BADH基因、反义4CL基因对二色胡枝子的遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡枝子(Lespedeza Michx.)是优良的水土保持和饲料型灌木,提高其抗逆性和饲用品质存农业、林业生产上具有重要意义。
     许多转基因成果表明外源甜菜碱醛脱氢酶(BADH)基因的导入可提高植物的抗旱、耐盐性。4-香豆酸-辅酶A-连接酶(4CL)是木质素合成过程中的关键酶,反义转入4CL基因可降低一些植物的木质素。木文选用BADH基因、反义4CL基因为目的基因,构建了以木糖异构酶(xylA)基因为标记基因的植物表达载体pBI121-xylA-BADH和无选择标记基因的双元植物表达载体反义4CL-BADH,期望通过转基因技术实现胡枝子木质素和抗逆性的遗传改良。试验材料选用生物量大,来自美国的二色胡枝子(Lespedeza bicolor Turcz.)为研究对象,优化了二色胡枝子的再生体系,建立了二色胡枝子遗传转化中的木糖选择系统和无标记基因选择系统,并将xylA-BADH基因、反义4CL-BADH基因转入到二色胡枝子之中,获得了转基因植株,并检测了转基因植株的部分功能。该项研究对促进转基因胡枝子的生产应用和胡枝子饲料产业的发展具有理论和现实意义。
     主要研究内容和结果如下:
     (1)从大肠杆菌基因组中克隆出了木糖异构酶基因xylA,构建了以木糖为选择剂的植物表达载体pBI121-xylA-BADH和无选择标记基因的双元植物表达载体反义4CL-BADH,并将这两个表达载体转化到根癌农杆菌中。
     (2)在二色胡枝子再生体系建立和优化过程中,确定了二色胡枝子培养过程中的基本培养基为大量元素浓度减半的MS培养基,命名为MS*。确定了二色胡枝子子叶节分化最适配方为:MS*+6-BA 1-0 mg.L~(-1)+NAA 0.2 mg.L~(-1)+蔗糖3%+琼脂6 g.L~(-1),茎段增殖适合配方为:MS*+6-BA 1.0 mg.L~(-1)+NAA 0.1 mg.L~(-1)+IBA 0.2 mg.L~(-1)+蔗糖3%+琼脂6 g.L~(-1);生根最适配方为:MS*+NAA 0.1 mg.L~(-1)+IBA 0.2 mg.L~(-1)+蔗糖3%+琼脂6 g.L~(-1)。
     (3)确定了二色胡枝子木糖选择系统和无标记基因选择系统的建立中头孢霉素的适用浓度,即:子叶节分化过程中为200~300 mg.L~(-1),茎段增殖和生根过程中为100 mg.L~(-1)。
     当用木糖为选择剂进行pBI121-xylA-BADH遗传转化时,以3%的木糖取代蔗糖为子叶节不定芽分化过程中的选择剂,以0.5%的蔗糖和2.5%的木糖混合碳源作为抗性芽增殖和生根过程的选择剂。
     在反义4CL-BADH对二色胡枝子进行遗传转化研究中,确定了在培养基中添加1g.L~(-1)的甜菜碱醛作为子叶节分化中的选择剂,培养基中添加0.3g.L~(-1)的甜菜碱醛和0.7g.L~(-1)的NaCl作为抗性芽增殖和生根过程的选择剂。
     (4)经过PCR、PCR-Southern和Southern检测,获得了转入xylA-BADH基因的二色胡枝子和转入反义4CL-BADH基因的二色胡枝子。
     耐盐性试验表明转入反义4CL单基因的二色胡枝子耐盐性最差,而转入xylA-BADH基因的二色胡枝子耐盐性最强,转入反义4CL-BADH双价基因的二色胡枝子耐盐性略次于非转基因材料。转入反义4CL-BADH基因的二色胡枝子组培苗经过1.0g.L~(-1)NaCl胁迫培养,其甜菜碱醛脱氢酶活性可达对照材料的2.5倍。
     通过M(a|¨)ule反应、Weisner反应、卢索夫法组织化学染色和木质素荧光观察,初步表明反义4CL-BADH基因的导入有可能降低二色胡枝子的木质素含量,并对检测方法的可靠性进行了讨论。
     此外,转入反义4CL-BADH的二色胡枝子茎段皮层组织中含有的异形细胞数量明显比对照多。通过对异形细胞、植物抗逆性、甜菜碱三者之间的关系讨论,认为转基因植株异形细胞数量多是由于BADH基因的导入可能合成了较多甜菜碱。
Lespedeza Michx.plants are excellent fodder shrubs and also trees which can be used to conserve soil and water.It's important on improving their tolerance to abiotic stress in agricultural and forestry production.
