature. This phenomenon can not be observed under the non-irradiation condition and the system kept flowing even experienced longterm placement. A kind of transparence hybrid material was obtained under irradiation condition. The results indicate that photo-irradiation could affect rates of hydrolysis and condensation of MAPTMS, which promotes formation of condensation product with a network molecular structure. The network molecular structure is related to polycondensation of silanols rather than that of methacryl groups in MAPTMS. The condensation process of the system is accelerated by photo-irradiation by means of regulating the relative reaction rate of hydrolysis and condensation. When treated with photo-irradiation, the system has more completely hydrolytic degree and more silanols. It makes the photo-irradiation system have more opportunity to form branched products to promote gelation occurred.
     The second section: In order to elucidate the photo-irradiation mechanism of hydrolysis and condensation of MAPTMS, we used Fenton reaction to produce hydroxyl radical to test the postulated reaction mechanism. Based upon the work that the convert time from sol to gel is very short when the hydrolysis system is treated with ultra-violet light from a high pressure mercury lamp at room temperature, the mechanism of this reaction was suggested, which was verified in comparison with the reaction treated with hydroxyl radical produced by Fenton reaction. We put forward the oxidation mode of photo-induced production of free radicals. The processes of the hydrolysis and condensation of MAPTMS treated with hydroxyl radical produced by Fenton reaction were followed using ~1H-NMR and FT-IR Spectrum.
引文
[1]Y.Pang,M.Samoc.Hybrid Nanocomposite Materials between Inorganic Glasses and Organic Polymers[J].Adv.Mater.,1993,5:422-425.
    [2]J.D.Mackenzie.Application of the Sol-gel Process[J].J.Non-Cryst.Solids,1988,100:162-198.
    [3]D.M Tahan,L.C.Klein,A.Safari.Preparation and Characterization of Ba_xSr_(1-x),TiO_3 Thin Films by a Sol-Gel Technique[J].J.Am.Ceram.Soc.,1996,79(6):1593-1598.
    [4]邱泽皓,叶巧明.溶胶-凝胶法制备有机/无机杂化材料工艺及其应用[J].广州化学,2006,31(1):40-45.
    [5]王喜贵,赵惠,张强,吴红英.正硅酸乙酯水解过程的研究进展[J].内蒙古石油化工,2001,24:17-19.
    [6]C.J.BRINKER.Sol-Gel Science[M].New York:Academic Press,INC.1990.
    [7]B.E.Yoldas.Thermochemically Induced Photoluminescence in Sol-gel-derived Oxidenetworks[J].J.Non-Cryst.Solids,1992,(147&148):614-620.
    [8]B.E.Yodas.Hydrotic Polycondensation of Alkoxysilanes and Modification Polymerization Reactions[J].J.Polym.Sci.Part A:Polym.Chem.,1986,24:3475-3 490.
    [9]胡涛.Sol-Gel法制低密度二氧化硅[J].电子元件与材料,1996,15(3):52-55.
    [10]卢红梅,钟宏.有机硅在涂料中的应用[J].有机硅材料,2002,16(6):22-27.
    [11]D.A.Loy;K.J.Shea.Bridged Polysilsesquioxanes.Highly Porous Hybrid Organic-Inorganic Materials[J].Chem.Rev.,1995,95(5):1 431-1 442.
    [12]L.Matejka,O.Dukh;D.Hlavata,B.Meissner,J.Brus.Cyclization and Self-Organization in Polymerization of Trialkoxysilanes[J].Macromolecules,2001,34(20):6 904-6 914.
    [13]D.P.Fasce,I.E.dell'Erba,R.J.J.Williams.Synthesis of a Soluble Functionalized-Silica by the Hydrolysis and Condensation of Organotrialkoxysilanes Bearing(β-hydroxy)tertiary Amine Groups with Tetraethoxysilane[J].Polymer,2005,46(17):6 649-6 656.
    [14]A.Dabrowski,M.Barczak.Bridged Polysilsesquioxanes as a Promising Class of Adsorbents[J].Croat.Chem.Acta,2007,80(3-4):367-380.
