水稻黄单胞菌遗传操作体系的建立及hrp基因和avrBs3/pthA家族基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae,Xoo)和水稻条斑病菌(Xanthomonas oryzae pv.oryzicola,Xooc)分别引起水稻白叶枯病(bacterial blight,BB)和水稻细菌性条斑病(baeterial leaf streak,BLS),在生产上造成水稻损失严重。这两种病原菌已成为水稻的两个模式病原菌。为精确和高通量地研究Xoo和Xooc的致病相关基因的功能、基因间相互作用以及调控,如hrp基因,即决定Xoo和Xooc在非寄主植物上激发过敏反应(hypersensitive response,HR)和在寄主植物上具有致病性(pathogenieity)的基因,本研究利用pK18mobGⅡ载体建立了一种基于单交换的基因定点插入突变体系和利用自杀性载体pKMS1建立一种基于负选择标记基因sacB的两次同源交换的无标记敲除技术。成功获得了水稻白叶枯病菌PXO99~A菌株的3个hrpF和4个hrcV插入突变体以及RS105的4个hrpF和4个hrcV插入突变体。RS105的hrcV,hrpF、hrpE、hpaB和hpa1的单基因敲除突变体,hpa1和hpa2、hpa1和hrpF、hrpE和hrpF以及hpaB和hrpF的双基因敲除突变体;hpaB、hpa1和hrpF及hpa2、hpa1和hrpF的三基因敲除突变体。多基因敲除技术的建立为研究水稻黄单胞菌致病相关基因的功能以及在致病过程中基因间相互作用奠定了遗传学基础。
     有证据表明水稻黄单胞菌都含有15个以上的avrBs3/PthA家族基因,它们具有几乎一样的5'端和3'端,不同的只是中间102 bp重复单元的重复数不同。本研究以avrBs3/pthA家族成员avrXa3的3'端含有核定位信号和酸性转录活化域的359bp的DNA片段构建探针,对中国菌系的白叶枯病菌和条斑病菌的基因组DNA进行Southern杂交分析,发现这两种病原菌的不同小种间所含有的avrBs3/pthA基因的拷贝数不同,有些条带在所有的小种中都存在,有些条带是某个小种所特有的。毒性弱的小种含有较少的avrBs3/pthA家族成员,毒性强的小种含有较多的avrBs3/PthA家族成员和较多的102 bp重复单元的重复数。
     以相同的359 bp的DNA片段为探针进行菌落原位杂交,从条斑病菌RS105菌株的基因文库中筛选到35个阳性克隆,经过酶切和Southern杂交后归类为28个avrBs3/PthA基因。34个阳性克隆分别导入白叶枯病菌PXO99~A菌株中,进行水稻近等基因系苗期注射接种和成株期剪叶接种,发现含有p6、p8、p9、p10和p14的克隆在含有抗病基因Xa10的水稻品种IRBB10上产生特异性的HR(Hypersensitive response)反应。序列测定结果显示它们均是avrBs3/pthA家族的成员,分别命名为avr/pth6、avr/pth8、avr/pth9、avr/pth10和avr/pth14。蛋白质序列比对发现,这5个蛋白质的C端均缺少水稻白叶枯病菌avrBs3/pthA家族特有的SGsVGGTI残基。基因旁侧序列比较发现,水稻条斑病菌的avrBs3/pthA基因在启动子区存在特有的GTTTCTG序列,avr/pth14在启动子区和终止子区存在一段顺式元件,具有转座子转移的特征.将avr/pth6和avr/pth8的BamHⅠ片段替换avrXa3基因相应的BamHⅠ片段,构建为新的融合基因avrBre6和avrBre8,这两个融合基因仍可使PXO99~A菌株在IRBB10上具有无毒性。从水稻条斑病菌中克隆avrBs3/pthA家族基因还未见报道。本研究的结果揭示,Xooc中存在avrBs3/pthA家族基因,可能因为Xooc中某种因子的存在,限制了avrBs3/PthA基因的无毒性功能,这也可能是水稻缺少抗条斑病的主效抗性基因的原因。
     hrcV基因在动植物病原细菌中高度保守,基因产物是Ⅲ型分泌系统的组成蛋白,推测形成一环状结构,位于细菌的內膜。本研究通过单交换同源重组分别获得了PX099~A的PXV268、PXV917、PXV106和PXV452插入突变体以及RS105的RSV268、RSV917、RSV106和RSV452突变体;通过双交换同源重组获得了RS105的菌株hrcV缺失突变体RS105△hrcV.PXV268和RSV268突变体在非寄主上仍能激发HR,在水稻仍具有致病性.其余的hrV突变体PXV917、PXV106、PXV452和RSV917、RSV106、RSV452丧失了在水稻上的致病性和在非寄主上激发HR反应的能力.HrcV的突变体与Ⅲ型组分蛋白HrcN、HrcJ、HrcR以及TTSS效应分子Avr/pth28、AvrXa3和Avr/pth13的酵母双杂交结果揭示:HrcJ和HrcR蛋白主要与HrcV蛋白N端互作;HrcN蛋白主要与HrcV蛋白C端互作;HrcV蛋白C缺失可能影响AvrBs3/pthA蛋白的分泌。
     黄单胞菌通过hrp基因编码的Ⅲ型分泌系统(typeⅢsecretion system,T3SS)经Hrppilus和HrpF形成的translocon将T3SS效应分子转运至寄主细胞中从而导致寄主产生抗(感)病性.hpa1编码的蛋白Hpa1是一类harpin蛋白,可在非寄主烟草上激发HR,hpa2基因在各类黄单胞菌中高度保守,编码类似溶菌酶的蛋白.在本研究发现,ArpF和hpal基因单突变以及hpa1和hap2基因双突变后Xooc(RS105)仍可在非寄主烟草上产生HR以及在水稻上可形成水渍(water soaking)症状,但是症状不能有效扩展.hrpF和hpa1基因双突变体以及hrpF、hpa1和hpa2的三突变体則丧失了激发烟草产生HR反应和在水稻上形成水渍症状的能力。喷雾接种发现,hrpF突变体不能侵染水稻形成条斑症状,hpa1突变体以及hpa1和hpa2的双突变体能够形成短小的条斑。电镜扫描显示,hpa1和hrpF单突变体均可通过气孔侵染水稻,而hrpF和hpa1双突变体以及hrpF,hpa1和hpa2的三突变体則丧失了在水稻气孔细胞处聚集的能力。扫描电镜显示,hrpF和hpa1单突变以及hpa1和hpa2双突变体均能与水稻细胞互作,但hrpF和hpa1双突变体以及hrpF、hpa1和hpa2的三突变体則丧失了与水稻细胞互作的能力。这提示,hrpF和hpa1基因协同作用是水稻条斑病菌水渍症状形成的主要因素,或者HrpF和Hpa1是两个主要的转运蛋白;hrpF基因是水渍症状扩展的主要因子;hrpF和hpa1基因突变不影响病菌通过气孔侵染水稻,但因突变后影响其它效应分子与水稻细胞的互作从而影响了病害症状的扩展或者与水稻建立营养寄生关系的能力。hrpF和hpa1基因功能的分析将加快Xooc与水稻的互作研究,为从分子水平解析条斑病水渍症状的形成机制奠定了基础。
     hpaB和hrpE基因XooC在水稻上致病性和烟草上HR反应所必需的。hrpB和hrpE基因突变,則Xooc丧失了在烟草上激发HR的能力和在水稻上的致病性。hpaB和hrpF双突变体仍能使XooC保持在烟草上的HR反应,但丧失了在水稻上的致病性.hrpF、hpaB和hpa1三突变体丧失了激发烟草HR应的能力和在水稻上的致病性。突变体与水稻愈伤细胞的互作结果显示:hpaB突变体以及hrpF和hpaB的双突变体都能够与水稻愈伤细胞互作,hrpF、hpaB和APa1的三突变体以及ArpE突变体丧失了与水稻愈伤细胞互作的能力。扫描电镜的结果显示:hrpE基因突变,Hrp plius装置不能够形成是致病性丧失的主要因素。HpaB可能特异性控制能够引起水渍症状的效应分子的分泌;不依赖HpaB分泌但经址HrpF转运进入植物细胞的某些(个)效应分子能够抑制烟草的HR反应;Hpa1是不经过HrpF进入植物细胞的一类Harpin蛋白。
     本研究获得了水稻白叶枯病菌PXO99~A菌株的三个hrpF突变体PXF322、PXF410和PXF744。三个突变体通过注射接菌在苗期水稻叶片中仍能够引起水渍状病斑和具有激发烟草产生HR反应的能力。通过剪叶接种成株期水稻结果发现,三个突变体丧失了在水稻叶片上引起白叶枯症状的能力,功能互补子能够恢复突变体在水稻上形成与野生型相似的病斑长度。以上结果证明,Xoo的hrpF是影响水稻白叶枯病菌致病性的关键基因,但是hrpF的突变并不能完全阻止T3SS效应分子与寄主和非寄主植物的互作。
Xanthomonas oryzae pv.oryzae(Xoo) and Xanthomonas oryzae pv.oryzicola(Xooc) cause bacterial blight(BB) and bacterial leaf streak(BLS) in rice(Oryza sativa), respectively.BB is one of the most serious diseases in rice,and BLS is emerging in importance in rice.Xoo and Xooc are considered as the model pathogens of rice,which is taken as the model cereal crop.A high throughput and reliable strategy is required to study the function,interregulation,and interplays among repertoire genes in pathogenicity,such as the hrp genes which determine the ability of the bacterium to trigger hypersensitive response(HR) in non-host plants and pathogenicity in host rice.Here we reported a novel target inserted mutagenesis in Xoo and Xooc through single exchange by a vector pK18mobGⅡand knock-out mutagenesis for single and multiple genes in Xooc through two homologous crossover events mediated by a suicide vector pKMS1 containing a sacB gene.Successfully obtain three hrpF and four hrcV inserted mutant with different sites of the strain PXo99~A of Xoo and four hrpF and hrcV inserted mutant with different sites of the strain RS105 of Xooc;and 5 single(hrcV,hrpF,hrpE,hpaB,and hpal),4 double(hpaland hpa2,hpa1 and hrpF,hrpE and hrpF,and hpaB and hrpF),and 2 triple(hpaB,hpa1 and hrpF,and hpa2,hpa1 and hrpF) hrp knock-out mutants of Xooc have been constructed in this report.The results suggest that the established mutagenesis for the target inserted and nonmarker knock-out of single and multiple genes in Xooc mediated by the suicide vector pK18mobGⅡand pKMS1 provides a fundamental approach to the functional genomics of Xanthomonas oryzae and will facilitate the understanding of pathogenicity mechanisms of Xanthomonas oryzae in rice.