     Many transgenic results showed that the transgenic plants carring betaine aldhyde dehydrogenase(BADH) gene could improve their tolerance to drought or salt stress. 4-coumarate:CoA ligase(4CL) is the key enzyme in the process of lignin synthesis. Transgenic plants with antisense 4CL gene reduced the lignin content.In this paper,the BADH & antisense 4CL genes were selected as objective genes.The pBI121-xylA-BADH plant expression vector with xylose being the selective agent was built.Another plant expression vector named antisense 4CL-BADH was built too.We expect to use gene engineering to improve the characters of Lespedeza in the aspect of the lignin content and abiotic resistance.Lespedeza bicolor Turcz.from America which has abundant harvest was selected as the research object.The high frequency regeneration system of L.bicolor was optimized.L.bicolor genetic transformation system based on xylose as the selective agent was built,and the marker free transgenic system was built too.The xylA-BADH genes and antisense 4CL-BADH genes were introduced into L.bicolor.Some functions of transgenic plants were assayed.The research findings will have theoretic & real significance on promoting the development of fodder industry which Lespedeza Michx.plants are used as fodder.
     The main research work and results are as follows:
     (1) The xylose isomerase(xylA) gene was cloned from E.coli.The pBI121-xylA-BADH plant expression vector with xylose being the selective agent was built. Another new plant expression vector without marker gene named antisense 4CL-BADH was built too.The plasmid DNA of pBI121-xylA-BADH and antisense 4CL-BADH were transformed into LBA4404,EHA105 individually.
     (2) During the building and optimization of regeneration system of L.bicolor,the main medium named MS~* with having a half of the macronutrients in MS medium was used.The optimal medium for adventitious buds regeneration of L.bicolor cotyledonary node was MS~* + 6-BA 1.0 mg.L~(-1) + NAA 0.2 mg.L~(-1) + sucrose 3%+ agar 6 g.L~(-1).The optimal medium for segment proliferation was MS~* + 6-BA 1.0 mg.L~(-1) + NAA 0.1 mg.L~(-1) + IBA 0.2 mg.L~(-1) + sucrose 3%+ agar 6 g.L~(-1).The optimal medium for rooting of L. bicolor plants in vitro was MS~* + NAA 0.1 mg.L"l + IBA 0.2 mg.Lt + sucrose 3%+ agar 6 g.L~(-1).
     (3) The agrobaeterium-mediated xylose selective system and marker free selective system of L.bicolor were studied.200~300 mg.L~(-1) Cefotaxine(Cef) could restrain the growing of agrobacterium during the adventitious buds regeneration of L.bicolor cotyledonary node.100 mg.L~(-1) Cef was enough to restrain agrobacterium during proliferation or rooting.
     When pBI121-xylA-BADH plasmid DNA was introduced into L.bicolor,3%xylose could be the selective agent at adventitious buds regeneration of cotyledonary node and 0.5%sucrose & 2.5%xyiose could be the selective agent at proliferation or rooting.
     The methods of introducing antisense 4CL-BADH into L.bicolor were studied,1g.L~(-1) betaine aldehyde chloride was the selective agent for adventitious buds regeneration of cotyledonary node.The mixture of 0.3 g.L~(-1) betaine aldehyde chloride & 0.7 g.L~(-1) NaCl was the selective agent for proliferation or rooting.
     (4) After PCR,PCR-Southern and Southern assays had been done,xylA-BADH and antisense 4CL-BADH were sure to be introduced into L.bicolor.
     The study on tolerance to salt stress showed that the xylA-BADH transgenic plants had the best tolerance and the antisense 4CL transgenic plants were the worst.The tolerance of antisense 4CL-BADH transgenic plants to salt stress was slight lower than wild-type plants. After being cultivated for some days at 1.0g.L~(-1) NaCl stress,the activity of betaine aldehyde dehydrigenase in antisense 4CL-BADH transgeinic plants was 2.5 times than that of in the wild-type plants.
     The stem slices of L.bicolor were observed by the histochemical staining of M(a|¨)ule responses,Weisner responses,Rosoff responses and fluorescence of lignin responses.The preliminary result showed that the transgeinic L.bicolor with antisense 4CL-BADH maybe could reduce the lignin content.The reliability of the assay methods about the antisense 4CL transgenic plants was discussed.
     In addition,the number of idioblastic cells in the stem slices of transgeinic L.bicolor with antisense 4CL-BADH was more than those of wild-type L.bicolor.After discussion of the relationship among idioblastic cells,tolerance to abiotic stress and betaine,the author thought the reason of transgenic plants having an increased number of idioblastic cells was that BADH was introduced and much betaine might be synthesized.
引文
[1]鲍晓明,高东,王祖农.木糖代谢工程菌的研究进展[J].生物工程学报,1998,14(4):355-358
    [2]邹德斌,宋占民,王萍.胡枝子制浆造纸的初步研究[J].纸和造纸,1996,2:40-41
    [3]陈永忠,谭晓风,David Claapham.木质素生物合成及其基因调控研究综述[J].江西农业大学学报,2003,25(4):613-617
    [4]陈建勋主编.植物生理学实验指导[M].华南理工大学出版社,2006,114-186
    [5]陈佳,陈晓阳,李云.二色胡枝子组织培养的研究[J].河北林果研究,2006,21(2):119-123
    [6]杜金友.胡枝子干旱胁迫下渗透物质变化以及外源基因SacB对美丽胡枝子的遗传转化研究[D].北京林业大学,2005,47-48
    [7]戴顺洪,李良材,丁月云等.水稻基因枪多基因转化研究[J].遗传学报,1998,25(4):345-350.
