利用RNAi介导抗BYDV和WDV小麦新种质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦作为世界上最重要的粮食作物之一,其产量关系着国家粮食安全和国民经济的发展。由大麦黄矮病毒(Barley yellow dwarf viruses,BYDVs)引发的小麦黄矮病,是我国小麦种植区最重要的小麦病毒病害之一,同时也是世界上危害最严重、流行最广泛的植物病毒病害之一。该病毒流行年份一般会造成20%~30%的减产,严重时达50%以上,甚至颗粒无收,被称为小麦的“黄色瘟疫”和“癌症”。由小麦矮缩病毒(Wheat dwarf virus,WDV)引发的小麦矮缩病在欧洲、北非、亚洲和大洋洲造成了严重的经济损失,特别是在欧洲该病害造成小麦减产40%~80%。2007年本实验室在国内首次报道了小麦矮缩病的发生,随后该病害在陕西、甘肃、河北、云南等12个省陆续被报道发现,尤其在陕西北部麦区已经引起小麦严重的减产,成为威胁我国西北、华北和西南麦区重要的病毒病害。
     防治与控制病毒病最为经济有效的方法是利用品种自身的抗性从而达到主动防治病害的目的,然而利用传统的育种方式很难获得兼抗两种病毒病和高产、优质品种。RNA干涉(RNA
     interference,RNAi)是指由双链RNA的介导,特异性靶标对应序列的mRNA,从而抑制相应基因表达的一种基因表达与调控方式,也是寄主一种重要防御病毒病侵害的机制。当表达来源于病毒某一基因序列的转基因植物发生RNAi时,就能使入侵的同一病毒或同属中相近病毒的RNA降解,从而赋予转基因植物对病毒的抗性。因此利用RNAi获得抗BYDVs和WDV小麦种质,成为解决这两种病害的有效途径。
     随着转基因植物研究的深入和转基因作物的大范围种植,转基因生物安全性评价标准也在不断提高,人们期望获得无筛选标记基因和其他载体骨架的转基因新种质,这也成为目前转基因植物研究的热点之一。
     本研究针对BYDV-GAV和WDV的CP基因的高保守性,构建了RNAi植物表达载体和最小表达框,期望利用基因枪介导的遗传转化和最小表达框技术,筛选获得高抗或免疫的小麦种质。为最终实现利用RNAi获得抗BYDVs和WDV小麦新品种的预期目标提供抗病新种质。主要结果如下:
     1.表达载体的构建。成功的构建成了适用于小麦基因枪转化的载体:双价表达载体有pMCG161+/-BW、pMCG161+BW、pMCG161-BW;pWMB006+/-HBW、pWMB006+HBW、pWMB006-HBW。单价表达载体有pMCG161+/-W、pMCG161+W、pMCG161-W。
     另外通过酶切获得+/-HBW最小表达框。
     2.基因枪转化小麦及转化后代的分子检测。将构建好的载体和最小表达框利用基因枪法转化小麦幼胚幼胚愈伤组织,经过筛选和抗性愈伤的分化得到再生植株,再通过PCR检测获得了pMCG161+/-BW阳性植株36株,pMCG161+BW和pMCG161-BW均获得5株;pWMB006+/-HBW获得20株,pWMB006+HBW和pWMB006-HBW均获得5株;pMCG161+/-W获得10株,pMCG161+W和pMCG161-W均获得4株;转最小表达框的获得11株。平均转化率是1.2%,最高转化率是2.0%。Southen Blotting结果显示:在T3代稳定遗传的3个转基因株系中外源基因已经成功整合到小麦基因组染色体上,拷贝数为1-3个。对T3代稳定遗传的转基因株系中取8个株系,进行了实时荧光定量PCR检测,结果表明:转基因植株中目的基因的表达量低于受体材料,pMCG161+/-BW的一个株系P7-5-2相对基因表达量为0.3;P11-1-3的相对基因表达量为0.24;转pWMB006+/-HBW载体植株6个株系中5个株系的目的基因干扰效果很明显,其相对基因表达量0.15。
     3.转基因植株的抗病鉴定。对稳定遗传的株系在T3代和T4代植株进行了BYDV-GAV的抗病性鉴定,获得了免疫株系有:14个转干扰载体pMCG161+/-BW的株系,9个独立转化事件;5个转干扰载体pWMB006+/-HBW的株系,5个独立转化事件;后者有望筛选到无标记基因的转基因抗病种质,为抗病育种提供新材料。
Wheat is one of the most important food crop in the world and plays a vital role in food securityand national economy. Wheat yellow dwarf disease caused by Barley yellow dwarf virus (BYDVs) isone of the most destructive viral disease of wheat crop not only in China but also in the world. Theepidemics of BYDVs generally leads to a yield loss around20%to30%, even up to50%or completeproduction failure compared to the normal production level.
     In recent year, wheat dwarf disease caused by Wheat dwarf virus (WDV) has been an increasingdestructive viral disease in Europe, North Africa, Asia and Oceania. Especially in Europe, the yield losscaused by WDV has been over40%to80%. Wheat dwarf disease disease was firstly detected andreported by our research group in2007in China. Subsequently, it was found in12provinces includingShaanxi, Gansu, Hebei and Yunnan. This disease, which caused serious yield loss in Hancheng city,north of Shaanxi province, has been a potential threat to the wheat in northwestern of China.