    [15] D. A. Loy, B. M. Baugher, C. R. Baugher, D. A.Schneider, K.Rahimian.Substituent Effects on the Sol-Gel Chemistry of Organotrialkoxysilanes [J].Chem. Mater., 2000,12(12): 3 624-3 632.
    [16] C. J. Brinker, K. D.Keefer, D. W. Scharfer, C. S. Ashley. Sol-gel Transition in Simple Silicates [J]. J. Non-Cryst. Solids, 1982,48(1): 47-64.
    [17] A. Shimojima, Y. Sugahara and K. Kuroda. Synthesis of Oriented Inorganic -Organic Nanocomposite Films from. Alkyltrialkoxysilane-Tetraalkoxysilane Mixtures [J]. J. Am. Chem. Soc, 1998,120: 4 528-4 529.
    [18]A. Shimojima, K. Kuroda. Formation of Ordered Silica-Organic Hybrids by Self-Assembly of Hydrolyzed Organoalkoxysilanes with Long Organic Chains [J]. Langmuir, 2002,18:1144-1149.
    [19] Y. Komori, H. Nakashima, S. Hayashi, Y. Sugahara. Silicon-29 Cross-Polarization/Magic-Angle-Spinning NMR Study of Inorganic-Organic Hybrids: Homogeneity of Sol-Gel Derived Hybrid Gels [J]. J. Non-Cryst. Solids,2005,351(2): 97-103.
    [20] S. Prabakar, R. A. Assink. Hydrolysis and Condensation Kinetics of Two Components Organically Modified Silica Sols [J]. J. Non-Cryst. Solids, 1997,211: 39-48.
    [21] C. M. Wu, Y. H. Wu, T. W. Xu, W. H. Yang. Study of Sol-gel Reaction of Organically Modified Alkoxysilanes.Part I: Investigation of Hydrolysis and Polycondensation of Phenylaminomethyl Triethoxysilane and Tetraethoxysilane [J]. J. Non-Cryst. Solids, 2006,352: 5 642-5 651.
    [22] L. Bourget, D. Leclercq, A. Vioux. Catalyzed Nonhydrolytic Sol-Gel Route to Organosilsesquioxane Gels [J]. J. Sol-Gel Sci.Technol., 1999,14:137-147.
    [23] R. J. Hook. A ~(29)Si-NMR Study of the Sol-Gel Polymerisation Rates of Substituted Ethoxysilanes [J]. J. Non-Cryst. Solids, 1996,195:1-15.
    [24] Y. Abe, Y. Honda, T. Gunji. Preparation and Properties of Silicon-Containing Polymer Hybrids from 3-Methacryloxy-propyl-trimethoxysilane [J]. Appl.Organomet. Chem., 1998,12, 749-753.
    [25] T. Gunji, Y. Makabe, N. Takamura, Y. Abe. Preparation and Characterization of Organic-Inorganic Hybrids and Coating Films from 3-Methacryloxy-propyl-polysilsesquioxane [J]. Appl. Organomet. Chem., 2001,15, 683-692.
    [26] K. F. Ni, G R. Shan, Z. X. Weng, N. Sheibat-Othman, G Fevotte, F. Lefebvre, E. Bourgeat-Lami. Synthesis of Hybrid Core-Shell Nanoparticles by Emulsion co-Polymerization of Styrene and Gamma-Methacryloxy-propyl-trimethoxysilane [J]. Macromolecules, 2005,38(17): 7 321-7 329.
    [27] M. Feuillade, C. Croutxe-Barghorn, C. Carre. Investigation of Inorganic Network Formation in Photopatternable Hybrid Sol-Gel Films by ~(29)Si Liquid NMR [J]. J.Non-Cryst. Solids, 2006,352(4): 334-341.
    [28] J. D. Miller, K. Hoh, H. Ishida. Studies of the Simulation of Silane Coupling Agent Structures on Particulate Fillers; The pH Effect [J]. Polym. Compos., 1984,5:18-28.
    [29] S. A. Pellice, R. J. J. Williams, I. Sobrados, J. Sanz, Y. Castro, M. Aparicioc, A.Duran. Solutions of Hybrid Silica Microgels as Precursors of Sol-Gel Coatings [J]. J. Mater.Chem, 2006,16: 3 318-3 325.