    [8]付光明,苏乔,吴畏等.转BADH基因玉米的获得及其耐盐性[J].辽宁师范大学学报,2006,29(3):344-347
    [9]郭利勇,陈双臣,刘爱荣.Ac/Ds转座子及其作为插入序列标签的应用[J].安徽农业科学,2008,36(1):146-147,153
    [10]郭岩,张莉,曹守云等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究[J].中国科学(C辑),1997,27(2):151-155.
    [11]郭雪峰.边连全,付亮亮.甜菜碱在畜牧业上的应用研究[J].今日畜牧兽医,2007,3:49-50
    [12]龚学臣,季静,王萍等.苗龄与6-BA浓度对大豆子叶节丛生芽诱导的影响[J].吉林农业大学学报,2005,27(2):128-130.
    [13]侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理学通讯,1999.35:1-7
    [14]胡冬南,陈晓阳,李伟等.农杆菌介导BADH基因转化美丽胡枝子的研究[J].林业科学,2008,44(3):76-80
    [15]胡新生,韩一凡,邱有得.树木木质素含量的遗传变异研究进展[J].林业科学研究,1999,12(6):563-571
    [16]胡冬南.甜菜碱醛脱氢酶(BADH)基因转化美丽胡枝子的研究[D].北京:北京林业大学,2006,44-57
    [17]胡冬南,杜金友,陈晓阳等.美丽胡枝子再生体系的研究[J].北京林业大学报,2006,28(5):90-94.
    [18]霍云谦.张艳敏,郭北海.导入外源甜菜碱醛脱氢酶基因BADH对小麦盐旱抗性的影响[J]河北农业科学,2003,7(1):1-3
    [19]靳志亮,康生贵,孟万明.优良牧草--二色胡枝子[J].河北畜牧兽医,2001,VOL17,NO5:35
    [20]贾彩红,赵华燕,王宏芝等.抑制4CL基因表达获得低木质素含量的转基因毛白杨[J].科学通报,2004,49(7):663-666
    [21]孔维文.邓仲香,王倩等.含双边界序列植物双价表达载体的构建[J].分子植物育种,2005,3(6):801-806
    [22]刘燕燕,曾新安,朱思明,孙卫东.甜菜碱的生理功能与药物活性[J].现代食品科技,2008(1):96-100
    [23]刘休圣,吕鹏怀,李辉.胡枝子对水土保持作用的研究[J].黑龙江水专学报,2000,27(2):24-28.
    [24]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987.4:1-7
    [25]刘惠荣,赵华燕,魏建华等.抑制CCoAOMT表达对烟草木质素生物合成的影响[J].中国农业科学,2002.35(8):921-924
    [26]刘国花.盐胁迫对豌豆幼苗生理指标的影响[J].湖北农业科学,2007(5):366-368.
    [27]李育阳主编.基因表达技术[M].北京:科学出版社,2001.168-169.
    [28]李新梅,孙丙耀,谈建中.甜菜碱与植物抗逆性关系的研究进展[J].农业科学研究,2006,27(3):66-69
    [29]李妍,张秀玲.甜菜碱在盐生植物中的作用[J].安徽农业科学,2007,35(8):2220-2221
    [30]李新梅,孙丙耀,谈建中,贾俊丽.根施甜菜碱对盐胁迫下桑树幼苗生理生化反应的影响[J].蚕业科学,2006,32(3):414-417
    [31]林栖凤.耐盐植物研究[M].北京:科学出版社,2004,8:11-12
    [32]梁峥,骆爱玲,赵原.干旱和盐胁迫诱导甜菜叶中的甜菜碱醛脱氢酶的积累[J].植物生理学报,1996,22(2):161-164.
    [33]骆爱玲,刘家尧,马德钦等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,45(18):1953-1956
    [34]刘志,袁晓铃,张天真.获得多价转基因作物的策略[J].遗传,2001.23(2):182-186.
    [35]赖荣昆.二色胡枝子的组培快繁技术研究[D].北京:北京林业大学,2002,1-42
    [36]潘侠,祁永会,孙留彬.胡枝子资源的开发展望[J].特种经济动植物,2002,2:15-18
    [37]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001.43(8):771-779
    [38]孙秀殿,李纯丽,张峰下.胡枝子的栽培利用[J].经济植物,1999,2:33-35
    [39]孙耀中,东方阳,陈受宜等.盐胁迫下转甜菜碱醛脱氢酶基因水稻幼苗耐盐生理的研究[J].华北农学报,2004,19(3):38-42
    [40]孙耀中,东方阳.旱作转BADB基因水稻开花后根系衰老生理特性研究[J].干旱地区农业研究,2007,25(4):221-224.
    [41]谭文澄,戴策刚主编.观赏植物组织培养技术[M].北京:中国林业出版社,2001,114-115.