     Evidence indicates that each race of Xanthomonas oryzae contain more than 15 members of avrBs3/pthA family genes.They have almost identical the 5 'and 3' terminals. The difference is the repeat number of the 102 bp repeat unit among them.In this study,we use the 359 bp DNA fragment of 3' terminal of the avrXa3 gene,a member of avrBs3/pthA family genes containing nuclear localization signals and acidic transcription activation domain,as the probe for genomic DNA Southern blot analysis of the Chinese Xoo and Xooc strains.The copies of avrBs3/pthA gene are different in races of these two pathogens and found some bands in all races and some of the bands are specific in certain races. Weaker virulent races contain fewer members of avrBs3/pthA family genes,and high virulent races keep more member of avrBs3/pthA genes with more repeat numbers of the 102 bp repeat unit.
     Using the same 359 bp fragment as the probe for colony in situ hybridization,we obtained the 35 positive clones from genomic library of Xooc strains RS105,then classified as 28 avrBs3/pthA genes after digestion and Southern blotting analysis.34 positive clones were introduced into PXO99~A strain of Xoo individually.The conjugants of PXO99A with individual avrBs3/pthA genes were inoculated into leaves of rice seedlings and adult rice, respectively,by needless syringes and leaf-clipping methods.We found that PXO99~A containing p6,p8,p9,p10 and p14 positive clones could trigger a specific HR (Hypersensitive response) in the rice eultivar IRBB10 containing a resistance gene Xa10. Sequencing showed that the genes in those positive clones were the members of the avrBs3/pthA family,thus named as avr/pth6,avr/pth8,avr/pth9,avr/pth10 and avr/pth14, respectively.Protein sequence comparison revealed that these five proteins at C-terminals lacked SGSVGGTI residues which are indispensable in AvrBs3/PthA members of Xoo.The flanking sequences comparison revealed that a specific GTTTCTG sequence existed in the promoter region of these avrBs3/pthA genes of Xooc but in that of Xoo.Interestingly,a direct and repeat sequence of a transferable transposon existed in the promoter and terminator regions in the avr/pth14.The BamHI fragment of the avr/pth6 and avr/pth8 genes replacing the corresponding BamHI fragment of the avrXa3 gene resulted in two new fusion genes,avrBre6 and avrBre8.These two fusion genes could retain avirulence to PXO99~A on IRBB10,respectively,suggested that avrBre6 and avrBre8 were the avirulence genes matching Xa10 in rice.This is the first report on avirulence genes in Xooc.The results in this study revealed that Xoo strain exist members of avrBs3/pthA genes,and probably some particular virulence factors inhibit avirulence activities of specific avrBs3/pthA genes in rice.We postulated that might be the reason that rice lacks major resistance gene against bacterial leaf streak.
     The hrcV gene in plant and animal pathogenic bacteria are highly conservative and the product of hrcV gene is the component protein of typeⅢsecretion system(T3SS), suggesting to form a ring structure in the inner membrane of bacteria.In this study we obtained inserted mutants,PXV268,PXV917,PXV106 and PXV452,in PXO99~A strain and RSV268,RSV917,RSV106 and RSV452 in RS105 strain,respectively,through single homologous exchange method,and a deleted mutant RS105△hrcV through double homologous exchange method.PXV268 and RSV268 mutants still triggered HR on nonhost and retained pathogenicity on rice.The rest of hrcV mutant,PXV917,PXV106, PXV452,RSV917,RSV106,RSV452,lost pathogenicity on Rice and the ability of triggering HR response on nonhost tobacco.The yeast two-hybrid results demonstrated that the HrcV protein interacted with T3SS component proteins,HrcN,HrcJ and HrcR,and T3SS effector,Avr/pth28,AvrXa3 and Avr/pth13,respectively.Truncated HrcV assays displayed that the N-terminal of the HrcV protein interacted with HrcJ and HrcR proteins and the C-terminal did with HrcN.We proposed that the C-terminal deletion in the HrcV protein might affect the secretion of AvrBs3/pthA proteins into rice cells.
     T3SS effctors were secreted through the typeⅢsecretion system(T3SS) coding by the hrp genes of Xooc and then passed through the Hrp pilus and translocated into plant cells via HrpF translocon encoded by the hrpF gene,leading to resistance or susceptibility in rice.The hpal gene encodes a Harpin-like protein which elicits HR on non-host tobacco and the hpa2 gene is highly conserved in various Xanthomonas species and codes a protein similar to lysozyme.In this study we found that the single mutant of hrpF and hpa1 gene as well as the double mutant of hpa1 and hpa2 still triggered HR on tobacco and caused water soaking lesions on rice leaves but water soaking symptoms did not developed.The double mutant of the hrpF and hpa1 genes and the the triple mutant of the hrpF,hpa1 and hpa2 genes did not trigger HR on tobacco and form water soaking symptoms on rice.We also found that the hrpF mutant did not cause bacterial leaf streak symptom and the single mutant of the hpa1 gene and the double mutant of the hpa1 and hpa2 gene formed shorter leaf streak symptoms after inoculation by spraying the bacteria into the surface of rice leaves.Scanning electron microscope(SEM) revealed that the single mutant of the hpa1 or the hrpF gene infected rice through stomata,but the double mutant of the hpa1 and hrpF genes and the triple mutant of the hrpF,hpa1 and hpa2 genes lost the ability to infect rice through stomata and to multiply around stomata.The SEM also showed that the single mutant of the hrpF or hpalgene,the doubl mutant of the hpa1 and hpa2 genes interacted with rice callus cells,but the double mutant of the hrpF and hpa1 genes and the triple mutant of the hrpF,hpa1 and hpa2 genes lost interacting capabilities with callus cells.The results above suggested that the synergies function of the hpa1 and hrpF gene is the reason for formation of water soaking symptoms caused by Xooc,and possibly HrpF and Hpa1 are the two major translocators for release of plant liquids out of cells.We postulated that the hrpF gene is the key in determining the expansion of water soakin symptoms in rice and the hrpF and hpa1 genes control the bacteria to infect rice through stomata,but mutations in thoses genes would affect interactions of other T3SS effects with rice leading to reduction in development of bacterial leaf streak symptoms and nutrition parasitic relationships between Xooc and rice.Therefore,the elucidation of the function of the hrpF and hpa1 genes surely facilitate our understanding molecular mechanisms of formation of water-soaking symptoms in rice by the pathogen.
     The hpaB and hrpE genes are necessary for pathogenicity on rice and HR induction on tobacco.Double mutant of the hpaB and hrpF genes retained HR induction on tobacco but lost pathogenicity on Rice.The triple mutant of the hrpF,hpaB and hpa1 genes lost the pathogenicity on rice and HR induction on tobacco.The interactions between those mutants and rice callus showed:the single mutant of the hpaB gene and the double mutant of the hrpF and hpaB gene interacted with rice callus cells,but the triple mutant of the hrpF, hpaB and hpa1 genes and the mutant of the hrpE gene lost the ability to interact with rice callus cells.Scanning electronic microscope results showed that the hrpE mutation made the pathogen lose pathogenicity and not be capable to form Hrp pilus apparatus.Putatively, the HpaB protein specifically controlled the secretion of effectors which cause water soaking symptoms in rice.Some T3SS effectors,inhibiting the HR induction on tobacco by the pathogen,might be secreted in HpaB-independent manner,or translocated in HrpF-dependent manner into plant cells.The Hpa1(Harpin) protein might not be secreted into plant cells through the HrpF translocon.
     Three hrpF mutant,PXF322.PXF410 and PXF744,of Xoo strain PXO99~A were constructed in this study.The mutants still kept the ability to cause water soaking lesions in rice after they were inoculated into rice seedlings by an injection method and to elicit HR response on tobacco,but lost pathogenicity in adult rice when they were inoculated in rice by leaf-clip method.The hrpF gene could restore the ability of foaming bacterial blight symtoms in rice to the hrpF mutant.These results confirmed that the hrpF gene of Xoo is a critial gene in pathogenicity of the pathogen in rice.However,the mutation in the hrpF gene does not completely block the secretion of T3SS effectors into plant cells.
引文
1.Adhikari,T.B.,Mew,T.W.and Leach,J.E.(1999b) Genotypic and pathotypic diversity in Xanthomonas oryzae pv.oryzae in Nepal.Phytopathology,89,687-694.
    2.Adhikari,T.B.,Vera-Cruz,C.M.,Zhang,Q.,Nelson,RJ.,Skinner,D.Z.,Mew,T.W.and Leach,J.E.(1995) Genetic diversity of Xanthomonas oryzae pv.oryzae in Asia.Appl.Environ.Microbiol.61,966-971.
    3.Awoderu,V.A.,Bangura,N.and John,V.T.(1991) Incidence,distribution and severity of bacterial diseases on rice in West Africa.Trop.Pest Manag.37,113-117.
    4.Bradbury,J.F.(198,4) Genus Ⅱ.Xanthomonas Dowson.In:Bergcy's Manual of Systematic Bacteriology(Krieg,N.R.and Holt,J.G.,eds),pp.199-210.Baltimore:Williams & Wilkins.
    5.Bennetzen,J.L.,Zhang,O.and Wang,S.(2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice.Genes Dev.20,1250-1255.
    6.Dye,D.W.(1978) Genus Ⅸ.Xanthomonas Dowson 1939.NZJ.Agric.Res.21,153-177.
    7.Gossele,F.,Cruz,C.M.V.,Outryve,M.F.V.,Swings,J.and Ley,J.D.(1985) Differentiation between the bacteria causing bacterial blight(BB),baeterial leaf streak(BLS),and bacterial brown blotch on rice.Int.Rice
    8.Goto,M.(1992) Fundamentals of Bacterial Plant Pathology.San Diego:Academic Press.