     The most efficient and economic method to control viral disease is the application of resistantvarities. However, it is very hard to obtain a new resistant wheat varity with high yield and goodquantity through traditional breeding. The recently discovered RNA interference (RNAi) is an importantmechanism of host against pathogens by specific degradation of the mRNA mediated bydouble-stranded RNA. The transgenic plant could show the resistance to the viral disease when the virusgenes or their homologous fragment were degraded by RNA interference. It gives us a opportunity thatwheat lines with resistance to BYDVs and WDV could be obtained by transgenic breeding based on theprinciple of RNAi.
     The purpose of this research is to obtain the transgenic wheat lines with high resistance toBYDV-GAV and WDV. Firstly, we developed a series of RNAi vectors containing conserved coatprotein gene sequences of BYDV-GAV and WDV, which are suitable for wheat transformation. Theseplasmid constructs were transformed into callus of wheat immature embryo by particle bombardment.The genetically modified regeneration were obtained after the tissue culture. The seedlings were testedand selected by PCR, Southen blotting, Q-RT-PCR and bioassay. In addition, the linear minimumexpression box for particle bombardment transformation was designed for biosafety of transgenic wheat.The expression box was transformed into callus of wheat immature embryo via particle bombardmentand the positive seedlings were obtained by PCR. Among of them, the resistance plants without othervector sequence and antibiotic gene could be screened for the next application. The main results arelisted as follows:
     1. Construction of RNAi expression vector: We have developed RNAi expression vectors for wheattransformation including pMCG161+/-BW, pMCG161+BW, pMCG161-BW, pMCG161+/-W,pMCG161+W, pMCG161+/-W, pMCG161-W, pWMB006+/-HBW, pWMB006+HBW,pWMB006-HBW and gene expression casseett+/-HBW.
     2. Biolistic transformation and molecular detection of foreign genes: Those vectors had beentransfered into immature wheat embryos. Then transgenic tissues were selected by herbicide resistance and detected by molecular methods. PCR results showed36plants positive for pMCG161+/-BW,5plants positive for pMCG161+BW,5plants positive for pMCG161-BW,20plants positive forpWMB006+/-HBW,5plants positive for pWMB006+HBW,5plants positive for pWMB006-HBW,10plants positive for pMCG161+/-W,4plants positive for pMCG161+W,4plants positive forpMCG161-W,11plants positive for gene expression casseett+/-HBW. respectively. The averagetransformation rate and the highest transformation rate were1.2%and2.0%respectively. Southenblotting analysis showed that the foreign sequence had been integrated into the transgenic wheatgenome with1-3copies. Real time quantitative PCR analysis revealed that the expression levels of thetarget genes in transgenic plants was relatively lower than them in wild type. The gene expression ofpositive plants which transformed with pMCG161+/-BW1is0.3of the controled ones, withpMCG161+/-BW2is0.24and with pMCG161+/-HBW is0.15. It indicated that the gene silencingeffect played a role in transgenic plants.
     3. Bioassay of transgenic plants: By observation of their agronomic characters of T1plant, they werethe same as controls. The evaluation of the lines T2and T3resistant to BYDVs by artificial inoculationshowed that disease resistant GM wheats had been obtained.
引文
1. Clive J.2009年全球生物技术/转基因作物商业化发展态势--第一个十四年1996~2009.中国生物工程杂志,2010,30(2):1~22.
    2.陈立国,石猛,王玉海等.农杆菌介导小麦成熟胚愈伤组织的遗传转化研究.麦类作物学报.2007,27(2):188~192.
    3.陈梁鸿,王新望,张文俊等.除草剂草甘膦EPSPS基因在小麦中的转化.遗传学报,1999,26(3):239~243.
    4.成卓敏,何小源.陈彩层等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株.自然科学进展,国家重点实验室通讯,1993,3(6):560~563.
    5.成卓敏.我国小麦黄矮病毒的酶法提纯初步研究,植物保护学报,1983.10,243~244.
    6.成卓敏,周广和.小麦黄矮病毒GPV株系的提纯及血清学研究.病毒学报,1986,2(3):275~277.
    7.刁文一,蒋建雄,熊兴华等.RNAi在植物功能基因组中的应用.现代生物医学进展,2006,6(2):81~83
    8.代玉华.RNAi介导的水稻抗RSV基因工程.[博士学位论文].北京:中国农业科学院,2007.
    9.刘双清.大麦黄矮病毒三种株系的特异性检测及PAV株系的群体遗传变异.[硕士论文],北京:中国农业科学院,2008.
    10.郭兴启,温孚江,朱常香等.转基因植物中RNA介导的病毒抗性研究进展.生命科学,2000,12(4):166~169.
    11.洪健,李德葆,周雪平等.植物病毒分类图谱.北京科学出版社:2001,12,59~60.
    12.侯丙凯,夏光敏,陈正华,植物基因工程表达载体的改进和优化策略。遗传,2001,23(5):492~497.
    13.黄益洪,周淼平,叶兴国等.农杆菌介导法获得小麦转基因植株的研究.作物学报,2002,28(4):510~515.
    14.晋治波王锡锋常胜军周广和大麦黄矮病毒GAV基因组全序列测定及其结构分析中国科学C辑:生命科学2003,33(6)505~513.
    15.梁辉,朱银峰,朱祯等.雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究.遗传学报,2004,31(2):189~193.
    16.梁青青.我国转基因农产品发展现状研究.生态经济,2011,12(247):22~24.
    17.孟祥兵,王秀芳.基因沉默.生命的化学,2001,21(2):111~113.
    18.苏金,J.Targolli,吴乃虎等.在转基因植物中实现外源基因最佳表达的途径.生物工程进展,1999,19(4):3~6.
    19.王锡锋,刘艳,韩成贵等.我国小麦病毒病害发生现状与趋势分析.植物保护.2010,36(3):13~19.