    [42]王平,温玉注,张晓梅.胡枝子水流调节林带保持水土效益研究[J].黑龙江水利科技,2000,1:24-27.
    [43]王威.吴立军.胡枝子属植物化学成分及药理活性研究进展[J].中草药,2000,31(2):144-146
    [44]王关林,李铁松,方宏筠等.番茄转果聚糖合酶基因获得抗寒植株[J].中国农业科学,2004,37(8):1193-1197
    [45]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:64-65
    [46]王志敏.高等植物的果聚糖代谢[J].植物生理学通讯,2000,36(1):71-76
    [47]王淑慧.NaCl胁迫下甘菊甜菜碱的积累及其合成酶基因片断的克隆与转录表达[D].北京:北京林业大学硕士论文,2006,17-24
    [48]王兴春.杨长登.转基因植物生物安全标记基因[J].中国生物工程杂志,2003,23(4):19-22
    [49]韦正乙.利用木糖选择系统获得HAL1转基因百脉根(Lotus cirniculatus)植株及耐盐性鉴定[D].东北师范大学硕士学位论文,2007,1-4
    [50]吴玉玲.饲料中甜菜碱的营养生理功能及在养猪生产上的应用[J].畜禽业,2007,No219:8-11
    [51]奚同行,林圣玉.胡枝子的开发利用价值和发展前景[J].中国水土保持,1995,2:18-22
    [52]杨明爽.优良饲草资源--多花胡枝子[J].草与畜杂志,1997,2:38
    [53]杨晓玲,郭守华,杨晴等.转BADH基因水稻幼苗抗旱性研究[J].华北农学报,2007,2293):60-64.
    [54]杨晓玲.东方阳,孙耀中等.转BADH基因水稻幼苗抗盐的若干生理生化反应[J].河北师范大学学报,2006,20(4):1-4
    [55]闫新甫主编.转基因植物[M].北京:科学出版社,2003,83-92
    [56]岳建雄,孟钊红,张炼辉等.以甘露糖作为选择剂的棉花遗传转化[J].棉花学报,2005.17(1):3-7
    [57]张士功,高吉寅.宋景芝.外源甜菜碱对盐胁迫下小麦幼苗体内儿种与抗逆能力有关物质含量以及钠钾吸收和运输的影响[J].植物生理学通讯,2000,36:23-26
    [58]张亚冰,刘崇怀,潘兴等.盐胁迫下不同耐盐性葡萄砧木丙二醛和脯氨酸含量的变化[J].河南农业科学,2006(4):84-86
    [59]张月民,夏萍,于连华等.胡枝子的育苗及造林技术[J].中国林副特产,1998,2:22-24.
    [60]赵艳,王慧中,于彦春等.转基因植物中标记基因的安全性新策略[J].遗传,2003,25(1):119-122
    [61]赵华燕.张景昱,刘惠荣等.抑制COMT与CCoAOMT调控植物木质素的生物合成[J].科学通报,2002,47(8):604-607
    [62]赵博生,衣艳君,刘家尧.外源甜菜碱对干旱、盐胁迫下的小麦幼苗生长和光合功能的改善 [J].植物学通报,2001,18:378-380
    [63]Amthor JS.Effciency of lignin biosynthesis:a quantitative analysis[J].Annuls of Botany,2003,91:673-695.
    [64]Abbott JC,Barakate A,Pin,con G,et al.Simultaneous suppression of multiple genes by single transgenes.Down-regulation of three unrelated lignin biosynthetic genes in tobacco[J].Plant Physiology.2002,128:844-853
    [65]Anna Haldrup,Steen Guldager Petersen,Finn Thyge Okkels.The xylose isomerase gene from Thermoanaerobacterium thermo sulfurogenes alloes effective selection of transgenic plant cells using D- xylose as the selection agent[J].Plant Molecular Biology,1998,37:287-296.
    [66]Andrew J Cairns.Fructan biosynthesis in transgenic plants[J].Journal of Experimental Botany,2003,54(382):549-567
    [67]Allison G,Gough K,Rogers L.Asuicide vector for allelic recombination involving in the cyanobacterium Synechococcus PCC6301[J].Molecular & General Genetics,1997,255:392 -399
    [68]Baucher M,Monties B,Van Mon M,et al.Biosyntensis and genetic engineering of lignin[J].Critical Reviews in Plant Sciences,1998,12(2):125-197
    [69]Baueher M,Andree M,Vailhe B.Down- regulation of einnamoyl alcohol dehydrogenase in transgenie aifalfa(Medicago sativa L.)and the effect on lignin composition and digestibility[J].Plant Molecular Biology,1999,39:437-447
    [70]Boerjan W,Ralph J,Baueher M.Lignin biosynthesis[J].Annual Review of Plant Biology,2003,54:519-546.
    [71]Bate NJ,Orr J,Ni W-T,et al.Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis[j].Proceedings of the National Academy of Sciences of the USA,1994,91:7608-7612.