    [30] M. Llusar, C. Sanchez. Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators [J]. Chem. Mater., 2008,20(3): 782-820.
    [31] M. C. Burt, B. C. Dave. Externally Tunable Dynamic Confinement Effect in Organosilica Sol-Gels [J]. J. Am. Chem. Soc. 2006,128:11750-1 1751.
    [32] L. L. Hench, D.R. Ulrich. In Ultra structure Processing of Ceramics, Glasses, and Composites [C]. John Wiley and Sons, New York, 1984:100-125.
    [33] C. J. Brinker. Hydrolysis and Condensation of Silicates: Effects on Structure [J]. J.Non-Cryst. Solids, 1988,100: 31-50.
    [34] K. D. Keefer. Silicon-Based Polymer Science: A Comprehensive Resource [M].American Chemical Society, Washington, DC, 1990, 227-240.
    [35] C. J. Brinker, G. W. Scherer. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing [M]. Academic Press, Inc.: New York, 1990.
    [36]R. Aelion, A. Loebel, F. Eirich. Hydrolysis of Ethyl Silicate [J]. J. Am. Chem.Soc., 1950, 72: 5 705-5 712.
    [37]J. Sanchez, A. V. McCormick. Kinetic and Thermodynamic Study of the Hydrolysis of Silicon Alkoxides in Acidic Alcohol Solutions [J]. J Phys Chem,1992, 96(22): 8 973-8 979.
    [38] J. Sefcik, A. V. McCormick. Kinetic and Thermodynamic Issues in the Early Stages of Sol-Gel Processes Using Silicon Alkoxides [J]. Catal. Today, 1997, 35:205-223.
    [39] I. Bakali, E. Rhess, C. Rousselot, R. Mercier. NMR Kinetic Study of Ethyl Silicate Hydrolysis by Ammonia in Alcoholic Solvents[J].Can.J.Chem.,1992,70:1 612-1 617.
    [40]J.K.Bailey,M.L.Mecartney.Formation of Colloidal Silica Particles from Alkoxides[J].Colloids Surf.,1992,63:151-161.
    [41]T.Matsoukas,E.Gulari.Dynamics of Growth of Silica Particles from Ammonia-Catalyzed Hydrolysis of Tetra-Ethyl-Orthosilicate[J].J.Colloid Interface Sci.,1988,124:252-261.
    [42]G.H.Bogush,C.F Zukoski.Studies of the Kinetics of the Precipitation of Uniform Silica Particles through the Hydrolysis and Condensation of Silicon Alkoxides[J].J.Colloid Interface Sci.,1991,142:1-18.
    [43]梁志超,詹学贵,单国荣,邵月刚,翁志学.硅氧烷的水解-缩聚反应动力学[J].高分子通报,2006,11:31-35.
    [44]S.E.Rankin,C.W.Macsko,A.V.McCormick.Sol-Gel Polycondensation Kinetic Modeling:Methylethoxysilanes[J].AlChE J.,1998,44:1 141-1 156.
    [45]F.D.Osterholtz,E.R.Pohl.Kinetics of the Hydrolysis and Condensation of Organofuctional Alkoxysilanes:A Review.[J].J.Adhes.Sci.Technol.,1992,6:127-149.
    [46]C.J.Brinker,G.W.Scherer.Sol-Gel-Glass:Ⅰ.Gelation and Gel Structure[J].J.Non-Cryst.Solids,1985,70:301-322.
    [47]R.Aelion,A.Loebel,F.Eirich.Hydrolysis of Ethyl Silicate.[J].J.Am.Chem.Soc,1950,72(12):5 705-5 712.
    [48]R.A.Assink,B.D.Kay.Sol-gel Kinetics Ⅰ.Functional Group Kinetics[J].J.Non-Cryst.Solids,1988,99:359-370.
    [49]L.C.Klein.Sol-Gel Processing of Silicates[J].Ann.Rev.of Mater.Sci.,1985,15:227-248.
    [50]Q.Deng,R.B.Moore,K.A.Mauritz.Nafion/(SiO_2,ORMOSIL and Dimethylsiloxane) Hybrids Via in Situ Sol-Gel Reactions:Characterization of Fundamental Properties[J].J.Appl.Polym.Sci.,1998,68(5):747-763.