    20.王锡锋.麦蚜传播大麦黄矮病毒的机制研究,[中国农科院博士学位论文],北京:中国农业科学院,1998.
    21.王艳丽,叶兴国,刘艳鹏等.农杆菌敏感小麦基因型的筛选研究.麦类作物学报,2005,25(6):6~10.
    22.王江飞,柳树宾,吴蓓蕾等.陕西韩城严重发生的小麦矮缩病病原鉴定与原因分析,植物保护,2008,34(2):17~18
    23.魏太云,林含新,吴祖建等..PCR技术在植物病毒学上的应用.福建农业大学学报,2000,29(2):181~187.
    24.吴蓓蕾.小麦矮缩病毒分子群体遗传结构与RNAi介导的抗BYDV~GAV转基因小麦研究.[中国农业科学院研究生院博士论文].北京:中国农业科学院,2007.
    25.吴刚,夏武.植物转基因沉默及对策.生物技术,2000,10(2):27~32
    26.吴茂森.大麦黄矮病毒GPV株系复制酶基因介导的抗病毒转基因小麦的研究.[中国农业科学院博士研究生学位论文].北京:中国农业科学院,2000.
    27.吴青等,RNAi技术研究进展,中国生物工程杂志,2003.(1):37~42
    28.王利华,苏乔,包永明.转基因植物中载体框架序列的安性隐患及解决方案.中国生物工程杂志,2004,24(5):38~42.
    29.夏兰芹,王远,郭三堆.外源基因在转基因植物中的表达与稳定性.生物技术通报,2000,3:8~12
    30.辛志勇,周广和,Larkin P J等.应用生物技术向小麦导入黄矮病抗性的研究,中国科学(B辑),1991,21(1):36~42
    31.徐长林,曹致中,贾笃敬.优良抗寒苜蓿新品种-甘农一号杂花苜蓿.中国畜牧杂志,1992,6:43
    32.徐惠君,庞俊兰,叶兴国等.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究.作物学报,2001,27(6):688~693.
    33.徐惠君,辛志勇,刘四新等,组织培养与普通小麦异源异位系选育.遗传学报,1996,23:376~381
    34.徐惠君、H.Steinbiss等.用基因枪将欧洲小麦梭条花叶病毒外壳蛋白基因(WSSMV-CP)导入小麦,第六届全国遗传学讨论会论文集,1999,P26-27.
    35.徐茂军.转基因植物中卡那霉素抗性(Kanr)标记基因的生物安全性.生物学通报,2000,36(2):18~19
    36.徐琼芳,田芳,辛志勇等.转GNA基因小麦新株系的分子检测和抗蚜虫性鉴定.麦类作物学报.2005,25(3):7~10.
    37.徐子银重要禾谷类植物转基因研究.生物工程进展,2001,21(1):59~74
    38.薛建,郭东全,赵桂兰.安全选择标记和无选择标记转基因技术研究进展.华北农学报,2008,23:96~102.
    39.燕飞,郑银英,张文蔚等.农杆菌介导法获得转pac1基因小麦并表现对大麦黄矮病毒的抗性,科学通报,2006,51:1906~1912.
    40.叶兴国,程红梅,徐惠君等.,转几丁质酶和β-1,3-葡聚糖酶双价基因小麦的获得和鉴定.作物学报,2005,31(5):583~587.
    41.叶兴国,Shirley S,徐惠君等.小麦农杆菌介导转基因植株的稳定获得和检测..中国农业科学,2001,34(5):465~468.
    42.尹钧,任江萍,李志岗等.转基因抗穗发芽小麦的获得:湖南农业大学学报(自然科学版)》2007年第S1期.
    43.曾晓珊,戴良英,刘雄伦等.dsRNA介导植物基因沉默及其应用.生命科学.2007,19(2):132~138
    44.张恭,刘讧峰,马峙英等.RNA干扰及其植物抗病毒应用.中国农学通报,2007.23(1):42~45
    45.张艳敏,郭北海,丁占生等.小麦农杆菌转化系统的建立与转基因植株的获得.华北农学报,2003,18(3):1~3.
    46.张文蔚,成卓敏.大麦黄矮病毒GPV株系基因组末端序列的克隆和分析.中国农业科技导报,2009,11(1):102~107
    47.张增艳,辛志勇.黄矮病小麦生物技术育种研究进展.作物杂志.2005,7(5):4~7
    48.周广和.世界大麦黄矮病研究概况.世界农业,1989(7):38~40.
    49.周红建,黄松,王雄伟.RNAi技术研究新进展.生物技术通报,2010,12:84~87
    50.朱俊华,朱长青,温孚江.正向和反向重复介导的抗马铃薯Y病毒基因工程比较研究.植物病理学报,2004,34(2):133~140.
    51.赵化冰,马峙英,赵宏.小麦转基因方法的回顾、比较与展望.河北农业大学学报.2002,25(1):5~7
    52.赵慧,徐萍,牛灿芳等.小麦转基因研究现状及展望.世界科技研究与发展.2005,27(3):32~36
    53.苏金,J.Targolli,吴乃虎等.在转基因植物中实现外源基因最佳表达的途径.生物工程进展,1999,19(4):3~6.
    54. Altpeter F, Vasil V, Srivastava V. et al. A ccelerated roduction of transgenic wheat(Triticum aes~tivum L.) plants. Plant Cell Rep,1996,16(1~2):12~17.
    55. Altpeter F, Vasil V, Srivastava V et al. Integration and expression of the high molecularweight glutenin subunit1Ax1gene into wheat. Nat Biotechnol,1996,14(9):1155~1159.