    9.Hilaire,E.,Young,S.A.,Willard,L.H.,McGee,J.D.,Sweat,T.,Chittoor,J.M.,Guikema,J.A.and Leach,J.E.(2001) Vascular defense responses in rice:peroxidase accumulation in xylem parenchyma cells and xylemwall thickening.Mol.Plant-Microbe Interact.14,1411-1419.
    10.Ishiyama,S.(1922) Studies of bacterial leaf blight of rice.Report Imp.Agric.Stn.Konosu,45,233-261.
    11.Lee,K.S.,Rasabandith,S.,Angeles,E.R.and Khush,G.S.(2003)Inheritance of resistance to bacterial blight in 21 cultivars of rice.Phytopathology,93,147-152.
    12.Mew,T.W.(1987) Current status and future prospects of research on bacterial blight of rice.Annu.Rev.Phytopathol.25,359-382.
    13.Mew,T.W.,Alvarez,A.M.,Leach,J.E.and Swings,J.(1993) Focus on bacterial blight of rice.Plant Dis.77,5-12.
    14.Mizukami,T.and Wakimoto,S.(1969) Epidemiology and control of bacterial leaf blight of rice.Annu.Rev.Phytopathol.7,51-72.
    15.Moffett,M.L.and Croft,BJ.(1983) Xanthomonas.In:Plant Bacterial Diseases(Fahy,P.C.and Persley,GJ.,eds),p.393.New York:Academic Press.
    16.Noda,T.and Kaku,H.(1999) Growth of Xanthomonas oryzae pv.oryzae in planta and in guttation fluid of rice.Ann.Phytopathol.Soc.Japan,65,9-14.
    17.Noda,T.,Yamamoto,T.,Kaku,H.and Horino,O.(1996) Geographical distribution of pathogenic races of Xanthomonas Orvzae pv.Oryzae Japan in 1991 and 1993.Ann.Phytopathol.Soc.Japan,62,549-553.
    18.Ochiai,H.,Inoue,Y.,Hasebe,A.and Kaku,H.(2001) Construction and characterization of a Xanthomonas oryzae pv.oryzae bacterial articial chromosome library.FEMS Microbiol.Lett.200,59-65.
    19.Ogawa,T.,Busto,G.A.J.,Tabien,R.E.,Romero,G.O.,Endo,N.and Khush,G.S.(1991) Grouping of rice cultivars based on reaction pattern of Philippine races of bacterial blight pathogen Xanthomonas campestris
    20.Ou,S.H.(1972) Rice Diseases.Kew,Surrey:Commonwealth Mycological Institute.
    21.Ou,S.H.(1985) Rice Diseases.Kew,Surrey:Commonwealth Agricultural
    22.Raymundo,A.K..,Briones,A.M.Jr,Ardales,E.Y.,Perez,M.T.,Fernandez,L.C.,Leach,J.F.,Mew,T.W.,Ynalvez,MA.,McLaren,C.G.and Nelson,RJ.(1999) Analysis of DNA polymorphism and virulence in Philippine strains of Xanthomonas oryzae pv.oryzicola.Plant Dis.83,434-440.
    23.Reddy,A.P.K.,Mackenzie,D.R.,Rouse,D.I.and Rao,A.V.(1979) Relationship of bacterial leaf blight Xanthomonas oryzae severity to grain yield of rice Oryza sativa.Phytopathology,69,967-969.
    24.Ronald,P.and Leung,H.(2002) THE RICE GENOME.The most precious things are not jade pearls.Science,296,58-59.
    25.Shimamoto,K.and Kyozuka,J.(2002) Rice as a model for comparative genomics of plants.Annu.Rev.Plant Biol.53,399-419.
    26.Singh,D.V.,Banerjee,A.K.,Kishun,R.and Abidi,A.B.(1980) Effect of bacterial leaf streak on the quantitative and qualitative characters of rice.Indian J.Mycol.Plant Pathol.10,67-68.
    27.Swings,J.,Van Den Mooter,M.,Vauterin,L.,Hoste,B.,Gillis,M.,Mew,T.W.and Kersters,K.(1990) Reclassification of the causal agents of bacterial blight Xanthomonas campestris pathovar oryzae and bacterial
    28.Vauterin,L.,Hoste,B.,Kersters,K.and Swings,J.(1995) Reclassification of Xanthomonas.Int.J.Syst Bacteriol.45,472-489.
    29.Xie,G.,Sun,S.,Chen,J.,Zhu,X.,Chen,J.YeY.,Feng,Z.and Liang,M.(1990) Studies on rice seed inspection of Xanthomonas campestris pv.oryzicola:immunoradiometric assay.Chinese J.Rice Sci.4,127-132.
    30.Xu Z G(许志刚)Sun Q M(孙启明),Liu F Q(刘凤权),Chen z Y(陈志谊),Hu B S(胡白石)Guo Y H(郭亚辉),Liu L H(刘永峰),Liu H X(刘红霞).2004.Race Monitoring of Rice Bacterial Blight (Xanthomonas oryzae pv.oryzae)in China.Chinese J Rice Sci(中国水稻科学),18(5):469-472
    31.Guo Y H(郭亚辉),Xu z G(许志刚),Hu B S(胡白石),Shen X P(沈秀萍),Chen Z Y(陈志 谊),Li Y F(刘永峰).2004.Virulence Differentiation of Xanthomonas oryz ac pv.oryZ icola in Southern Region of China.Chinese J Rice Sci(中国水稻科学).18(1):83-85
    32.Xu Z G(许志刚),Qian J M(钱菊梅).Advances in control and eco2 logical research of bacterial streak of rice.Plant Quarantine,1995,9(4):239-244.(in Chinese)
    33.Shekhawat G S,Srivastava D N.Epidemiology of bacterial leaf streak of rice.A nn Phytopath Soc Jap,1972,38:7-34.
    34.Liang C Y(梁传永),U D C(李大春),Yi J P(易建平).Study on the virulent pattern of Ⅹ.oryzieola in China.J Nanjing A gric Univ(南京农业大学学报),1994,17(3):48-52.(in Chinese with English abstract)
    35.Nong X M(农秀美).Study on virulence difference of Ⅹ.oryzicola in Guangxi Auto2Region.Southwest Chma J A gric Sci(西南农业学报),1992,4(2):94-97.(in Chinese with English abstract)
    36.Xia Y H(夏怡厚),Lin W Y(林维英),Ceng o Y(陈藕英).Identification of strains of Ⅹ.oryzicola.J Fujiau A gric Univ(福建农业大学学报),1992,21(3):278-282.(in Chinese with English abstract)
    1. Adriana, G., D. R. Joseph, E. Y. Basmal. and D. W. Gabriel. 2005.Mutagenesis of all eight avr genes in Xanthomonas campestrid pv. campestris had no detected effect on pathogenicity,but one avr gene affected race specificity. Mol. Plant-Microbe Interact. 12:1306-1317
    2. Boucher, C. A., P. A. Bareris, A. Trigalet, and D. A. Demery. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 131:2449-2457.
    3. Chen, G. Y., X. M. Pan, J. S. Wang. 2001.Pathological and chemical characteristics of hrp mutants from Xanthomonas oryzae pv. oryzae produced by chemical mutagenesis. Acta Phytopathologia Sinica. 31(3): 199-207. (in Chinese)
    4. Chen, G., X. Zhang, X. Zhang, and J. S. Wang. 2000. Characterization of hrp mutants and their conjugates with hrp gene clones of Xanthomonas oryzae pv. oryzicola. J. Agric. Biotechnol. 8:117-122.
    5. Cianciotto, N. P., R. Long, B. I. Einsenstein, and N. C. Engleberg. 1988.Site-specific mutagenesis in Legionella pneumophila by allelic exchange using counterselectable colE1 vectors. FEMS Microbiol. Lett. 56:203-208.
    6. Choi, S, H., and J. E. Leach. 1994. Genetic manipulation of Xanthomonas oryzae pv. oryzae. International Rice Research Notes. 19(2):31-32
    7. da Silva, A. C., J. A. Ferro, F. C. Reinach, C. S. Farah, L. R. Furlan, R. B. Quaggio, C. B. Monteiro-Vitorello, M. A. Van Sluys, N. F. Almeida, L. M. Alves, A. M. do Amaral, M. C. Bertolini, L. E. Camargo, G. Camarotte, F. Cannavan, J. Cardozo, F. Chambergo, L. P. Ciapina, R. M. Cicarelli, L. L. Coutinho, J. R. Cursino-Santos, H. El-Dorry, J. B. Faria, A. J. Ferreira, R. C.Ferreira, M. L Ferro, E. F. Formighieri, M. C. Franco, C. C. Greggio, A. Gruber, A. M. Katsuyama, L. T. Kishi, R. P. Leite, E. G. Lemos, M. V. Lemos, E. C. Locali, M. A. Machado, A. M. Madeira, N. M. Martinez-Rossi, E. C. Martins, J. Meidanis, C. F. Menck, C. V. Miyaki, D. H. Moon, L. M. Moreira, M. T. Novo, V. K. Okura, M. C. Oliveira, V. R. Oliveira, H. A. Pereira, A. Rossi, J. A. Sena, C. Silva, R. F. de Souza, L. A. Spinola, M. A. Takita, R. E. Tamura, E. C. Teixeira, R. I. Tezza, M. Trindade dos Santos, D. Truffi, S. M. Tsai, F. F. White, J. C. Setubal, and J. P. Kitajima. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463.
    8. David, O. N., C. R. Pamela, and J. B. Adam. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7(5):303-324.
    9. Dnarmapuri, S., and R. V. Sonti. 1999. A transposon insertion in the gumG homologue of Xanthomonas oryzae pv. oryzae causes loss of extracellular polysaccharide production and virulence. FEMS Microbiol. Lett. 179:53-59.
    10. Dedonder, R. 1966. Levansucrase from Bacillus subtilis. Methods Enzymol. 8:500-505.
    11. Federico, K., B. M. Anke, I. Veronica, G. O. Cristian, I. Luis. 1999. New mobilizable vectors suitable for gene replacement in Gram-negative bacteria and their use in mapping of the 3'ene of the Xabthomonas campestns pv.campestris gum operon. Appl. Environ. Microbiol. 65: 278-282.