    [51]M.Popall,H.Durand.Inorganic-Organic Copolymers as Solid State Li~+Electrolytes[J].Electrochim.Acta,1992,37:1 593-1 597.
    [52]F.Zhang,M.P.Srinivasan.Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities[J].Langmuir,2004,20:2 309-2 314.
    [53]J.B.Jia,B.Q.Wang,A.Q.Wu.A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network [J]. Anal. Chem., 2002,74: 2 217-2 223.
    [54] M. Abdelmouleh, S. Boufi, A. B. Salah. Interaction of Silane Coupling Agents with Cellulose [J]. Langmuir, 2002,18: 3 203-3 208.
    [55] X. C. Li, T. A. Ling. Spectroscopic Studies of Sol-Gel-Derived Organically Modified Silicates [J]. J. Non-Cryst. Solids, 1996, 204: 235-242.
    [56] H. Mori, M. G. Lanzendolorfer, A. H. E. MulUller. Silsesquioxane-Based Nanoparticles Formed Via Hydrolytic Condensation of Organotriethoxysilane Containing Hydroxy Groups [J]. Macromolecules, 2004,37: 5 228-5 238.
    [57] P. Innocenzi, G. Brusatin. Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials [J]. Chem. Mater., 2000, 12: 3 726-3732.
    [58] S. R. Davis, A. R. Brough, A. Atkinson. Formation of Silica/Epoxy Hybrid Network Polymers [J]. J. Non-Cryst. Solids, 2003, 315:197-205.
    [59] C. A. FYFE, P. P. ARECA. A Kinetic Analysis of the Initial Stages of the Sol-Gel Reactions of Methyltriethoxysilane (MTES) and a Mixed MTES/Tetra-ethoxysilane System by Highresolution ~(29)Si NMR Spectroscopy [J]. J. Phys.Chem. B, 1997,101: 9 504-9 509.
    [60]J. Sefcik, S. E. Rankin, S. J. Kirchner, A. V. McCormick. Esterification,Condensation, and Deprotonation Equilibria of Trimethylsilanol [J]. J. Non-Cryst.Solids, 1999, 258:187-197.
    [61] K. D. Keefer. Better Ceramics through Chemistry [M], Elsevier North-Holland:New York, 1984: 15.
    [62]B. D. Kay, R. A. Assink. Sol-gel Kinetics I. Functional Group Kinetics [J]. J.Non-Cryst. Solids, 1988, 99: 359-370.
    [63] J. C. Ro, J. Chung. Sol-Gel Kinetics of Tetraethylorthosilicate (TEOS) in Acid Catalyst [J]. J. Non-Cryst. Solids, 1989,110: 26-32.
    [64] K. J. McNeil, J. A. DiCapri, D. A. Walsh, R. F. Pratt. Kinetics and Mechanism of Hydrolysis of a Silicate Triester, Tris (2-methoxyethoxy) phenylsilane [J]. J Am Chem. Soc, 1980,102:1 859-1 865.
    [65] H. Yang, Z. Ding, Z. Jiang, X. Xu. Sol-Gel Process Kinetics for Si (OEt)_4 [J]. J.Non-Cryst. Solids, 1989,112: 449-453.
    [66] J. C. Pouxviel, J. P. Boilot. Kinetic Simulations and Mechanisms of the Sol-Gel Polymerization[J].J.Non-Cryst.Solids,1987,94:374-386.
    [67]J.Sanchez,A.V.McCormick.Kinetic and Thermodynamic Study of the Hydrolysis of Silicon Alkoxides in Acidic Alcohol Solutions[J].J Phys Chem.,1992,96(22):8 973-8 979.
    [68]R.J.Hook.A ~(29)Si NMR Study of the Sol-Gel Polymerisation Rates of Substituted Ethoxysilanes[J].J.Non-Cryst.Solids,1996,195:1-15.
    [69]H.Schmidt,H.Scholze,A.Kaiser.Principles of Hydrolysis and Condensation Reaction of Alkoxysilanes[J].J.Non-Cryst.Solids,1984,63:1-11.