    56. Alicja Z, Odyssey ofAgrobacterium T-DNAActa biochimica polonica,2001,48:623~635
    57. Aufsatz W, Mette M F, van der Winden J et al. a putative histone deacetylase needed toenhance DNA methylation induced by double stranded RNA. EMBO J.2002,21,6832~6841.
    58. Amoah B K, Wu H, Sparks C et al.. Factors influenc-ing Agrobacterium-mediated transientexpression of uidA in wheat inflorescence tissue. J Exp Bot,2001,52(358):1135~1142.
    59. Bailey L D. Effects of potassium fertilizer and fall harvests on alfalfa grown on the easternCanadian Prairies. Canadian Journal Soil Science1983,63:211~219.
    60. Barro F, Rooke L, Békés F et al.. Transformation of wheat with high molecular weightsubunit genes results in improved functional properties..Nat Biotechnol,1997,15(2):1295~1299.
    61. Becker D, Brettschneider R, L rz H et al. Fertile transgenic wheat from microprojectilebombardment of scutellar tis-sue. Plant J,1994,5(2):299~307.
    62. Blechl A E, Anderson O D. Expression of a novel high-molecular-weight glutein subunitgene in transgenic wheat. Nat Biotechnol,1996,14(7):875~879.
    63. Bomminenl V R,Jauhar P P,Peterson T S. Transgenic durum wheat by microprojectilebombardment of isolated scutella.Journal of Heredity,1997,88:475~481
    64. Bosher J M, Labouesse M. RNA interference: Genetic wand and genetic watchdog. Nat CellBiol,2000,2: E31~E37.
    65. Bregistzer P,Halber S E,Lemaux P G. Somaclonal variation in the progeny of transgenicbarley Theoretical and Applied Genetics.1998.
    66. Brisibe E A, Gajdosova A, Olesen A et al.. Cyto-differentiation and transformation ofembryogenic callus lines derived from anther culture of wheat. J Exp Bot,2000,51(318FFluorodeoxyglucose187~197.
    67. Casas A M, Konowicz A K, Bressan R A et al. Cereal transformation throughparticjebombardment. Plant Breed Rev,1995,13:235~264
    68. Cgen X J, Lee M K,Dean D H. Site-directed mutations in a highly conserved reggion ofBacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across bombyxmori modguts. Pro.Natl.Acad.Sci.USA1993,90:9041~9045
    69. Chamberlain D A. The use of the Emu protein with antibiotic and herbicide resistance genesfor the selection of transgenic wheat callus and rice plants. Aust Jplant Physiol,1994,21:95~112
    70. Chang S, Jin Z et al.Nucleotide sequences of the coat protein and read through protein genesof the Chinese GAV isolate of barley yellow dwarf virus. Acta virologica,2001,45:249~252.
    71. Chen Ming, E.F.Joyce, Pang Shengzhi et al. Genetic transformation of wheat mediated bAgrobacterium tumefacien, Plant Physiol,1997,115:971~980.
    72. Cheng Z M. Progrees of Studies on Resistance Virus Gene Transformation in Wheat.Biotechnology Information1997,4:11~13.
    73. Cho H S, Park N Y. Detection of canine distemper Virus in blood samples by reversetranscription loop-mediated isothermal amplification. J Yet Med Binfeet Dis Vet PublieHealth,2005.52(9),410~413.
    74. Cogoni C, Macino G. Post-transcriptional gene silencing across kingdoms. Genes De,2000.10,638~643.
    75. DAI S H et al. Multiple Gene Transformation of Rice Using the Biolistic Method ActuGenetica Sinica.1998,25(4):345~350.
    76. Diao A, Chen J, Ye R et al. Complete sequence and genome properties of Chinese wheatmosaic virus, a new furovirus from China. Journal of General Virology1999,80,1141~1145.
    77. Chen J, Chen J, Yang J et al.Differences of cultivar response and complete sequenceanalysis of two strains of wheat yellow mosaic bymovirus in China. Plant Pathology,2000,49,370~374
    78. Cheng Z M. Resistance to virus gene expression in transgenic wheat plants.High TechnologyLetter,1996,2(3):103~106
    79. Cheng M, Fry J E, Pang S Z et al.Genetic transformation of wheat mediated byAgrobacterium tumefaciens.Plant Physiol,1997,115(3):971~980.
    80. Cheng M, Hu T C, Layton J et al. Desiccation of plant tissues post-Agrobacteriuminfection enhances T-DNA delivery and increases stable transformation effi-ciency in wheat.In Vitro Cell Dev Biol,2003,39(6):595~603.
    81. Cheng Z.M.Resistance to virus gene expression in transgenic wheatplants.High TechnologyLetters1996,2(2):103~106
    82. Christopher R S, Yiqi Seow, Matthew J.A et al. Novel RNA-based Strategies forTherapeutic Gene Silencing. Molecular Therapy,2010,183,466~477.
    83. Cooper B,Lapidot M, Heick J A et al. A defective movment protein of TMV in transgenicplants confers resistance to multiple viruses whereas tha functional analog increasessusceptibility.Virology,1995,206:307~313
    84. D Z Sun, L Jiang, S J Liu et al. Detection of QTLs for resistance to rice stripe virus andsmall brown planthopper in rice (Oryza sativa L.), Acta Agron. Sin.2006,32:805~810.
    85. DattaS K,Soltanifar N et al. Herbicide–resistant indic rice plants from IRRI breeding lineIR72after PEG-mediated transformation of protoplasts. Plant Mol Biol,20:619~629
    86. Davey M R. Plant Molecular Biology,1989,13:273~285
    87. De Feyter E, Young M, Schroeder K et al. A ribozyme gene and an antisense gene areequally effective in conferring rersistance to tobacco mosaic virus on trsgnenic tobacco. Mol.Gen. Genet.1996,250:329~338.