    12. Gay, P., D. Le Coq, M. Steinmetz, T. Berkelman, and C. I. Kado. 1985. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriol. 164:918-921.
    13. Goryshin, I.Y., Jendrisak, J., Homan, L.M., Meis, R. and Rezniko!, W.S. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18:97-100.
    14. Hirokazu ,O., I. Yasuhiro, T. Masaru, S. Aeni, and K. Hisatoshi. 2005. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ.39(4):275-287
    15. Huguet, E., Hahn, K., Wengelnik, K., and Bonas, U. 1998. hpaA mutants of Xanthomonas campestris pv. vesicatona are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Mol Microbiol 29:1379-1390.
    16. Jean, M. R., P. Vladimir, G. Brigitte, and R. Rino. 1998. Counterselectable markers:untapped tools for baterial genetics and pathogenesis. Infection And Immunity. Sept:4011-4017
    17. Lee, B. M., Y. J. Park, D. S. Park, H. W. Kang, J. G. Kim, E. S. Song, I. C. Park, U. H. Yoon, J. H. Hahn, B. S. Koo, G. B. Lee, H. Kim, H. S. Park, K. O. Yoon, J. H. Kim,C. H. Jung, N. H. Koh, J. S. Seo, and S. J. Go. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research. 33(2):577-586
    18. Liu, H. L., Z. Shuping, A. S. Mark, and P. D. Timothy. 2005. Pyramiding umarker deletions in Ralstonia solanacearwn shows that secreted proteins in addition to plant cell -wall-degrading enzymes contribute to virulence. Mol. Plant-Microbe Interact 12:1296-1305
    19. Long J Y(龙菊英), Zhang G Y(张桂英), Wang J S(王金生). 2006 Knock-out of pathogenicity-related genes in Xanthmonas oryzae pv. oryzicola and Xanthomonas oryzae pv. oryzae. Journal of Nanjing Agricultural University. 29(2):50-56
    20. Mongkolsuk, S., S. Rabibibhadana, R. Sukchavalit, and G. Vaughn. 1998. Construction and physiological analysis of a Xanthomonas oryzae pv. oryzae recA mutant. FEMS Microbiol. Lett. 169:269-275.
    21. Ray, S.K., R. Rajeshwari, and R.V. Sonti. 2000. Mutants of Xanthomonas oryzae deficient in general secretory pathway are virulent deficient and unable to secrete xylase. Mol. Plant Microbe Interact., 13:394-401.
    22. Reyrat et al. 1998. For a nice review of counterselectable markers. Infection Immunity 66: 4011-4017.
    23. Ried, J. L., and A. Collmer. 1987. An nptl-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239-246.
    24. Rossier, O., G. Van den Ackerveken, and U. Bonas. 2000. HrpB2 and HrpF from Xanthomonas are type Ill-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol Microbiol 38:828-838.
    25. Sarker, M. R., and G. R. Cornelis. 1997. An improved version of suicide vector pKNGlOl for gene replacement in gram-negative bacteria. Mol. Microbiol. 23:410-411.
    26. Simon, R. 1984. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol. Gen. Genet. 196:413-420.
    27. Simon, R., U. Priefer, and Punier, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gramnegative bacteria. Bio/Technology 1:784-791.
    28. Steinmetz, M., D. Le Coq, H. B. Djemia, and P. Gay. 1983. Analyse genetique de sacB, gevne de structure d'une enzyme sccre'te'e, la le'vane-saccharase de Bacillus subtilis Marburg. Mol. Gen. Genet. 191:138-144.
    29. Stewart, V., and Taylor, R. Modified from Maloy, S., 1996. Genetic Analysis of Bacterial Pathogens, CSHL Press, NY.
    30. Sugio, A., B. Yang, and F. F. White. 2005. Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 18:546-554.
    31. Sun, Q. H., wei. Wu, wei. Qian, J. Hu, R. X. Fang, and C. Z. He. 2003. High-quality mutant libraries of Xanthomonas oryzae pvaryzae and Xcanpestris pv.campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett. 226:145-50.
    32. Voelker, L. L., and K. Dybvig. 1998. Transposon mutagenesis. Methods Mol. Biol. 104:235-38.
    33. Zhang, X. Z., X. Yan, Z. L. Cui, Q. Hong, and S. P. Li. 2006. SmazF,* novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Research.
    34.No.9
    34. Zhu, W., M. M. Magbanua, F. F. White. 2000. Identification of two novel hrp-associated genes in the hrp gene cluster oi Xanthomonas oryzae pv. oryzae. Journal of Bacteriology. 182:1844-1853.
    1. Arlat, M., F.V. Gijsegem, J.C. Huet, J.C. Pemollet, CA Boucher, PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum, EMBO J. 13 (1994) 543-553.
    2. Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, van Dijk K, et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA 2000;97:4851-61.
    3. Alfano JR, Collmer A. Bacterial pathogens in plants: life up against the wall. Plant Cell 1996;8:1683-98.
    4. Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 2004;42:385-414.
    5. Bretz J, Losada L, Lisboa K, Hutcheson SW. Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol Microbiol 2002;45:397-409.
    6. Brito B, Aldon D, Barberis P, Boucher C, Genin S. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol Plant-Microbe Interact 2002; 15:109-19.
    7. Bu'ttner D, Bonas U. Common infection strategies of plantand animal pathogenic bacteria. Curr Opin Plant Biol 2003;6:312-9.
    8. Bu~ttner D, Gu~rlebeck D, Noel ID, Bonas U. HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type Ill-dependent protein secretion. Mol Microbiol 2004;54:755-68.
    9. Boucher, CA., F. Van Gijsegem, PABarberis, M. Arlat, C. Zischck,Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clusteredJf.Bacteriol.169 (1987) 5626-5632.
    10. Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G,Malnoe P,Broughton WJ,StaehelinC:NopL,aneffectorprotein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 2004,134:871-879.
    11. Blocker, A., N. Jouihri, E. Larquet, P. Gounon, F. Ebel, C. Parsot, PAllaoui, A. Allaoui, Structure and composition of the Shigella flexneri "needle complex", a part of its type III secreton, Mol. Microbiol. 39 (2001) 652-663.
    12. Bogdanove, AJ., S.V. Beer, U. Bonas, CA Boucher, A. Collmer, D.L. Coplin, GR. Comelis, H.C. Huang, S.W. Hutcheson, JJ. Panopoulos, F. Van Gijsegem, Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria, Mol. Microbiol. 20 (1996) 681-683.
    13. Blocker, A., K. Komoriya,S. Aizawa, Type III secretion systems and bacterial flagella: insights into their function from structural similarities, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 3027-3030.
    14. Chang JH, Urbach JM, LawTF,Arnold LW, HuA, Gombar S, et al. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci USA2005;102:2549-54.
    15. Chatterjee A, Cui Y, Chatterjee AK. Regulation of Erwinia carotovora hrpL(Ecc) (sigma-L(Ecc)), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon. Mol Plant-Microbe Interact 2002;15:971-80.
    16. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR,Chatterjee AK. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by control-ling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant-Microbe Interact 2003;16:1106-17.
    17. Celli, J., W. Deng, B.B. Finlay, Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside, Cell. Microbiol. 2 (2000) 1-9.
    18. Cornelis, GR., F. Van Gijsegem, Assembly and function of type III secretory systems, Annu. Rev. Microbiol. 54 (2000) 735-774.
    19. Coburn , J., D.W. Frank, Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system, Infect. Immun. 67 (1999) 3151-3154.
    20. Cunnac S, Boucher C, Genin S. Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearumJ Bacteriol 2004a; 186:2309-18.
    21. Daniell, SJ., N. Takahashi, R. Wilson, D. Friedberg, I. Rosenshine, F.P. Booy, R.K. Shaw, S. Knutton, G Frankel, S. Aizawa, The filamentous type III secretion translocon of enteropathogenic Escherichia coli, Cell. Microbiol. 3 (2001) 865-871.
    22. Dalai, S., P.I. Hanson, Membrane traffic: what drives the AAA motor? Cell 104 (2001) 5-8.
    23. Deng ,W.L., G Preston, A. Collmer, CJ. Chang, H.C. Huang, Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants, J. Bacteriol. 180 (1998) 4523-4531.
    24. Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmentalmicroorganisms. Nat Rev Microbiol 2004;2:414-24.
    25. Escolar L, van den Ackerveken G, Rossier O, Pieplow S,Bonas U.Typelll secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBsl and AvrBsT. Mol Plant Pathol 2001;2:287-96.
    26. Feldman MF, Cornells GR. The multitalented type III chaperones: all you can do with 15kDa. FEMS Microbiol Lett 2003;219:151-8.
    27. Fields, KLA., DJ. Mead, GA. Dooley, T. Hackstadt, Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development, Mol. Microbiol. 48 (2003) 671-683.
    28. Foultier, B., P. Troisfontaines, S. Muller, F.R. Opperdoes, GR. Comelis, Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phytogeny analysis of type III secretion systems, J. Mol. Evol. 55 (2002) 37-51.
    29. Fouts DE, Badel JL, Ramos AR, Rapp RA, Collmer A: A Pseudomonas syringae pv. tomato DC3000 Hip (Type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato Mol Plant Microbe Interact 2003,16:43-52.
    30. Forsberg, A., I. Bolin, L Norlander, H. Wolf-Watz, Molecular cloning and expression of calcium-regulated, plasmid-coded proteins of Y. pseudotuberculosis, Microb. Pathog. 2 (1987) 123-137.
    31. Frank, D.W.,The exoenzyme S regulon of Pseudomonas aeruginosa,Mol. Microbiol. 26 (1997) 621-629.
    32. Frederick RD, Majerczak DR, Coplin DL. Erwinia stewarti WtsA, a positive regulator of pathogenicity gene expression, is similar to Pseudomonas syringae pv paseolicola HrpS. Mol Microbiol 1993;9:477-85.
    33. Galan, JJ2., Salmonella interactions with host cells: type III secretion at work, Annu. Rev. Cell Dev. Bid. 17 (2001) 53-86.
    34. Genin S, Gough CL, Zischek C, Boucher CA. Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. Mol Microbiol 1992;6:3065-76.