    [70]L.Liu R,Y.Xu,D.Wu.Comparative Study on the Hydrolysis Kinetics of Substituted Ethoxysilanes by Liquid-State ~(29)Si NMR[J].J.Non-Cryst.Solids,2004,343:61-70.
    [71]Y.Sugahara,T.Inoue.~(29)Si NMR Study on Co-hydrolysis Processes in Si(OEt)_4-RSi(OEt)_3-EtOH-Water-HCl System(R=Me,Ph):Effect of R Groups[J].J.Mater.Chem.,1997,7:53-59.
    [72]D.A.LOY,B.M.BAUGHER.Substituent Effects on the Sol-Gel Chemistry of Organotrialkoxysilanes[J].Chem.Mater.,2000,12:3624-3632.
    [73]L.Matejka,O.Dukh.Cryclization and Self-Organization in Polymerization of Trial-Koxysilanes[J].Macromolecules,2001,34:6 904-6 914.
    [74]M.G.Voronkov,V.I.Lavrentyev.Polyhedral Oligosilsesquioxanes and Their Homoderivatives[J].Top.Cuff.Chem.,1982,102:199-236.
    [75]D.D.Hu,C.C.Barghorn,M.Feuillade.Fluorescence Study of the Sol-Gel Process in Hybrid Precursors:Evidence of Concentration Fluctuations at the Local Scale[J].J.Phys.Chem.B,2005,109:15 214-15 220.
    [76]R.K.Iler.The Chemistry of silica[M].New-York:Wiley-interscience,1979,172-304.
    [77]L.W.Kelts,N.J.Effinger,S.M.Melpolder.Sol-gel Chemistry Studied by ~1H and ~(29)Si Nuclear Magnetic Resonance[J].J.Non-Cryst.Solids,1986,83:353-374.
    [78]B.M.Monroe,G.C.Weed.Photoinitiators for Free-Radical-Initiated Photoimaging Systems[J].Chem Rev,1993,93:435-448.
    [79]王慧敏,姜永才,吴世康等.一种新型的可见光诱导电子转移生酸体系的研究[J].高分子学报,2001,6:706-710.
    [80]姜永才,岳玲,张晓宏,吴世康.双(三氯甲基)三嗪类化合物光生酸反应的研 究[J].高分子学报,2003,4:495-499.
    [81]W.R.Laws,L.Brand.Analysis of Two-State Excited-State Reactions.The Fluorescence Decay of 2-Naphthol[J].J.Phys.Chem.,1979,83:795-802.
    [82]T.Akiyama,M.Sakamaki,K.Abe,T.Shigenari.Effects of Proton Motions on the Fluorescence from 2-Naphthol-Doped Ice Ih and the Proton Ordering Transition [J].J.Phys.Chem.B,1997,101:6 205-6 207.
    [83]G.Cerveau,R.J.P.Corriu,E.Framery.Sol-gel Process:Influence of the Temperature on the Textural Properties of Organosilsesquioxane[J].J.Mater.Chem.,2000,(10):1 617-1 622.
    [84]G.Cerveau,R.J.P.Corriu,E.Framery.Sol-gel Process:Temperature Effect on Textural Properties of a Monophasic Hybrid Material[J].Chem.Commun.,1999,(10):2081-2082.
    [85]C.Jianxia,M.D.Soucek.Photoinitiated Cationic Polymerization of Cycloaliphatic Epoxide with Siloxane or Alkoxysilane Functionalized Polyol Coatings[J].Eur.Polym.J.,2003,(39):505-520.
    [86]S.Okuzaki,K.Okude,T.Ohishi.Photoluminescence Behavior of SiO_2 Prepared by Sol-Gel Processing[J].J.Non-Cryst.Solids,2000,(265):61-67.
    [87]S.Okusaki,T.Ohishi.The Effect of Photo-irradiation in Hydrolysis and Condensation of Silicon Alkoxide[J].J.Non-Cryst.Solids,2003,(319):311-313.
    [88]T.OHISHI,S.MAEKAWA.Preparation and Properties of Anti-Reflection /Anti-Static Thin Films for Cathode Ray Tubes Prepared by Sol-Gel Method Using Photoirradiation[J].J.Sol-Gel Sci.Technol.,1997(8):511-515.