    [72]Baucher M,Chabbert B,Doorsselaere J Van.Higher extractability of lignin in poplar(Populus tremula X P.alba) by reducing cinnamyl alcohol dehydrogenase activity.In:Ahuja MR,Boerjan W,and Neale DB(eds) Somatic Cell Genetics and Molecular Genetics of Trees[M].Kluwer Academic Publishers,1996a,153-158.
    [73]Baucher M,Chabbert B,Pilate G,et al.Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar[J].Plant Physiology,1996b,112:1479-1490.
    [74]Bell-Lelong DA,Cusumano JC,Meyer K,and Chapple C.Cinnamate-4-hydroxylase expression in Arabidopsis.Regulation in response to development and the environment[J].Plant Physiology,1997,113:729-738.
    [75]Borevitz JO,Xia Y,.Blount J,Dixon RA,Lamb C.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].Plant Cell,2000,12:2383-2394.
    [76]Blount JW,Masoud S,Summer LW,et al.Overexpression ofcinnamate 4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cell suspension cultures[J].Planta,2002,214:902- 1000
    [77]Bennetzen J L.Transposable elements,gene creation and genome rearrangement in flowering plants[J].Current Opinion in Genetics & Development,2005,15:621-627
    [78]Boscarioi R.L,AImeida W.A.The use of the PMl/mannose selection system to recover transgenic sweet orange plants[J].Plant Cell,2003,22(2):122-128
    [79]Christensen J H,Banw GS Welinder K G.Purification and characterization of peroxidases correlated with lignification in poplar xylem[J].Plant Physiology,1998,118:125-135
    [80]Chabannes M,Barakate A,Lapieme C,et al..Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous downregulation of cinnamoyl CoA reductase(CCR) and cinnamyl alcohol dehydrogenase(CAD) in tobacco plants[J].Plant Journal,2001,28:257-270.
    [81]Cabane M,Pireaux J-C,Leger E,et al.Condensed lignins are synthesized in poplar leaves exposed to ozone[J].Plant Physiology,2004,134:586-594.
    [82]Campbel I M M,Sederoff R R.Variation in Lingnin content and composition mechanisms of control and implications for the genetic improvement of plants[J].Plant Physiology,1996,110(1):3-13
    [83]Chiang VL,and Funaoka M.The difference between guaiacyl and guaiacyl-syringyl lignins in their reponses to kraft delignification[J].Holzforschung,1990,44:309-313.
    [84]Craig NL,Nash HA.E.coil integration host factor binds to specific sites in DNA[J].Cell.1984,39(3):707-716
    [85]Christou p,swain W F.Co-transformation frequencies of foreign genes in soybean cell cultures[J].TAG Theoretical and Applied Genetics,1989,79(2):337-341
    [86]Crowe J H,J F Carpenter and L M Crowe.The role of vitrification in aninydrobiosis[J].Annual Review of Physiology,1998,60:73 -103
    [87]Cairns AJ,Pollock CJ,Gallagher JA,Harrison J.Fructans:synthesis and regulation.In:Leegood RC,Sharkey TD,von Caemmerer S(eds) Advances in Photosynthesis,Phyotosynthesis[M]:Physiology and Metabolism.2000,9:301-318
    [88]Douglas C,Hoffmann H,Schulz Wet al.Structure and elicitor or u.v-light-stimulated expression of two 4-coumarate:CoA ligase genes in parsley[J].EMBO,Journal,1987,6(5):1189-1195
    [89]Dale EC,Ow DW.Gene transfer with subsequent removal of the selection gene from the host genome[J].Proceedings of the National Academy of Sciences of the USA,1991,23,10558 -10562
    [90]Elena Z,Chartes S,Peter M.lntrachromosomal recombination between att P regions as a tool to remove selectable marker genes from Tobacco transgenes[J].Nature Biotechnology,2000,18:442-445
    [91]Ebinuma H,Sugita K,Matsunaga E et al.Principle of MAT vector[J].Plant Biotechnology,1997,14:133-139.
    [92]Franke R,McMichael C M,Meyer K et al.Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5- hydroxylase[J].Plant Journal,2000,22(3):223-234
    [93]Guo D,Chen F,Dixon RA.Monolignoi biosynthesis in microsomal preparations from lignifying stems of alfalfa(Medicago sativca L.)[J].Phytochemistry.2002,61:657-667.
    [94]Grima-Pettenati J,Goffner D.Lignin genetic engineering revisited[J].Plant Science,1999,145:51-65.
    [95]Grumet R,Hanson A D.Genetics exidence for an osmoregulary function of glycinbetaine accumulation in barley[J].Plant Physiology,1986,13:353-364
    [96]Gray-Mitsumune M,Molitor EK,Cukovic D,Carlson JE and Douglas CJ.Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar[J].Plant Molecular Biology,1999,39:657-669.