    35. Gophna, U., E.Z. Ron, D. Graur, Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events, Gene 312 (2003) 151-163.
    36. Guttman DS, Greenberg JT. Functional analysis of the type III effectors AvrRpt2 and AvrRpml of Pseudomonas syringae with the use of a single-copy genomic integration system. MolPlant-Microbe Interact 2001;14:145-55.
    37. Heesemann, J., U. Gross, N. Schmidt, R. Laufs, Immunochemical analysis of plasmid-encoded proteins released by enteropathogenic Yersinia sp. grown in calcium-deficient media, Infect. Immun. 54(1986)561-567.
    38. He, S., H. Huang, A. Collmer, Pseudomonas syringae pv. syringae harpin^ : a protein that is secreted via the Hrp pathway and elicits Pss the hypersensitive response in plants, Cell 73 (1993) 1255-1266.
    39. He, S.Y., Q. Jin, The Hrp Pilus: learning from flagella, Curr. Opin.Microbiol. 6 (2003) 15-19.
    40. He, S.Y., Type III protein secretion systems in plant and animal pathogenic bacteria, Annu. Rev. Phytopathol. 36 (1998) 363-392.
    41. Hoiczyk, E., G Blobel, Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 4669-4674.
    42. Hueck, CJ., Type III protein secretion systems in bacterial pathogens of animals and plants, Microbiol. Mol. Biol. Rev. 62 (1998) 379-433.
    43. Hutcheson SW, Bretz J, Sussan T, Jin S, Pak K. Enhancer-binding proteins HrpR and HrpS interact to regulate hip-encoded type III protein secretion in Pseudomonas syringae strains. J Bacteriol 2001;183:5589-98.
    44. Jin, Q.-L, R. Thilmony, J. Zwiesler-Vollick, S.Y. He, Type III secretion in Pseudomonas syringae, Microbes Infect 5 (2003) 301-310.
    45. Jin, Q., W. Hu, I. Brown, G McGhee, P. Hart, A. Jones, S.Y. He,Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae, Mol. Microbiol. 40 (2001) 1129-1139.
    46. Katagiri, R, R. Thilmony, S.Y. He, The Arabidopsis thaliana-Pseudomonas syringae interaction, in: C.R. Somerville, E.M. Meyerowitz (Eds.), The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD, 2002, doi 10.1199-tab.0039.
    47. Kimbrough, T.G, S.I. Miller, Assembly of the type III secretion needle complex of Salmonella typhimurium, Microbes Infect 4 (2002) 75-82.
    48. Kimbrough, T.G, S.I. Miller, Contribution of the Salmonella typhimurium type III secretion components to needle complex formation.Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 11008-11013.
    49. Klement Z. Hypersensitivity. Mount MS, Lacy GH, editors.Phytopathogenic prokaryotes, vol. 2. New York: Academic Press; 1982. p. 149-77.
    50. Knoop V, Staskawicz B, Bonas U. Expression of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria is not under the control of hrp genes and is independent of plant factors.J Bacteriol 1991;173:7142-50.
    51. Koebnik, R., The role of bacterial pili in protein and DNA translocation, Trends Microbiol. 9 (2001) 586-590.
    52. Krishnan, H.B., J. Lorio, W.S. Kim, G Jiang, K.Y. Kim, M. DeBoer.S.G Pueppke, Extracellular proteins involved in soybean cultivarspecific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257, Mol. Plant-Microb. Interact 16 (2003) 617-625.
    53. Krishnan HB: NolX of Sinorhizobium fredii USDA257, a type Ill-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L] Walp) and soybean (Glycine max [L] Men.) nodules. J Bacteriol 2002,184:831-839.
    54. Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-TejeroA Sukhan, J.E. Galan, S.I. Aizawa, Supramolecular structure of the Salmonella typhimurium type III protein secretion system, Science 280 (1998) 602-605.
    55. Kubori, T, A. Sukhan, S.I. Aizawa, J.E. Galan, Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system, Proc. Natl. Acad.Sd. U. S. A. 97 (2000) 10225-10230.
    56. Lee, S.H., J.E. Galan, Salmonella type III secretion-associated chaperones confer secretion-pathway specificity, Mol. Microbiol. 51 (2004) 483-495.
    57. lindgren P.B. The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol 1997;35:129-52.
    58. Lindgren, P.B., R.C. Peet, NJ. Panopoulos, Gene-cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants, J. Bacteriol. 168 (1986) 512-522.
    59. Magdalena, J., A. Hachani, M. Chamekh, N. Jouihri, P. Gounon, AAllaoui, A. Allaoui, Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins, J. Bacteriol. 184 (2002) 3433-3441.
    60. Marenda M,BritoB,Callard D,GeninS,BarberisP,Boucher C, et al. PrhA controls a novel regulatory pathway required for the specific induction of genes in the presence of plant cells. Mol Microbiol 1998;27:437-53.
    61. Menard, R., C. Dehio, PJ. Sansonetti, Bacterial entry into epithelial cells: the paradigm of Shigella, Trends Microbiol. 4 (1996) 220-226.
    62. MarieC,BroughtonWJJDeakinWJ:Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 2001,4:336-342.
    63. Merighi M, Majerczak DR, Stover EH, Coplin DL The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Mol Plant-Microbe Interact 2003; 16:238-48.
    64. Mor H, Manulis S, Zuck M, Nizan R, Coplin DL, Barash I.Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv.gypsophilae.Mol Plant-Microbe Interact 2001;14:431-6.
    65. Mudgett MB, Chesnokova 0, Dahlbeck D, Clark ET, Rossier O, Bonas U, et al. Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci USA 2000;97:13324-9.
    66. Niepold F, Anderson D, Mills D. Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci USA 1985;82: 406-10.
    67. Nizan-Koren R, Manulis S, Mor H, Iraki NM, Barash I. The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 2003;16:249-60.
    68. Noe"l L, Thieme F, Nennstiel D, Bonas U. cDNA-AFLP analysis unravels a genome-wide ArpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol 2001;41:1271-81.
    69. Noe"l L, Thieme F, Nennstiel D, Bonas U. Two novel type Ill-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol 2002;184:1340-8.
    70. Noe"l L, Thieme F, Ga"bler J, Bu"ttner D, Bonas U. XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J Bacteriol 2003;185:7092 102.Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26:71-112.
    71. Ohnishi, K., Y. Ohto, S.-I. Aizawa, R.M. Macnab, T. lino, FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium, J. Bacteriol. 176 (1994) 2272-2281.
    72. Peters, J.M., MJ. Walsh, W.W. Franke, An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Secl8p and NSF, EMBO J. 9 (1990) 1757-1767.
    73. Petnicki-Ocwieja T, Schneider DJ, Tam VC, Chancey ST,Shan L, Jamir Y, et al. Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000.Proc Natl Acad Sci USA 2002;99:7652-7.
    74. Preston G, Deng WL, Huang HC, Colimer A. Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J Bacteriol 1998;180:4532-7.
    75. Roden J A., Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci USA 2004b;101:16624-9.
    76. Roine, E., W. Wei, J. Yuan, EL Nurmiaho-Lassila, N. Kalkldnen, M. Romantschuk, S.Y. He, Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000, Proc. Nad. Acad. Sci. U. S. A. 94 (1997) 3459-3464.
    77. Rosqvist, R.K., Magnusson, H. Wolf-Watz, Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells, EMBO J. 13 (1994) 964-972.
    78. Russmann, H., T. Kubori, J. Sauer, J.E. Galan, Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein, Mol. Microbiol. 46 (2002) 769-779.
    79. Salmond, GP.C.PJ. Reeves, Membrane traffic wardens and protein secretionin Gram-negative bacteria/Trends Biochem.Sci.l8(1993) 7-12.
    80. Schulte R, Bonas U. A Xanthomonas pathogenicity locus is induced by sucrose and sulfur-containing amino-acids. Plant Cell 1992b;4:79-86.
    81. Schulte R, Bonas U. Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol 1992a;174:815-23.
    82. Sekiya, K., M. Ohishi, T. Ogjno, K. Tamano, C. Sasakawa, A. Abe, Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 11638-11643.
    83. Simonet , M.,S. Richard^*. Berch.Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid, Infect. Immun. 60 (1992) 366-373.
    84. Sory, M.P., GR. Cornells, Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells,Mol.Microbiol. 14 (1994) 583-594.
    85. Staskawicz BJ. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol 2001;125:73-6.
    86. Sukhan A., T. Kubori, J. Wilson, J.E. Galan, Genetic analysis of assembly of the Salmonella enterica serovar typhimurium type III secretion-associated needle complex, J. Bacteriol. 183 (2001) 1159-1167.
    87. Swords KM, Dahlbeck D, Kearney B, Roy M, Staskawicz BJ.Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBsU Bacteriol 1996;178:4661-9.
    88. Tamano, K.,S.-I.Aizawa,E.Katoyama,T.NonakaAIrnajoh-Ohmi,A. Kuwae, S. Nagai, C. Sasakawa, Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors, EMBO J. 19 (2000) 3876-3887.
    89. Tampakaki AP, Fadouloglou VE, Gazi AD, Panopoulos NJ Kokkinidis M. Conserved features of type III secretion Cell Microbiol 2004;6:805-16.
    90. Van Gijsegem, R, J. Vasse, J. Camus, M. Marenda, C. Boucher, Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells, Mol. Microbiol. 36 (2000) 249-260.
    91. Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X:Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 1998, 28:1381-1389.
    92. Wattiau P, Bemier B, Deslee P, Michiels T, Cornells GR.lndividual chaperones required for Yop secretion by Yersinia. Proc NatI Acad Sci USA 1994;91:10493-7.
    93. Wei C.F., Deng WL, Huang HC. A chaperone-like HrpG protein acts as a suppressor of HrpV in regulation of the Pseudomonas syringae pv. syringae type HI secretion system. Mol Microbiol 2005;57:520-36.
    94. Wei Z-M, Beer SV. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J Bacteriol 1995;177:6201-10.
    95. Wei Z, Kim JF, Beer SV. Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol Plant-Microbe Interact 2000b;13:1251-62.
    96. Xiao Y, Heu S, Yi J, Lu Y, Hutcheson SW. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol 1994; 176:1025 36.
    97. Young, B.M., GM. Young, YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica, J. Bacteriol. 184 (2002) 1324-1334.