    [89]S.Maekawa,K.Okude,T.Ohishi.Synthesis of SiO_2 Thin Films by Sol-Gel Method Using Photoirradiation and Molecular Structure Analysis[J].J.Sol-Gel Sci.Technol.,1994,(2):497-501.
    [90]T.Ohishi.Preparation and Properties of Anti-Reflection/Anti-Static Thin Films Formed on Organic Film by Photo-Assisted Sol-Gel Method[J].J.Non-Cryst.Solids,2003,(332):87-92.
    [91]Y.Naganuma,S.Tanaka.C.Kato.Preparation of Sol-Gel Derived Titanium Oxide thin Films Using Vacuum Ultraviolet Irradiation with a Xenon Excimer Lamp[J].J.Appl.Phys.,2004,(43):6315-6318.
    [92]管自生,姚建年,马颖,宋延林,江雷.紫外光辐射对TiO_2溶胶的影响研究 [J].高等学校化学学报, 2002, (23):1956-1959.
    
    [83] 李钦玲.自由基反应[J].青海师专学报, 1993,4: 95-100.
    [94] J. Weiss. Investigation on the Radical HO- in Solution [J]. Trans. Faraday Soc.,1935, 31(3): 668-675.
    [95] H. Taube, W. C. Bray. Chain Reactions in Aqueous Solutions Containing Ozone,Hydrogen Peroxide and Acid [J]. J. Am. Chem. Soc; 1940; 62(12): 3 357-3 373.
    [96] H. W. Prengle. Experimental Rate Constant and Reactor Considerations for the Destruction of Micropollutants and Trihalomethane Precursors by Ozone with UV Radiations [J]. Environ. Sci. Technol., 1983,17(12): 743-747.
    [97] R. W. Mattews. Photo-oxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide [J]. Water Res., 1986, 20(5): 569-578.
    [98] S. Meric, H. Selcuk, M. Gallo, V. Belgiorno. Decolourisation and Detoxifying of Remazol Red Dye and Its Mixture Using Fenton's reagent [J]. Desalination, 2005,173: 239-248.
    [99]N. S. Sebastian Martinez, J. F. Fernandez, X. F. Segura, A. S. Ferrer.Pre-Oxidation of an Extremely Polluted Industrial Wastewater by the Fenton's Reagent [J]. J. Hazard. Mater., 2003,101: 315-322.
    [100] S. H. Lin, M. L. Chen. Fenton Process for Treatment of Desizing Waste Water [J]. Water Res., 1997,31: 2 051-2 056.
    [101] V. M. Graubner, R. Jordan, O. Nuyken. Photochemical Modification of Cross-Linked Poly (dimethylsiloxane) by Irradiation at 172 nm [J].Macromolecules, 2004, 37: 5 936-5 943.
    [102] J. H. Kim, H. I. Lee. Effect of Surface Hydroxyl Groups of Pure TiO_2 and Modified TiO_2 on the Photocatalytic Oxidation of Aqueous Cyanide [J]. Korean J.Chem. Eng., 2004, 21(1): 116-122.
    [103] G J. M. Fechine, J. A. G. Barros, L. H. Catalani. Poly (N-vinyl-2-pyrrolidone) Hydrogel Production by Ultraviolet Radiation: New Methodologies to Accelerate Cross Linking [J]. Polymer, 2004,45: 4 705-4 709.
    [104] E. F. J. Duynstee, E. Grunwald. Organic Reactions Occurring in or on Micelles.I. Reaction Rate Studies of the Alkaline Fading of Triphenylmethane Dyes and Sulfonphthalein Indicators in the Presence of Detergent Salts [J]. J. Am. Chem.Soc., 1959, 81: 4 540-4 542.
    [105] K. Kalyanasundaram. Photophysics of Molecules in Micelle-Forming Surfactant Solutions.[J].Chem.Soc.Rev.,1978.7:453-472.
    [106]J.M.Brown,C.A.Bunton.Stereoselective Micelle-Promoted Ester Hydrolysis [J].J.Chem.Soc.,Chem.Commun.,1974,374:969-971.
    [107]S.C.Wallace,M.Gratzel,J.K.Thomas.Laser Photoionization of Aromatic Hydrocarbons in Micellar Solution[J].Chem.Phys.Lett.,1973,23:359-362.