    [97]Goujon T,Sibout R,Eudes A et al.Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana[J].Plant Physiology and Biochemistry,41(8):677-687
    [98]Gough KC,Hawes WS,Kilpatrick J.Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase:a novel enzyme-based selectable marker for plant transformation[J].Plant Cell Reports,2001,20:296-300
    [99]G.-X.Jia,Z.-Q.zhu,F.-Q.Chang et al.Transformation of tomato with the BADH gene from Atriplex improves salt tolerance[J].Plant Cell Reports,2002,21:141-146
    [100]Hayashi h,Alia.Transformation of Arabidopsis thaliana with the coda gene for choline oxidase accumulation of glycinebetain and enhanced tolerance to salt and cold stress[J].Plant Journal,1997,12(1):133-142
    [101]Hoffmann L,Maury S,Bergdoll M,Thion L,Erard M,Legrand M.Identification of the enzymatic active site of tobacco caffeoyl-coenzyme A O-methyltransferase by ite-directed mutagenesis[J].Journal of Biological Chemistry,2001,276:36831-36838.
    [102]Hoffmann L,Maury S,Martz F,Geoffiey P,Legrand M.Purification,cloning and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism[J].Journal of Biological Chemistry,2002,278:95-103.
    [103]Hu W J,Kawaoka A,Tsai C J.Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase gene in aspen(Populus tremuloides)[J].Proceedings of the National Academy of Sciences of the USA,1998,95:5407-5412
    [104]Hu WJ,Handing S A,Lung J,et al.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J].Nature Biotechnology,1999,17:808-812.
    [105]Handing SA,Leshkevich J,Chiang VL,Tsai C-J.Differential substrate inhibition couple skinetically distinct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in quaking aspen[J].Plant Physiology,2002,128:428-438.
    [106]Hahlbrock K and Scheel D.Physiology and molecular biology of phenylpropaniod metabolism.Ann Rev Plant Physio[J].Plant Molecul Biology,1989,40:347-369
    [107]Heath R,Huxley H,Stone B.cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial(Lolium perenne)[J].Journal Plant Physiology,1998,153:649-657
    [108]Halpin C,Knight ME,Foxon GA et al.Manipulation of lignin quality by down-regulation of cinnamyl alcohol-dehydrogenase[J].Plant Journal,1994,6:339-350.
    [109]H Daniell,B Muthukumar,S B Lee.Marker free transgenic plants:engineering the chloroplast genome without the use of antibiotic selection[J].Current Genetics,2001,39(2):109-116
    [110]He Zhengquan,Fu Yaping,Si Hunmin.Phosphomannose-isomerase gene as a selectable marker for rice transformation via Agrobacterium[J].Plant Science,2004,166,17-22
    [111]Houghton JD,Turner L,Brown SB.Biosynethis of ALA in Cyanidium caldarium characterization of tRNA-glu,ligase,dehydrogenase and GSA-AT[J].Carlsberg Res Commun,1988,54:131-143
    [112]Hu W,Cheng CL.Expression of Aequorea green fluorescent protein in plant cells[J].FEBS Letters,1995,369:331-334
    [113]Haseloff J,Amos B.GFP in plants[J].Trends in Genetics,1995,11:328-329
    [114]Haldrup A,Petersen SG,Okkels FT.Positive selection:a plant selection principle based on xylose isomerase,an enzyme used in the food industry[J].Plant Cell Reports,1998,18:76-81
    [115]Hendry GF,Evolutionary origins and natural fractions of fructans:a climatological,biogeographic and mechanistic appraisal[J].New Phytologist,1993,123:3-14
    [116]Ipelcl Z,Ogras T,Altinkut A.Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar[J].Plant Biotechnology,1999,16:381-387
    [117]Ingrid J Vereyken,J Albert van kuik,Toon H Evers,Pieter j Rijken and Ben de kruijff.Structural Requirements of the Fructan-Lipid Interaction[J].Biophysical journal,2003,84:3147-3154
    [118]Ingrid J Vereyken,,Vladimir Chupin,Folkert A Hoekstra et al.The Effect of Fructan on Membrane lipid organization and Dynamics in the Dry state[J].Biophysical Journal,2003,84(6):3759-3766
    [119]Jouanin L,Goujon T,de Nadai Vet al.Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity[J].Plant Physiology.2000,123(4):1363-1373.
    [120]Joos H-J,hahlbrock K.Phenylalanine ammonia-lyase in potato(Solanum tubersum L.):genomic complexity,structural comparison of two selected genes and modes of expression[J].European Journal of Biochemislry,1992,204:261-629
    [121]Jeroen Raes,Antje Rohde,Jφrgen Hoist Christensen et al.Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis[J].Plant Physiology,2003,133:1051- 1071
    [122]Joersbo M,Donaldson I,Kreiberg J.Analysis of mannose seletction used for transformation of beet[J].Molecular Breeding,1998,4:111-117
    [123]Joersbo M,Petersen SG,Okkels SG.Parameters interacting with mannose seletction employed for the production of transgenic sugar beet[J].Physiology Plant,1999,105:109-115
    [124]Joersbo M,Milckelsen JD,Brunstedt J.Relationship between promotor strength and transformation frequencies using mannose selection for the production of transgenic sugar beet[J].Molecular Breeding,2000,6:207-213.
    [125]Jocrsbo M,Okkels F T.A novel principle for the selection of transgenic plant cells:Positive selection[J].Plant Cell Reports,1996,16:219-221.