    1.Abramovitch,R.B.,Kim,Y.-J.,Chen,S.,Dickman M.B.,and Martin,G.B.2003.Pseudomonas type Ⅲ effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death.EMBO(Eur.Mol.Biol.Organ.) J.22:60-69
    2.Asturias FJ.RNA polymerase Ⅱ structure,and organization of the preinitiation complex.Curr Opin Struct Biol.2004;14:121.
    3.Bu"ttner D,Bonas U.Port of entry-the type Ⅲ secretion translocon.Trends Microbiol 2002;10:186-92.
    4.Bu"ttner D,Gu"rlebeck D,Noe"l LD,Bonas U.HpaB from Xanthomonss campestris pv.vesicatoria acts as an exit control protein in type Ⅲ-dependent protein secretion.Mol Microbiol 2004;54:755-68.
    5.da Silva,A.C.,J.A.Ferro,F.C.Reinach,C.S.Farah,L.R.Furlan,R.B.Quaggio,C.B.Monteiro-Vitorello,M.A.Van Sluys,N.F.Almeida,L.M.Alves,A.M.do Amaral,M.C.Bertolini,L.E.Camargo,G.Camarotte,F.Cannavan,J.Cardozo,F.Chambergo,L.P.Ciapina,R.M.Cicarelli,L.L.Coutinho,J.R.Cursino-Santos,H.El-Dorry,J.B.Faria,A.J.Ferreira,R.C.Ferreira,M.I.Ferro,E.F.Formighieri,M.C.Franco,C.C.Greggio,A.Gruber,A.M.Katsuyama,L.T.Kishi,R.P.Leite,E.G.Lemos,M.V.Lemos,E.C.Locali,M.A.Machado,A.M.Madeira,N.M.Martinez-Rossi,E.C.Martins,J.Meidanis,C.F.Menck,C.V.Miyaki,D.H.Moon,L.M.Moreira,M.T.Novo,V.K.Okura,M.C.Oliveira,V.R.Oliveira,H.A.Pereira,A.Rossi,J.A.Sena,C.Silva,R.F.de Souza,L.A.Spinola,M.A.Takita,R.E.Tamura,E.C.Teixeira,R.I.Tezza,M.Trindade dos Santos,D.Truffi,S.M.Tsai,F.F.White,J.C.Setubal,and J.P.Kitajima.2002.Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.Nature 417:459-463.
    6.David,O.N..,C.R.Pamela,and J.B.Adam.2006.Xanthomonas oryzae pathovars:model pathogens of a model crop.Mol.Plant Pathol.7(5):303-324.
    7.Flor,H.H.1955.Parasite interaction in flax rust-its genetics and other implications.Phytopathology 45:680-685.
    8.Fujikawa,T.,Hiromichi I.,Jan E.L.,3 and Shinji T.Suppression of Defense Response in Plantsby the avrBs3/pthA Gene Family of Xanthomonas spp.Mol Plant-Microbe Interact 19:2006,pp.342-349.
    9.Hirokazu,O.,I.Yasuhiro,T.Masaru,S.Aeni,and K.Hisatoshi.2005.Genome sequence of Xanthomonas oryzae pv.oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity.JARQ.39(4):275-287
    10.Gabriel DW.The Xanthomonas avr/pth gene family.Plant-microbe interactions,vol.4.St.Paul,MN:APS Press;1999.p.39-55.
    11.Kearney B,Staskawicz BJ.Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene,avrBs2.Nature 1990;346:385-6.
    12.Keen,N.T.1990.Gene-for-gene complementarity in plant-pathogen interactions.Annu.Rev.Genet.24:447-463.
    13.Lahaye,T.,and Bonas,U.2001.Molecular secrets of bacterial type Ⅲ effector proteins.Trends Plant Sci.6:479-485.
    14.Lee,B.M.,Y.J.Park,D.S.Park,H.W.Kang,J.G.Kim,E.S.Song,I.C.Park,U.H.Yoon,J.H.Hahn,B.S.Koo,G.B.Lee,H.Kim,H.S.Park,K.O.Yoon,J.H.Kim,C.H.Jung,N.H.Koh,J.S.Seo,and S.J.Go.2005.The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331,the bacterial bright pathogen of dee.Nucleic Acids Research.33(2):577-586
    15.Lee BM,Park YJ,Park DS,Kang HW,Kim JG,Song ES,et al.The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331,the bacterial blight pathogen of rice.Nucleic Acids Res 2005;33:577-86.
    16.Ochiai H,Inoue Y,Takeya M,Sasaki A,Kaku H.Genome sequence of Xanthomonas oryzae pv.oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity.Jpn Agric Res Q 2005;39:275-87.
    17.Swords KM,Dahlbeck D,Kearney B,Roy M,Staskawicz BJ.Spontaneous and induced mutations in a single openreading frame alter both virulence and avirulence in Xanthomonas campestris pv.vesicatoria avrBs2.J Bacteriol 1996;178:4661-9.
    18.Szurek,B.,Rossier,O.,Hause,G.,and Bonas,U.2002.Type Ⅲ-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell.\Mol.Microbiol.46:13-23.
    19.Thieme F,Koebnik R,Bekel T,Berger C,Boch J,Bu"ttner D,et al.Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv.vesicatoria revealed by the complete genome sequence.J Bacteriol 2005;187:7254-66.
    20.Wichmann G,Bergelson J.Effector genes of Xanthomonas axonopodis pv.vesicatoria promote transmission and enhance other fitness traits in the field.Genetics 2004;166:693--706.
    21.Yang Y,Gabriel DW.Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals.Mol Plant-Microbe Interact 1995b;8:627-31.
    22.Bai J,Choi S-H,Ponciano G,Leung H,Leach JE.Xanthomonas oryzae pv.oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness.Mol Plant-Microbe Interact 2000;13:1322-9.
    23.Ballvora A,Pierre M,Van den Ackerveken G,Schornack S,Rossier O,Genal M,et al.Genetic mapping and Functional analysis of the tomato Bs4 locus,governing recognition of the Xanthomonas campestris pv.vesicatoria AvrBs4 protein.Mol Plant-Microbe Interact 2001a;14:629-38.
    24.Blatch GL,Lussle M.The tetratricopeptide repeat:a structural motif mediating protein-protein interactions.BioEssays 1999;21:932-9.
    25.Bonas U,Stall RE,Staskawicz B.Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv.vesicatoria.Mol Gen Genet 1989;218:127-36.
    26.Bonas U,Conrads-Strauch J,Balbo I.Resistance in tomato to Xanthomonas campestris pv.vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3.Mol Gen Genet 1993;238:261-9.
    27.Brunings AM,Gabriel DW.Xanthomonas cirri:breaking the surface.Mol Plant Pathol 2003;4:141-57.
    28.Cunnac S,Occhialinl A,Barberis P,Boucher C,Genin S.Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum:identification of novel effector proteins translocated to plant host cells through the type Ⅲ secretion system.Mol Microbiol 2004;53:115-28.
    29.De Feyter R,Gabriel DW.At least six avindence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv.malvacearum.Mol Plant-Microbe Interact 1991;4:423-32.
    30.Ginalski K,Elofsson A,Fischer D,Rychlewski L.3D-Jury:a simple approach to improve protein structure predictions.Bioinformatics 2003;19:1015-8.
    31.Gu K,Tian D,Yang F,Wu L,Sreekala C,Wang D,et al.High-resolution genetic mapping of Xa27(t),a new bacterial blight resistance gene in rice,Oryza sativa L.Theor Appl Genet 2004;108:800-7.
    32.Gu"rlebeck D.Genetische und molekulare Analyse yon AvrBs3 und AvrBs4,zwei Mitgliedern der AvrBs3-Genfamilie aus Xanthomonas campestris pv.vesicatoria.Diploma thesis;Martin-Luther Universita't Halle-Wittenberg,Germany,2001.
    33.Hopkins CM,White FF,Choi SH,Guo A,Leach JE.Identification of a family of avirulence genes from Xanthomonas oryzae pv.oryzae.Mol Plant-Microbe Interact 1992;5:451-9.
    34.Innes RW.Guarding the goods:new insights into the central alarm system of plants.Plant Physiol 2004;135:695-701.
    35.Iyer AS,McCouch SR.The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance.Mol Plant-Microbe Interact 2004;17:1348-54.
    36.Kay S,Boch J,Bonas U.Characterization of AvrBs3-like effectors from a Brassicacae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture.Mol Plant-Microbe Interact 2005;18:838-48.
    37.Kobayashi K,Hohn T.The avirulence domain of Cauli- flower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts.Mol Plant-Microbe Interact 2004;17:475-83.
    38.Labaye T,Bonas U.Molecular secrets of bacterial type Ⅲ effector proteins.Trends Plant Sci 2001;6:479-85.
    39.Marois E,Van den Ackerveken G,Bonas U.The Xanthomonas type Ⅲ effector protein AvrBs3modulates plant gene expression and induces cell hypertrophy in the susceptible host.Mol Plant-Microbe Interact 2002;15:637-46.
    40.Martin GB,Bogdanove AJ,Sessa G.Understanding the functions of plant disease resistance proteins.Annu Rev Plant Biol 2003;54:23-61.Ogawa T,Yamamoto T,Khush GS,Mew TW.The Xa-3 gene for resistance to Philippine races of bacterial blight of rice.Rice Genet Newslett 1986;3:77-8.
    41.Schornack S,Ballvora A,Gu"rlebeck D,Peart J,Baulcombe D,Baker B,et al.The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3.Plant J 2004;37:46-60.
    42.Schornack S,Peter K,Bonas U,Lahaye T.Expression levels of avrBs3-like genes affect recognition specifi-city in tomato Bs4 but not in pepper Bs3 mediated perception.Mol Plant-Microbe Interact 2005;18:1215-25.
    43.Sidhu GS,Khush GS,Mew TW.Genetic-analysis of bacterial-blight resistance in 74 cultivars of rice,Oryza-sativa-L Theor Appl Genet 1978;53:105-11.
    44.Swarup S,De Feyter R,Brlansky RH,Gabriel DW.A pathogenicity locus from Xanthomonas cirri enables strains from several pathovars of Xanthomonas campestris to elicit cankerlike lesions on citrus.Phytopathology 1991;81:802-9.
    45.Szurek B,Marois E,Bonas U,Van den Ackerveken G.Eukaryotic features of the Xanthomonas type Ⅲ effector AvrBs3:protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper.Plant J 2001;26:523-34.