    [108]K.P.Samir,M.Debabrata,S.Dipankar,B.KanKan.Photoinduced Electron Transfer between Dimethylaniline and Oxazine in Micelles[J].Chemical Physics,1999,249:63-71.
    [109]S.S.Atik,J.K.homas.Photo-induced Electron Transfer in Organized Assemblies[J].J.Am.Chem.Soc.,1981,103(12):3 550-3 555.
    [110]R.McNeil,J.K.Thomas.Benzylhexadecyl-dimethyl-ammonium Chloride in Microemulsions and Micelles[J].J.Colloid Interface Sci.,1981,83:57-65.
    [111]周安安,翁志学等.有水条件下羟基聚硅氧烷一步合成的反应动力学模型[J].化工学报,2004,55:48-53.
    [112]L.L.Hench,J.K.West.The sol-gel process[J].Chem.Rev.,1990,90:33-72.
    [113]G.Schottner.Hybrid Sol-Gel-Derived Polymers:Applications of Multi-functional Materials[J].Chem.Mater.,2001,13(10):3 422-3 435.
    [114]A.V.Cunliffe,S.Evans,D.A.Tod.Optimum Preparation of Silanes for Steel Pre-treatment[J].Int.J.Adhes.Adhes.,2001,21(4):287-296.
    [115]B.Alonso,D.Massiot,F.Babonneau.Structural Control in Germania Hybrid Organic-Inorganic Materials[J].Chem.Mater.,2005,17:3 172-3 180.
    [116]R.J.Hook.A ~(29)Si NMR Study of the Sol-Gel Polymerisation Rates of Substituted Ethoxysilanes[J].J.Non-Cryst.Solids,1996,195:1-15.
    [117]P.Innocenzi,G.Brusatin.Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials[J].Chem.Mater.,2000,12:3 726-3732.
    [118]M.Gnyba,M.Ker(a|¨)nen,M.Kozanecki.Raman Investigation of Sol-Gel-Derived Hybrid Polymers for Optoelectronics[J].Opto-Electron.Rev.,2002,10(2):137-143.
    [119]L.Matejka,O.Dukh,Drahomira.Cyclization and Self-Organization in Polymerization of Trialkoxysilanes[J].Macromolecules,2001,34:6 904-6 914.
    [120]Y Wei,D.Jin,D.J.Brennan.Atomic Force Microscopy Study of Organic-Inorganic Hybrid Materials[J].Chem.Mater.,1998,10:769-772.
    [121]K.Piana,U.Schubert.Catalyst Influence on the Molar Mass Distribution of Hydrolyzed(3-Glycidoxypropyl) Trimethoxysilane and(3-Methacryloxypropyl)-trimethoxysilane[J].Chem.Mater.,1994,6:1 504-1 508.
    [122]Y.Kaneko,N.Iyi,K.Kurashima.Hexagonal-Structured Polysiloxane Material Prepared by Sol-Gel Reaction of Aminoalkyltrialkoxysilane without Using Surfactants[J].Chem.Mater.,2004,16:3 417-3 423.
    [123]T.K.Tucker,J.D.Brennan.Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol-Gel-Derived Nanocomposite Materials[J]:Chem.Mater.,2001,13:3 331-3 350.
    [124]S.Yano,K Iwata,K.Kurita.Physical Properties and Structure of Organic-Inorganic Hybrid Materials Produced by Sol-Gel Process[J].Mater.Sci.Eng.,C,1998,6:75-90.
    [125]R.Winter,D.W.Hua,X.Song.Structural and Dynamical Properties of the Sol-Gel Transition[J].J.Phys.Chem.,1990,94:2 706-2 113.
    [126]G.A.Baker,S.Pandey,E.P.Maziarz,F.V.Bright.Toward Tailored Xerogel Composites:Local Dipolarity and Nanosecond Dynamics within Binary Composites Derived from Tetraethylorthosilane and ORMOSILs,Oligomers or Surfactants[J].J.Sol-Gel Sci.Technol.,2004,15:37-48.