    88. Diao A.Sequence of European wheat moaic virus and oat golden stripe virus and genomeanalysis of the genus Furovirus.Virology,1999,261,331~339.
    89. Ding LP, Li S C, Gao J M et al. Optimization of Agrobacterium-mediated transformationconditions in mature embryos of elite wheat. Mol Biol Rep,2009,36(1):29~37.
    90. Dunsmuir P. Capsicum hemicellulase polynucleotides and polypeptides. Plant MolecularBiology Manual, C1,1988,1~17.
    91. Elbashir S M, Harborth J, Lendeckel W et al. Duplexes of21~nucleotide RNAs mediateRNA interference in cultured mammaliancells. Nature,2001(a)411:494~498.
    92. Elbashir S M, Lendeckel W, Tuschl T et al. RNA interference is mediated by21and22nucleotide RNAs. Genes Dev,2001(b),15(2):188~200.
    93. Ehlers. Characterzation of the CP of different BaYMV by PAGE and Electro-blotimmunoassay, Journal of Phytopathology,1986,115:294~304
    94. Fagard M, Vaucheret H,(Trans) gene silencing in plants: How many mechanisms Annu. Rev.Plant Physiol. Plant Mol.Biol,2000,51:167~194.
    95. Fu X D, Duc L T, Fontana S et al. Linear transgene constructs lacking vector backbonesequences generate low-copy-number transgenic plants with simple integration patterns.Trans Res,2000,9(1):11~19.
    96. Gasser C S. Genetically engineering plants for crop improvement. Nature,1990,347:737~741.
    97. Guo H S, Ding, S W. A viral protein inhibits the long range signaling activity of the genesilencing signal. EMBO J.200221,398~407.
    98. Hayakawa T, Zhu Y, Itoh K et al. Genetically engineered riceresistant to rice stripe virus, aninsect-transmitted virus.Proceeding of the National Academy of Science,1992,89:9865~9869.
    99. Hammond S M, Caudy A A, Hannon G J. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev Gen,2001,2:110~119.
    100.Hannon G J. RNAinterference Nature,2002,418(6894):244~51.
    101.He D G, Mouradov A, Yang Y M et al. Transformation of wheat (Triticum aestivumL.)througheletroporation of protoplasts.Plant Cell Reports,1994,14:192~196
    102.Herrera--Estrella L, Van den Broeck G,Maenhaut R et al. Nature,1984,310:115~120
    103.Hess D, Dressler K, Nimnrichter R et al. Transformation ex-periments by pipettingAgrobacterium into the spikelets of wheat. Plant Sci,1990,72(2):233~243.
    104.Hess D et al. l Pollen mediated indirect gene transfer to dicots and monocots Angiospermpollen and ovules1992.261~273
    105.Hiei Y, Ohta S, Komari, T. et al. Efficient transformation of rice (Oryza sativa L.) mediatedby Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal,1994,6:271~282.
    106.Horsch R B,Fry J E.Hoffmann N L et al. Asimple and general method for transferring grnesinto plants.Science.1985.227:1229~1231
    107.Hu T, Metz S, Chay C et al. Agrobacte-rium-mediated large-scale transformation of wheat(Triti-cum aestivum L.) using glyphosate selection. Plant Cell Rep,2003,21(10):1010~1019.
    108.Hutvagner G,&Zamore P.D. RNAi: nature abhors adouble strand. Curr Opin Genet Dev,2002,12,225~232.
    109.Ishida Y, Saito H, Ohta S et al. High efficiency transformation of maize (Zea mays L.)mediated by Agrobacterium tumefaciens. Nat-Biotechnal,1996,14:745~750.
    110.Jackson Ao et al. The occurrence and transmission of a disease inIndiana with properties ofWSSMV, Plant Disease Report,1975,59:790~794
    111.Jahne A, Becker D, lorz H. Genetic engineering of cereal crop plants:a review.Euphytica;1995,85:35~44
    112.James C. Global review of commercialized trangenic crops,1999.ISAAA.BriefsmNo.12.Isaaa Ithaca NY
    113. JIA S R.The Nature of Current Debate on Biosafety of Genetically Modified Crops.Biotechnology Information1999,15(6):1~7.
    114.Jin Zhibo, Wang Xifeng, Chang Shengjun et al. The complete nucleotide sequence and itsorganization of the genome of Barley yellow dwarf virus-GAV, Sciene in China Ser. C LifeSciences,2003,47(1)(SCI).
    115.Juan P A. Ortiz, M I. Reggiardo, R. Hygromycin resistance as an efficient selectable markerfor wheat stable transformation. Plant Cell Reports,1996,15:877~881.
    116.Karunaratne S,Sohn A,Mouradov A et al.Transformation of wheat with gene encoding thecoat protein of barley yellow mosaic virus.Aust.J.Plant Physiol,1996,23:429~435
    117.Khanna H K, Daggard G E. Agrobacterium tumefa-ciens-mediated transformation of wheatusing a super bi-nary vector and a polyamine-supplemented regeneration medium. Plant CellRep,2003,21(5):429~437.
    118.Kasschau K D, Carrington J C, A counter defensive strategy of plant viruses: suppression ofposttranscriptional gene silencing. Cell,1998,95:461~470.
    119.Khurana J, Chugh A, khurana P. Regeneration from mature and immature embryos andtransient gene expression via Agrobacterium-mediated transformation in emmer wheat(Triticum diccocum Schuble). Indian J Exp Biol,2002,40(11):1295~1303.