    46.Van den Ackerveken G,Marois E,Bonas U.Recognition of the bacterial avirulence protein AvrBs3occurs inside the host plant cell.Cell 1996;87:1307-16.
    47.Vidal S,Cabrera H,Andersson RA,Fredriksson A,Vaikonen JPT.Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y.Mol Plant-Microbe Interact 2002;15:717-27.
    48.Wichmann G,Bergelson J.Effector genes of Xanthomonas axonopodis pv.vesicatoria promote transmission and enhance other fitness traits in the field.Genetics 2004;166:693-706.
    49.Yang Y,Gabriel DW.Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities.J Bacteriol 1995a;177:4963-8.
    50.Yang YN,Gabriel DW.Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals.Mol Plant-Microbe Interact 1995b;8:627-31.
    51.Yang B,Sugio A,White FF.Avoidance of host recognition by alterations in the repetitive and C-terminal regions Of AvrXa7,a type Ⅲ effector of Xanthomonas oryzae pv.oryzae.Mol Plant-Microbe Interact 2005;18:142-9.
    52.Yang B,White FF.Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice.Mol Plant Microbe Interact 2004;17:1192-200.
    53.Yang B,Zhu W,Johnson LB,White FF.The virulence factor AvrXa7 of Xanthomonas oryzae pv.oryzae is a type Ⅲ secretion pathway-dependent nuclear-localized double- stranded DNA-binding protein.Proc Natl Acad Sci USA 2000;97:9807-12.
    54.Yang YN,De Feyter R,Gabriel DW.Host-specific symptoms and increased release of Xanthomonas citri and X.campestris pv.malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6,respectively.Mol Plant-Microbe Interact 1994;7:345-55.
    55.Zhu WG,Yang B,Chittoor JM,Johnson LB,White FF.AvrXa10 contains an acidicriptional activation domain in the functionally conserved C terminus.Mol Plant-Microbe Interact 1998;11:824-32.
    56.Zhu WG,Yang B,Wills N,Johnson LB,White FF.The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus.Plant Cell 1999;11:1665-74.
    1.Adriana,C.,Joseph,D.R..,Basmal,E.Y.,and Gabriel,D.W.2005.Mutagenesis of all eight avr genes in Xanthomonas campestrid pv.Campestris had no detected effect on pathogenicity,but one avr gene affected race specificity.Mol.Plant-Microbe Interact.12:1306-1317
    2.Boucher,C.A.,P.A.Bareris,A.Trigalet,and D.A.Demery.1985.Transposon mutagenesis of Pseudomonas solanacearum:isolation of Tn5-induced avirulent mutants.J.Gen.Microbiol.131:2449-2457.
    3.Buttner,D.,D.Nennstiel,B.Klusener,and U.Bonas.2002.Functional analysis of HrpF,a putative type Ⅲ translocon protein from Xanthomonas campestris pv.vesicatoria.J.Bacteriol.184:2389-2398.
    4.Bu"ttner,D.,Gu"rlebeck,D.,Noe"1,L.and Bonas,U.2004.HpaB from Xanthomonas campestris pv.vesicatoria acts as an exit control protein in type Ⅲ-dependent protein secretion.Mol.Microbiol.54:755-768.
    5.Byoung-Moo Lee,Young-Jin Park,Dong-Suk Park,Hee-Wan Kang,Jeong-Gu Kim,Eun-Sung Song,In-Cheol Park,Ung-Han Yoon,Jang-Ho Hahn,Bon-Sung Koo,Gil-Bok Lee,Hyungtae Kim,Hyun-Seok Park,Kyong-Oh Yoon,Jeong-Hyun Kim,Chol-hee Jung,Nae-Hyung Koh,Jeong-Sun Seo,and Seung-Joo Go.2005.Tbe genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331,the bacterial blight pathogen of rice.Nucleic Acids Research.33(2):577-586
    6.Chen,G.,Zhang,X.,Zhang,,X.,and Wang,J.S.2000.Characterization of hrp mutants and their conjugates with hrp gene clones of Xanthomonas oryzae pv.oryzicola.J.Agfic.Biotechnol.8:117-122.
    7.Chen,G.Y.,Pan,X.M.,Wang,J.S.2001.Pathological and chemical characteristics of hrp mutants from Xanthomonas oryzae pv.Oryzae produced by chemical mutagenesis.Acta Phytopathologia Sinica.31(3):199-207.(in Chinese)
    8.Choi,S,H.,and Leach,J.E.1994.Genetic manipulation of Xanthomonas oryzae pv.oryzae.International Rice Research Notes.19(2):31-32
    9.Christophe,E.,Daniele,T.D.,,Frederique van,G.,Jacques,V.,and Andre,T.1998.Xylem colonization by an HrcV- mutant of Ralstonia solanacearum is a key factor for the efficient biological control of tomato bacterial wilt.Mol.Plant Microbe Interact.11(9):869-877.
    10.David,O.N.,Pamela,C.R.,and Adam,J.B.2006.Xanthomonas oryzae pathovars:model pathogens of a model crop.Molecular Plant Pathologu.7(5):303-324
    11.da Silva,A.C.R.,Ferro,J.A.,Reinach,F.C.,Farah,C.S.,Furlan,L,R.,Quaggio,R.B.,Monteiro-Vitorello,C.B.,Van Sluys,M.A.,Almeida,N.F.,Jr,Alves,LM.C.et al.2002.Comparison of genomes of two Xanthomonas pathogens with differing host specificities.Nature.417:459-463.
    12.Dharmapuri,S.and Sonti,R.V.1999.A transposon insertion in the gumG homologue of Xanthomonas oryzae pv.orvzae causes loss of extracellular polysaccharide production and virulence.FEMS Microbiol.Lett.179:53-59.
    13.Ernst,W.,Ralf,K.2005.Domain structure of HrpE,the Hrp pilus subunit of Xanthomonas campestris pv.vesicatofia.J Bacteriol 17:6175-6186.
    14.Fang,Z.D.1990.Pathotypes of Xanthomonas oryzae pv.oryzae in China.Acta Phytopathologia Sinica.20:81-87.(in Chinese)
    15.方中达,任欣正,陈泰英,等.水稻白叶枯病及条斑病和李氏禾条斑病病原细菌的比较研究。1957.植物病理学报3(2):99-122
    16.Federico,K.,Anke,B.M.,Veronica,I.,Cristian,G.O.,Luis,I.1999.New mobilizable vectors suitable for gene replacement in Gram-negative bacteria and their use in mapping of the 3'ene of the Xabthomonas campestris pv.campestris gum operon.Applied and Enviroment Microbiology.65:278-282
    17.Goryshin,I.Y.,Jendrisak,J.,Holman,L.M.,Meis,R.and Rezniko,W.S.2000.Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes.Nat.Biotechnol.18:97-100.
    18.Guo,Y.H.,Xu,Z.G.,Hu,B.S.,Shen,X.P.,Cben,Z.Y.,Lin,Y.F.2004.Virulence Differentiation of Xanthomonas oryz ae pv.oryz icola in Southern Region of China.Chinese J Rice Sci.18(1):83-85
    19.Hirokazu,O.,Yasuhiro,I.,Masaru,T.,Aeni,S.,I-Iisatoshi,K.2005.Genome sequence of Xanthomonas oryzae pv.oryzaesuggests contribution of large numbers of effector genes and insertion sequences to its race diversity.JARQ.39(4):275-287
    20.Huguet,E.,and Bonas,U.1997.hrpF of Xanthomonas campestris pv.vesicatoria encodes an 87-kDa protein with homology to NoIX of Rhizobium fredii.Mol Plant Microbe Interact 10:488-498.
    21.Jean,M.R.,Vladimir,P.,Brigitte,G.,and Rino,R.1998.Counterselectable markers:untapped tools for baterial genetics and pathogenesis.infection And Immunity.Sept:4011-4017
    22.Jin,Q.,and He,S.Y.2001.Role of the Hrp pilus in type Ⅲ protein secretion in Pseudomonas syringae.Science 294:2556--2558.
    23.Jung,G.K.,Byoung,K.P.,Chang,H.Y.,Eunkyung,J.,Jonghee,O.,and Ingyu,H.2003.Characterization of the Xanthomonas axonopodis pv.glycines Hrp pathogenicity island.Journal of Bacteriology.185(10):3155-3166.
    24.Katzen,F.,Ferreiro,D.U.,Oddo,,C.G.Ielmini,M.V.,Becker,A.,"'hler,A.P.and Ielpi,L.1998.Xanthomonas campestris pv.campestris gum mutants:effects on xanthan biosynthesis and plant virulence.J.Bacteriol.180:1607-1617.
    25.Li,C.M.,Brown,I.,Mansfield,J.,Stevens,C.,Boureau,T.,Boureau,M.R.and Taira,S.2002.The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ.The EMBO Journal.21:1909-1915
    26.Liu,H.L,Shuping,Z.,Mark,A.S.,Timothy,P.D.2005.Pyramiding urnarker deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell -wail-degrading enzymes contribute to virulence.Mol.Plant-Microbe Interact.12:1296-1305
    27.Mongkolsuk,S.,S.Rabibibhadana,R.Sukehavalit,and G.Vaughn.1998.Construction and physiological analysis of a Xanthomonas oryzae pv.oryzae recA mutant.FEMS Microbiol.Lett.169:269-275.
    28.Oku,T.,K.Tanaka,M.lwamoto,Y.Inoue,H.Ochial,H.Kaku,S.Tsuge,and K.Tsuno.2004.Structural conservation of hrp gene duster in Xanthomonas oryzae pv.oryzae.J.Gen.Plant Pathol.70:159-167.
    29.Pelicic,V.,Reyrat,,J.M.,and Gicquel,B.1996.Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria.J.Bacteriol.178:1197-1199.
    30.Rossier,O.,Van den Ackerveken,G.,and Bonas,U.2000.HrpB2 and HrpF from Xanthomonas are type Ⅲ-secreted proteins and essential for pathogenicity and recognition by the host plant.Mol Microbiol 38:828-838.
    31.Ray,S.K.,Rajeshwari,R.and Sonti,R.V.2000.Mutants of Xanthomonas oryzae deficient in general secretory pathway are virulent deficient and unable to secrete xylase.Mol.Plant Microbe Interact.,13:394-401.