    [127]G.Qian,Z.Yang,C.L.Yang.Matrix Effects and Mechanisms of the Spectral Shifts of Coumarin 440 Doped in Sol-Gel-Derived Gel Glass[J].J.Appl.Phys.,2000,88(5):2 503-2 508.
    [128]王德海,江棂.紫外光固化材料-理论与应用[M].北京:科学出版社,2001.
    [129]F.Frga,S.Burgo,E.R.Nunez.Curing Kinetic of the Epoxy System Badge n=0/1,2 DCH by Fourier Transform Infrared Spectroscopy(FTIR)[J].J.Appl.Polym.Sci.,2001,82:3 366-3 372.
    [130]J.Oh,H.Imai,H.Hirashima.Direct Deposition of Silica Films Using Silicon Alkoxide Solution[J].J.Non-Cryst.Solids,1998,241:91-97.
    [131]S.Yu,T.K.S.Wong,X.Hu,T.K.Goh.Effect of Processing Temperature on the Properties of Sol-Gel-Derived Mesoporous Silica Films[J].Thin Solid Films,2004,(44):462-463,306-310.
    [132]P.Innocenzi.Infrared Spectroscopy of Sol-Gel Derived Silica-based Films:A Spectra-Microstructure Overview[J].J.Non-Cryst.Solids,2003,316:309-319.
    [133]M.L.Calzada,A.Gonzalez,R.Poyato,L.Pardo.Photo-Sensitive Sol-Gel Solutions for the Low-Temperature UV-assisted Processing of PbTiO_3 based Ferroelectric Thin Films.[J].J.Mater.Chem.,2003,13:1 451-1 457.
    [134]J.Gnado,P.Dhamelincourt,C.Pelegris,M.Traisnel,A.Le Maguer Mayot.Raman Spectra of Oligomeric Species Obtained by Tetraethoxysilane Hydrolysis-Polycondensation Process[J].J.Non-Cryst.Solids,1996,208:247-258.
    [135]M.C.Matos,L.M.Ilharco,R.M.Almeida.The Evolution of TEOS to Silica Gel and Glass by Vibrational Spectroscopy[J].J.Non-Cryst.Solids,1992,(147&148):232-237.
    [136]A.Bertoluzza,C.Fagnano,M.A.Morelli,V.Gottardi,M.Guglielmi.Raman and Infrared Spectra on Silica Gel Evolving toward Glass[J].J.Non-Cryst.Solids,1982,48:117-128.
    [137]W.David,H.Vladimir.Separating Octadecyltrimethoxysilane Hydrolysis and Condensation at the Air/Water Interface through Addition of Methyl Stearate[J].J.Phys.Chem.B,1999,103:2 749-2 754.
    [138]Spectral Database for Organic Compounds SDBS,National Institute of Advanced Industrial Science and Technology(A/ST),SDBS No.6845HSP-01-562.[DB]
    [139]K.H.Nam,T.H.Lee,B.S.Bae,M.Popall.Condensation Reaction of 3-(Methacryloxypropyl)-Trimethoxysilane and Diisobutylsilanediol in Non-Hydrolytic Sol-Gel Process[J].J.Sol-Gel Sci.Technol.,2006,39:255-260.
    [140]E.Jose,A.Herrera,J.H.Kwak.Synthesis,Characterization,and Catalytic Function of Novel Highly Dispersed Tungsten Oxide Catalysts on Mesoporous Silica.[J].J.Catal.,2006,239:200-211.
    [141]R.D.Neuman,T.H.Ibrahim.Novel Structural Model of Reversed Micelles:The Open Water-Channel Model[J].Langmuir,1999,15:10-12.
    [142]S.Miljanic,L.Frkanec.Photo-induced Gelation by Stilbene Oxalyl Amide Compounds[J].Langmuir,2005,21:2 754-2 760.
    [143]J.H.Jung,G.John.Self-Assembly of a Sugar-Based Gelator in Water:Its Remarkable Diversity in Gelation Ability and Aggregate Structure[J].Langmuir,2001,17:7 229-7 232.
    [144]张天永,朱丹丹,张友兰,崔新安.紫外光照射下颜料的表面改性[J].精 细化工,2003,20(6):52-55.
    [145]C.Jin.The Conspectus of Photochemistry[M].Beijing:Advanced Educational Publishing Company,1985.