    [126]Koichi Sugita,Takehide Kasahara,Etsuko Matsunaga and Hiroyasu Ebinuma.A transformation vector for the production of marker-free transgonic plants containing a single copy transgene at high frequency[J].The Plant journal,2000,22(5):461-469
    [127]Kumar S,Dhingra A,Daniell H.Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confers enhanced salt tolerance[J].Plant Physiology,2004,136(1):2843-2854
    [128]Kajita S,Hishiyama,Tomimura Y,Katayama Y and Omori S.Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed[J].Plant Physiology,1997,114:871-879.
    [129]Kajita S,Katayama Y and Omori S.Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:coenzyme A ligase[J].Plant Cell Physioogyl,1996,37(7):957-965.
    [130]Kawaoka A,Kaothien P,Yoshida K,et al.Functional analysis of tobacco LIM protein Ntliml involved in lignin biosynthesis[j].Plant Journal,2000,22:289-301.
    [131]Kennedy MO,Botha FC,Burger J T.Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase[J].Plant Cell Reports,2004,22:684-690
    [132]Komari T,Hiei Y,Saito Y.Vector carrying two separate T-DNAs for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers[J].Plant Jounal,1996,10:165-174
    [133]Kerepesi I and Galiba G.Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J].Crop Science,2000,40(2):482-487
    [134]Lee D.Meyer K,Chapple C.et al.Down-regulation of 4-coumarate:CoA ligase(4CL)in Arabidopsis effect on lignin composition and implication for the control of monolignol biosynthesis[J].Plant Cell,1997,9:1985-1998
    [135]Li Aigeng,Yunko Osakabe,Chand Rashekhar P,et al.Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesic in loblolly pine[J].Plant Molecular Biology,1999,40:555-565
    [136]LILAIGENG,ZHOUYIHUA,CHENGXIAOFEI,et al.Combinatorialmodification of multiple lignin traits in trees through multiple cotransformation[J].PNAS,2003,100:4939-4944.
    [137]Lu F,Raiph J.Detection and determination of p-coumaroylated units in lignins[J].Journal of Agricultural and Food Chemistry,1999,47:1988-1992.
    [138]Lu F,Ralph J.Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf[J].Chemical Communications,2002,(1):90-91
    [139]Lindermayr C,Moilers B,Fliegmann J,et al.Divergent members of a soybean(Glycine max L.)4-coumarate:coenzyme A ligase gene family[J].European.Journal of Biochemistry,2002,269:1304-1315.
    [140]Lapierre C,Pollet,Petit-Conil M,et al.Structural alteration of lignin in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyl- transferase activity have an opposite impact on the efficiency of industrial kraft pulping[J].Plant Physiology,1999,119:153-163.
    [141]Lu H.J.,Zhou X.R.,Gong Z.X.,and U padhyaya N.M.,2001,Geneation of selectable marker-free transgenic rice using a double right-border(DRB)binary vector[J],Australian Journal of Plant Physiology,28(3):241-248
    [142]Meyermans H,Morreel K,Lapierre C.Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down- regulation of caffcoyl-coenzyme A Omethyitransferase,an enzyme involved in lignin biosynthesis[J].Journal of Biological Chemistry,2000,275:36899-36909
    [143]Meyer K,Shirley AM,Cusumano JCet al.Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis[J].Proceedings of the National Academy of Sciences of the USA,1998,95:6619-6623.
    [144]Marita JM,Ralph J,Hatfield RD,Chapple C.NMR characterisation of lignin in Arabidopsis altered in the activity of ferulate 5-hydroxylase[J].Proceedings of the National Academy of Sciences of the USA,1999,96:12328-12332
    [145]Nilsson O,Little CHA,Sandberg G,Olsson O.Expression of two heterologous promoters,Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S,in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy[J].Plant Molecul Biology,1996,31:887-895.
    [146]Negrotto D,Jolley M,Beer S.The use of phosphomannose isomerase as a seleetable marker to recover transgenic maize plants(Zea mays L.)Via Agrobacterium transformation[J].Plant Cell Reports,2000,19(8):798-803
    [147]O'Connell A,Holt K,Piquemal J,et al.(2002).Improved paper pulp from plants with suppressed cinnamoyI-CoA reductase or cinnamyl alcohol dehydrogenase[J].Transgenic Research,2002,11:495-503.
    [148]Pinion G,Chabannes M,Lapieme C et al.Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-O-methyltransferase 1 and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene,consequences for plant development and iignin synthesis[J].Plant Physiology,2001a,126:145-155.
    [149]Pinion G,Maury S,Hoffmann L et al.Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth[J].Phytochemistry,2001b,57:1167-1176.