    120.Kumpatla S P,Chandransekharan M B,Iyer L M et al. Genomic intruder scanning andmodulatin systems and trabsgenic silencing in rice harbouring a multi-copy transgene.Plant J,1998a,14:129~135
    121.Lei J,Chen J,Zheng T. et al. Identification of Chese fungal_transmitted filamentous wheatmosaic virus by RT-PCR and SSCP. Virologica Sinica1998.13:89~96.
    122.Liu F, Wang X, Liu Y et al. AChinese isolate of B arleyyel low dwar f virus2PAV representsathird distinct species within the PAV serotype. Archives of Virology,2007,152:1365~1373
    123. Loc N T, Tinjuangjun P, Gatehouse A M R., et al. Linear transgene constructs lackingvector backbone sequences generate transgenic rice plants which accumulate higher levels ofproteins conferring insect re-sistance. Mol Breed,2002,9(4):231~243.
    124. Li Z Q. Diseases of TriticumAgriculture Publisher1997,128~132
    125. Li X X. Diagnose and Prevention of Diseases in Triticum China Agricultural Publisher [M].Beijing.1993,30~34
    126. Liu W, Nie H, Wang S et al. Mapping a resistance gene in wheat cultivar Yangfu9311toyellow mosaic virus, using microsatellite markers. Theoretical and Applied Genetics.2005,111:651-657.
    127.Liu W, Nie H, He Z et al. Mapping of a wheat resistance gene to yellow mosaic disease byamplified fragment length polymorphism and simple sequence repeat markers. Journal ofIntegrative Plant Biology.2005,47:1133-1139.
    128.Luo Z X, Wu R. A simplemethod for the transformation of rice via thr pollen-tubepathway.Plant Mol Bio Rep,1988,6(3):165~174
    129. Makkouk K M. et al. Fisrt record of barely yeollw dwarf vriu-RPV inefeting wheat inUzbekistan.Plant Dis,2001,5(10):1122
    130. Makkouk K M et al. The“yellow Plague” of ceerals,barley yeollw darf vius.In:Worldperspectives on barely yeollw dwarf CIMMYTMEXICO.DF.MEXICO,1987,l~6
    131. Malyshenko S I, Kondakova O A, Nazarova J V et al. Reduction of tobacco mosaic virusaccumulation in transgenic plants producing nonfunctional viral transport protein
    132.Martine Z J, Patkaniowska A, Uuaub H, et al. Single stranded antisense siRNAs guide targetRNA cleavage in RNAi. Cell,2002,110(5),563.
    133. McManus M T, Petersen C P, Haines B B et al. Gene silencing using microRNA designedhairpins. RNA,2002,8:842~850.
    134. Megha G, Phillip D, Zamore et al. Small silencing RNAs: an expandinguniverse.nature.2009,431(7006):343~349.
    135. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature,2004,431(7006):343~349.
    136.Merai Z, Kerenyi Z., Kertesz S et al. Double stranded RNA binding may be a general plantRNA viral strategy to suppress RNA silencing. J. Virol.2006,80,5747~5756.
    137.Mooney P A, Goodwin P B. Adherence of Agrobacterium tumefaciens to the cells ofimmature wheat embryos. Plant Cell, Tissue Organ Cult,1991,25(3):199~208.
    138. Nehra N S, Chibbar R N, Leung N et al.Self-fertile transgenic wheat plants regeneratedfrom isolated scutellar tissues following microprojectile bombardment with2distinct geneconstructs. Plant J,1994,5(2):285~297.
    139.Novina C D, Sharp PA. The RNAi revolution. Nature,2004,430(6996):161~163.
    140.Nykanen A, Haley B, Zamore PD et al. ATP requirements and small interfering RNAstructure in the RNA interference pathway. Cell,2001,107:309~321.
    141.Ogawa T, Kawahigashi H, Toki S et a.. Efficient transformation of wheat by using a mutatedrice acetolac-tate synthase gene as a selectable marker. Plant Cell Rep,2008,27(8):1325~1331.
    142.Okubara P A, Blechl A E, McCormick S P et al. Engineering deoxynivalenol metabolism inwheat through the expression of a fungal trichothecene acetyltransferase gene. Theor ApplGenet,2002,106(1):74~83.
    143.Ortiz J P A, Reggiardo M I, Ravizzin R A, et al. Hygromycin resistance as an efficientse-lectable marker for wheat stable transformation. Plant Cell Rep,1996,15(12):877~881.
    144.Patnaik D, Vishnudasan D, Khurana P, et al. Agrobacte-rium-mediated transformation ofmature embryos of Triticum. aestivum and Triticum durum. Curr Sci,2006,91(3):307~317.
    145.Pellegrineschi A, Noguera L M, Skovmand B, et al. Identification of highly transformableheat genotypes for mass production of fertile transgenic plants. Genome,2002,45(2):421~430.
    146.Powell A, Neison R S, Bavun D E, et al. Delay of disease development in transgenic plantsthat express the tobacco mosaic virus coat protein gene. Science,1996,232:738~747.
    147.Qu F, Morris T J. Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virusis facilitated by the coat protein and maintained by p19through suppression of genesilencing. Mol. Plant Microbe Interact.2002.15,193~202.
    148.Ramirez B C, Haenni A L, Molecular biology of Tenuiviruses: a remarkable of plant viruses.Journal of General Virology,1994,75(1):467~475.
    149.Register J C, Beachy R N. Resistance to TMV in transgenic plants results trom interferencewith an early event in nfection. Virology,1988,166:524~532.
    150.Reimann-Philipp U, Beach R N.Coat protein-mediated resistance IN transgeneic tobaccoexpressing the tobaccomosaic virus coat protein from tissue-specific promoters.MolPlant-Microbe Interact,1993,6:323~330.
    151.Rojas M R, Charles H, William J et al. Exploiting chinks in the plant’s armor: Evolution andEmergence of Geminiviruses. Annu. Rev. Phytopathol.2005.43:361~93.
    152.Rooke L, Bekes F, Fido R et al. Overexpression of a gluten protein in transgenic wheatresults in greatly in-creased dough strength. J Cereal Sci,1999,30(2):115~120.
    153.Romano A, Raemakers K, Bernardi J et al. Transgene organisation in potato after particlebombardment2me2diated (co2)transformation using plasmids and gene cassettes.TransgenicRes,2003,12:461~473.
    154.Rubies.Autonell.C et al. Observations on a mixed SBWMV and WSSMV in durum wheat(Tricum durum Desf), Journal of Phytopathology,1987,119(2):111~112.
    155.Savenkov E I, Valkomen J P D. Silencing of A viral a RNA silencing suppressor intransgenic plants.J Gen Virol,2002,83(Pt9):2325~2335.
    156.Schwarzd S, Hutvagne G, Haley B et al. Evidence that siRNAs function as guides, notprimers, in the Drosophila and human RNAi pathways.Mol Cell,2002,10(3):537~548.
    157.Sestili F, Janni M, Doherty A et al. Increasing the amylose content of durum wheat throughsilencing of the SBElla genes. BMC Plant Biol,2010,10(1):144~163.
    158.Sharp P J, Kries M, Shewry P R et al. Location of amylase sequences in wheat and itsrelatives. Theor Appl Genet,1988,75:286290Botany,2007,58:2863·287I
    159.Sheng M., Xu Y, Jia R et al. Size-Independent and Non-cooperative Recognition of dsRNAby the Rice Stripe Virus RNA Silencing Suppressor NS3. Journal of MolecularBiology,2010,404(4):665~679.
    160.Shi N N, He GY, Li K X et al. Transferring a gene expression cassette lacking the vectorbackbone sequences of the lAxl high molecular weight glutenin subunit into two Chinesehexaploid wheat geno-types. Agric Sci China,2007,6(4):381~390.
    161.Signoret P A et al. Presence in France of WSSMV, Annal of Reviev Phytopathology,1977,9:377~378.
    162.Smith R H,Hood E E. et al. Agrobacterium tumefaciens transformation of monocots. CropScience1995,35:301~309.
    163.Southgate E M et al.Factors affecting the genetic engineering of plants by microprojectilebombardment. Biotechnology Advances,1995,13:631~651.
    164.Stoger E, Williams S, Christou P et al. Expression of the insecticidal lection from snowdropGNA in transgenic wheat plants: effects on predation by the grain aphid sitobion avenae.Molecular Breeding,1999,5:65~73.
    165.Sun D Z, Jiang L,Liu S J et al. Detection of QTLs for resistance to rice stripe virus and smallbrown planthopper in rice(Oryza sativaL.).Acta Agronomica Sinica.2006,32(6):805~810.
    166.Takumi S, Eiko N Na, Tamaki U I, et al. Targeting specific genes for RNA interference iscrucial to the development of strong resistance to Rice stripe virus. Plant BiotechnologyJournal.2011,4(9):503~512.
    167.Takumi S, Shimada T. Production of transgenic wheat through particle bombardment ofscutellar tissues: fre-quency is influenced by culture duration. J Plant Physiol,1996,149(3~4):418~423.
    168.Thomas C L, Leh V, Lederer, C et al. Turnip crinkle virus coat protein mediates suppressionof RNA silencing in Nicotiana benthamiana. Virology,2003,306,33~41.
    169.Tsompana M, Abad J, Purugganan M. The molecular population genetics of the Tomatospotted wilt virus (TSWV) genome. Molecular Ecology,2005,14,53~67.
    170.Takahashi S, Komatsu K, Kagiwada S, et al. The efficiency of interference of Potato virus Xinfection depends on the target gene.Virus Research,2006,116:214~217.
    171.Usugi T, Saito Y, et al. Purification and serological properties of BaYMV and WYMV,Ann.Phytopath.Soc.Japan,1976,42:12~20.
    172.Vacke J, Kvarnheden A, Lindblad M et al. Wheat dwarf. In: Viruses and virus disease ofPoaceae (Gramineae). Lapierre, H. and Signoret, P.-A.(eds), INRA Edition. Paris, France,2004,590~593.
    173.Vasil V et al. Bio/Technology,1992,10:667~674
    174.Vimla V, Ana M, Castillo1et al. Herbicide Resistant Fertile Transgenic Wheat PlantsObtained by Microprojectile Bombardment of Regenerable Embryogenic Callus. NatureBiotechnology1992,10,667~674
    175.Vail V, et al. Rapid production of transgenetic wheat plants by direct bombardment ofcultured immature embryos Bio/Technology,1993,11(13):1553~1558
    176.Van Den Boogaart T, Wen F J, Jdavies W, et al.. Replicas-derived resistance against Peaearly browning virus in Nicotiana benthamiana is an unstable resistance based uponposttranscriptional gene silencing.MPMI,2001,14(2):196~203.
    177.Van Lijsebetens M, Vanderhaeghen R, Van Montague M et al. Insertional mutagenesis inArabidopsis thaliana: isolation of a TDNA linked mutation that alters leaf morphology.Theor Appl Genet,1993,81:277~284
    178.Van Wezel R, Dong X, Liu H et al.Mutation of three cysteine residues in Tomato yellowleaf curl virus-China C2protein causes dysfunction in pathogenesis and posttranscriptionalgene silencing suppression. Mol. Plant Microbe Interact,2002,15,203~208.