    [150]Piquema J,Lapieme C,Myton K,et al.Down-regulation of Cinnamoyl-CoA Reduetase induces significant changes of lignin profiles in transgenic tobacco plants[J].Plant Journal,1998,13(1):71-83
    [151]Pawan K.Jaiwal,Lingaraj Saboo,N.Dolendro Singh and Rana P.Singh.Strategies to deal with the concern about marker genes in transgenie plants:Some environment friendly approaches[J].CURRENT SCIENCE,2002,83(2):128-136
    [152]Rhodes D,Hansun A D.Quaternary ammonium and tertiary sulfoninm compounds in higher plants[J].Annu Rev Plant Physiol Plant Mol Biol,1993,44:357-384
    [153]RITSEMA T,SMEEKENS S C M..Engineering fructan metabolism in plants[J]Journal of Plant Physiology,2003,160(7):811-820
    [154]Rogers LA,Campbell MM.The genetic control of iignin deposition during plant growth and development[J].New phytologist,2004,164:17-30
    [155]Rosier J,Krekel F,Amrhein N.Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity[J].Plant Physiology,1997,113:175-179.
    [156]Richardson A,Stewart D,McDougall G L.Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of sitka spruce(Pices sitchensis)[J].Planta,1997,203:35-43
    [157]Samaj J,Hawkins S,Lauvergeat V et al.Immunolocalization of cinnamyl alcohol dehydrogenase 2(CAD2) indicates a good correlation with cell-specific activity of CAD2promoter in transgenic poplar shoots[J].Planta,1998,204:437-443.
    [158]Sibout R,Baucher M,Van Doorsselaere J et al.Expression of a poplar ferulate-5-hydroxylase in Arabidopsis thaliana[J].Plant physiology and biochemistry,2002,40:1087-1096
    [159]Subramniam R,Reinold S,Molitor EK,Douglas CJ.Structure,inheritance,and expression of hybrid poplar(Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes[J].Plant Physiology,1993,102:71-83
    [160]Sakamoto A,Murata N.Genetic engineering of glycinebetaine synthesis implants current status and implications for enhancement of stress tolerance[J].Journal of Experimental Botany,2000,51:81-88
    [161]Sakamoto A,Murata N.The role of glycine betaine in protection of plants from stress clues from transgenic plants[J].Plant Cell and Evironment,2002,25:163-171
    [162]SAKAMOTO A,MURATA N.The role of glycine betaine in the protection of plants from stress:clues from transgenic plants[J].Plant,Cell and Environment,2002,25:163-171.
    [163]Stewert R C,Bewey J D.Lupid peroxidation associated with accelerated aging of soybean axes[J].Plant Physiology,1950(65):245-245.
    [164]Shashi Kumar,Amit Dhingra and Henry Daniell.Plastid-Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells,Roots,and Leaves Confers Enhanced Salt Tolerance[J].Plant Physiology,2004,136:2543-2554.
    [165]Shunichi Kosugi and Yuko ohashi.Constitutive E2F expression in tobacco plant exhibits altered cell cycle control and morphologicall change in cell type-specific manner[J].Plant Physiology,2003,132(4):2012-2022.
    [166]Tamaguone L,Merida A,Pair A et al.The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco[J].Plant Cell,1998,10:135-154.
    [167]Vladimir Pelicic,Jean-Marc Reyrat and Brigitte Gicquel.Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria[J].Journal of Bacteriology,1996,178(4):1197-1199
    [168]Wang N and P S Nobel.Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti[J].Plant physiology,1998,116:709-714
    [169]Wang AS,Evans RA.A mannose selection system for production of fertile transgenic maize plants from protoplasts[J].Plant Cell Reports,2000,19:654-660
    [170]Wright M,Dawson J,Dunder E.Efficient biolistic transformation of maize(Zea mays L.)and wheat(Tricum aestivum L.)using the phosphomannse isomerase gene,pmi,as the selectable marker[J].Plant Cell Reports,2001,20:429-436
    [171]Whetten R W,Sederoff R R.Phenylalnine ammonia-lyase from loblolly pine.purification of the enzyme and isolation of complementary DNA clones[J].Plant Physiology,1992,98:380-386.
    [172]Whetten P,,Sederoff R.Lignin biosynthesis[J].The Plant Cell,1995,7:1001-1013.
    [173]Whetten R W,Mackay J J,Sedleroff R R.Recent advances in understanding lignin biosynthesis[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:585-609
    [174]Yahiaoui N,Masque C,Corbiere H and Boudet AM.Comparative efficiency of different constructs for down regulation of tobacco cirmamyl alcohol dehydrogenase[J].Phytochemistry,1998a,49(2):295-306.
    [175]Yahiaoui N,Masque C,Myton KE,Negrel J and Boudet AM.Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignin of transgenic tobacco plants[J].Planta,1998b,204:8-15.
    [176]Zhong RQ,Morrison WH,Himmelsbach DS.Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J].Plant Physiology,2000,124:563-578
    [177]Zhong R-Q,Morrison WH Ⅲ,Negiel J,Ye Z-H Dual methylation pathways in lignin biosynthesis[J].Plant Cell,1998,10:2033-2046.
    [178]Zuo J,Niu QW,Chua NH.An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants[J].Plant Journal,2000,24(2):265-273
    [179]Zhang P.,Potrykus L,Puonti-Kaerlas J.Efficient production of transgenic cassava using negative and positive selection[J].Transgenic Research,2000,9:405-415.