    179.Vasil I K. Molecular improvement of cereal.Plant Mol.1994,25:925~927
    180.Vasil V, Castillo A, Fromm M E et al. Herbicide resistant fertile transgenic wheat plantsobtained by micropro~jectile bombardment of regenerable embryogenic callus. NatBio/Technol,1992,10(6):667~673.
    181.Voinnet O, Rivas S, Mestre P, et al. An enhanced transient expression system in plantsbased on suppression of gene silencing by the p19protein of tomato bushy stunt virus. PlantJ.2003.33,949~956.
    182.Voineet O, et al. Suppression of gene silencing: a general strategy used by diverse DNA andRNA viruses of plants. Ptoc Natl Acad Sci USA,1999,96:14147~14152.
    183.W Zhang and R Wu. Efficient regeneration of transgenetic plants from rice protoplasts andcorrectly regulated expression of the foreign gene in the plants Theor.Appl.Genet.1998,76:835~840
    184.Wang X F, Wu B, Wang J F. First report of Wheat dwar fvi rus infecting barley in Yunnan,China. Journal of PlantPat hology,2008,90(2):400.
    185.Wang Y L, Xu M X, Yin G X, et al. Transgenic wheat plants derived fromAgrobacte-rium-mediated transformation of mature embryo tissues. Cereal Res Commun,2009,37(1):1~12.
    186. Waterhouse P M, Graham M W, Wang M B et al. Virus resistance and gene silencing inplants can be induced by simultaneous expression of sense and antisence RNA. Proc.Natl.Acad.Sci.USA,1998,95:13959~13964.
    187. Wang M B et al. A single copy of a virus derived transgene encoding hairpin RNA givesimmunity to barley yellow dwarf virus. Mol Plant Pathol,2000,1(6):347~356.
    188. Weeks T J, Anderson O D, Blechl AE et al. Rapid production of multiple independent linesof fertile transgenic wheat.Plant Physiol,1993,102:1077~1084
    189.Wesley s V. Helliwell C A, Smith N A, et al. Construct design forefficient,effective andhigh—throughout gene silencing in plants.Plant Journal.2001,27:581~590
    190.Witrzens B, Brettell R I S, Murray F R, et al. Comparison of three selectable marker genesfor transformation of wheat by microprojectile bombard-ment. Aust J Plant Physiol,1998,25(1):39~43.
    191.Wu H, Doherty A, Jones H D, et al. Agrobacterium-mediated transformation of bread anddurum wheat using freshlyisolated immature embryos. Methods Mol Biol,2009,478(2):93~103.
    192.Wu X, Doherty A, Jones H D, et al. Efficient and rapid Agro-bacterium-mediated genetictransformation of durum wheat (Triticum turgidum L. var. durum) using additional virulencegenes. Trans Res,2008,17(3):425~437.
    193.Xia G M, Li Z Y, He C X, et al. Transgenic plant regeneration from wheat (Triticumaestivum L.) me-diated by Agrobacterium tumefaciens. Acta Phytophysiol Sin,1999,25(1):22~28
    194.Xie J, Wang X, Liu Y, et al. First report of t he occurrence of WDV in wheat in China. PlantDisease,2007,91:111.
    195.Xiong R Y, Wu J X, Zhou Y J, et al. Characterization and subcellular localization of an RNAsilencing suppressor encoded by Rice stripe tenuivirus.Virology,2009,387(1):29~40.
    196.XU Q F, et al. Study on the Obtaining of Transgenic Wheat with GNU Alien Gene byBiolistic Particle.Scientia Agricultura Sinica.2001,34(1):5~8.
    197.Yao Q, Cong L, Chang J L, et al. Low copy number gene transfer and stable expression in acommercial wheat cultivar via particle bombardment. J Exp Bot,2006,57(14):3737~3747.
    198.Ye X G, et al. Study on the Dosages of Some Selection Agents for Wheat Transformation.Journal of Agricultural Biotechnology2000,8:71~74.
    199.Ye X G, et al. Study on the Factors Influencing the Efficiency of Wheat Transformation.Scientia Agriculture Sinica.2001,34(2):128~132.
    200. Zhang L, Wang Z, Wang X, et al. Two virus-encoded RNA silencing suppressors, P14ofBeet necrotic yellow vein virus and S6of Rice black streak dwarf virus. Chinese ScienceBulletin.2005,50:305-310.
    201.Zhang Y X, Wang Q, Jiang L, et al. Fine mapping of qSTV11KA, a major QTL for ricestripe desease resisitance. Theoretical and Applied Genetics,2011,122:1591~1603.
    202.Zhang H W, Zhi C Q, Xiao N Z, et al. Letters in peptide science,2002,9:15~20.
    203.Zamore P D, Tuschl T, Sharp P A, et al. RNAi:double~stranded RNA derects the ATPdependent cleavages of mRNA at21to23nucleotide intervals. Cell,2000,101:25~33.
    204.Zhou H, Arrowsmith J W, Fromm M E, et al. Glyphosate-tolerant CP4and GOX genes as aselectable marker in wheat transformation. Plant Cell Rep,1995,15(3~4):159~163.
    205.Zhou H, Berg J D, Blank S E, et al. Field efficacy assess-ment of transgenic roundup readywheat. Crop Sci,2003,43(3):1072~1075.
    206.Zhou G H,Rochow W F. Differences among five stages of Schizaphis graminum intransmission of a barley yellow dwarf luteovirus, Phytopathol1984.74:1450,25(3):341~344.