    32.Ried,J.L.,and Collmer,A.1987.An nptI-sacB-sacR cartridge for constru cting directed,unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis.Gene 57:239-246.
    33.Roine,E.,Wei,W.Yuan,J.Nurmiaho-Lassila,E.L.,Kalkkinen,N.,Romantschuk,M.and He,S.Y.1997.Hrp pilus:an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv.tomato DC3000.Proc.Natl.Acad.Sci.USA 94:3459-3464.
    34.Romantschuk,M.,Roine,E.and Taira,S.2001.Hrp pilus:reaching through the plant cell wall.Eur.J.Plant Pathol.107:153-160.
    35.Sarker,M.R.,and Cornelis,G.R.1997.An improved version of suicide vector pKNG101 for gene replacement in gram-negative bacteria.Mol.Microbiol.23:410-411.
    36.Schulte,R.,and Bonas,U.1992 Expression of the Xanthomonas campestris pv.vesicatoria hrp gene cluster,which determines pathogenicity and hypersensitivity on pepper and tomato,is plant inducible.J Bacteriol 174:815-823.
    37.Simon,R.,U.Priefer,and A.Puhler.1983.A broad host range mobilizationsystem for genetic engineering:transposon mutagenesis in gram negativebacteria.Biotechnology 1:784-791.
    38.Simon,R.1984.High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon.Mol.Gen.Genet.196:413-420.
    39.Simon,R.,M.O'Connell,M.Labes,and A.Pu"hler.1986.Plasmid vectors for the genetic analysis of and manipulation of Rhizobia and other Gram-negative bacteria.Methods EnzymoL 118:640-659.
    40.Simon,R.,Priefer,U.and Pu"hler,A.1983.A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in Gramnegative bacteria.Bio/Technology 1:784-791.
    41.Sribitz,S.1994.Use of conditionally counterselectable suicide vectors for allelic exchange.Methods Enzymol.235:458-465.
    42.Sugio,A.,Yang,B.and White,F.F.2005.Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv.oryzae.Mol.Plant-Microbe Interact.18:546-554.
    43.Sun,Q.H.,We,wei.,Qian,wei.,Hu,J.,Fang,R.X.,He,C.Z.2003.High-quality mutant libraries of Xanthomonas oryzae pv.oryzae and X.canpestris pv.campestris generated by an efficient transposon mutagenesis system.Federation of European Microbiological Societies 226:145-150
    44.Voelker,L.L.and Dybvig,K.1998.Transposon mutagenesis.Methods Mol.Biol.104:235-238.
    45.Yangrae,C.,Joshua,W.D.,Kwang,H.K.,Juan,W.,Qi,H.S.,Robert,A.C.,Christopher,B.L.2006.A high throughput targeted disruption method for Alternatia brassicicola functional genomics using linear minimal element(LME) comtructs.Mol.Plant-Microbe Interact.19:7-15
    46.Zhang,X.Z.,Yan,X.,Cni,Z.L.,Hong,Q.,Li,S.P.2006.SmazF,a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis.Nucleic Acids Research.34,No.9
    47.Zhn,W.,Magbanua,M.M.,White,F.F.2000.Identification of two novel hrp-associated genes in the hip gene cluster of Xanthomonas oryzae pv.Oryzae.Journal of Bacteriology.182:1844-1853
    48.Zon,L.F.,Wang,X.P.,Xiang,Y.,Zhang,B.,Li,Y.R.,Xiao,Y.L,Wang,J.S.,Adrian,R.W.,Chen,G.Y.2006.Elucidation of the hrp clusters of Xanthomonas oryzae pv.oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice.Applied and Enviroment Microbiology.72:6212-6224.
    1.Bai J,Choi S-H,Ponciano G,Leung H,Leach JE.Xanthomonas oryzae pv.oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness.Mol Plant-Microbe Interact 2000;13:1322-9.
    2.Bonas U,Stall RE,Staskawicz B.Genetic and structural characterization of the avirulence gene avrBs3 fromXanthomonas campestris pv.vcsicatoria.Mol Gen Genet 1989;218:127-36.
    3.Buttner D,Ncnnstiel D,Klu"sener B,Bonas U.Functional analysis of HrpF,a putative type Ⅲ translocon protein from Xanthomonas campestris pv.vesicatoria.J Bacteriol 2002;184:2389-98.
    4.陈功友,邹丽芳,王邢平,向 勇,王金生.水稻白叶枯病菌致病性分子遗传学基础.中国农业科学,2004,37(9):1 301-1 307.Chen G Y,Zou L F,Wang X P,Xiang Y,Wang J S.Pathogenicity determinants of Xanthomonas oryzar pv.oryzae.Chinese Agricultural Sciences,2004,37(9):1 301-1 307.(in Chinese)
    5.da Silva,A.C.,J.A.Ferro,F.C.Reinach,C.S.Farah,L.R.Furlan,R.B.Quaggio,C.B.Monteiro-Vitorello,M.A.Van Sluys,N.F.Aimeida,L.M.Alves,A.M.do Amaral,M.C.Bertolini,L.E.Camargo,G.Camarotte,F.Cannavan,J.Cardozo,F.Chambergo,L.P.Ciapina,R.M.Cicarelli,L.L.Coutinho,J.R.Cursino-Santos,H.El-Dotty,J.B.Faria,A.J.Ferreira,R.C.Ferreira,M.I.Ferro,E.F.Formighieri,M.C.Franco,C.C.Greggio,A.Gruber,A.M.Katsuyama,L.T.Kishi,R.P.Leit~,E.G.Lemos,M.V.Lemos,E.C.Locali,M.A.Machado,A.M.Madeira,N.M.Martinez-Rossi,E.C.Martins,J.Meidanis,C.F.Menck,C.V.Miyaki,D.H.Moon,L..M.Moreira,M.T.Novo,V.K.Okura,M.C.Oliveira,V.R.Oliveira,H.A.Pereira,A.Rossi,J.A.Sena,C.Silva,R.F.de Souza,L.A.Spinola,M.A.Takita,R.E.Tamura,E.C.Teixeira,R.I.Tezza,M.Trindade dos Santos,D.Truffi,S.M.Tsai,F.F.White,J.C.Setubal,and J.P.Kitajima.2002.Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.Nature 417:459-463.
    6.De Feyter R,Gabriel DW.At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv.malvacearum.Mol Plant-Microbe Interact 1991;4:423-32.
    7.Flor,H.H.1955.Parasite interaction in flax rust-its genetics and other implications.Phytopathology 45:680-685.
    8.Gabriel DW.The Xanthomonas avr/pth gene family.Plant-microbe interactions,vol.4.St.Paul,MN:APS Press;1999.p.39-55.
    9.Gabriel D W.The Xanthomonas avr/Pth gene family.In:Stacey G,Keen N T,ed. Plant-Microbe Interactions.v.4 New York:American Phytopathological Society Press,1999:54-62.
    10.Guo Y H(郭亚辉),Xu Z G(许志刚),Hu B S(胡白石),Shen X P(沈秀萍),Chen z Y(陈志谊),Li Y F(刘永峰).2004.Virulence Differentiation of Xanthomonas oryz ae pv.oryz icola in Southern Region of China.Chinese J Rice Sci(中国水稻科学).18(1):83-85
    11.Hilaire,E.,Young,S.A.,Willard,L.H.,McGee,J.D.,Sweat,T.,Chittoor,J.M.,Guikcma,J.A.and Leach,J.E.(2001) Vascular defense responses in rice:peroxidase accumulation in xylem parenchyma cells and xylemwall thickening.Mol.Plant-Microbe Interact.14,1411-1419.Hopkins CM,White FF,Choi SH,Guo A,Leach JE.Identification of a family of avirulence genes from Xanthomonas oryzae pv.oryzae.Mol Plant-Microbe Interact 1992;5:451-9.
    12.Kearney B,Staskawicz BJ.Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene,avrBs2.Nature 1990;346:385-6.
    13.Keen,N.T.1990.Gene-for-gene complementarity in plant-pathogen interactions.Annu.Rev.Genet.24:447-463.
    14.Lee,B.M.,Y.J.Park,D.S.Park,H.W.Kang,J.G.Kim,E.S.Song,I.C.Park,U.H.Yoon,J.H.Hahn,B.S.Koo,G.B.Lee,H.Kim,H.S.Park,K.O.Yoon,J.H.Kim,C.H.Jung,N.H.Koh,J.S.Seo,and S.J.Go.2005.The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331,the bacterial blight pathogen of rice.Nucleic Acids Research.33(2):577-5S6
    15.Leach J E,White F F.Bacterial avitulence genes.Annual Review of Phytopathology,1996,34:153-179.
    16.Liang C Y(梁传永),Li D C(李大春),Yi J P(易建平).Study on the virulent pattern of X.oryzicola in China.J Nanjing A gric Univ(南京农业大学学报),1994,17(3):48-52.(in Chinese with English abstract)
    17.Iyer AS,McCouch SR.The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance.Mol Plant-Microbe Interact 2004;17:1348-54.
    18.Makino,S.,A.Sugio,F.White,and A.Bogdanove.2005.Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv.oryzicola.Plant-Microbe Interact.19:240-249.
    19.Noda,T.and Kaku,H.(1999) Growth of Xanthomonas oryzae pv.oryzae in planta and in guttation fluid of rice.Ann.Phytopathol.Soc.Japan,65,9-14.
    20.Nong x M(农秀美).Study on virulence difference of X.oryzicola in Guangxi Auto2Region.Southwest China J A gric Sci(西南农业学报),1992,4(2):94-97.(in Chinese with English abstract)
    21.Ochiai H,Inoue Y,Takeya M,Sasaki A,Kaku H.Genome sequence of Xanthomonas oryzae pv.oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity.Jpn Agric Res O 2005;39:275-87.
    22.Ou,S.H.(1985) Rice Diseases.Kew,Surrey:Commonwealth Agricultural
    23.Schornack,S.,A.Meyer,P.Romer,T.Jordan,and T.Lahaye.2006.Gene-for-gene-mediated recognition of nuclear-targeted AwBs3-like bacterial effector proteins.Journal of Plant Physiology 163:256-272
    24.Shekhawat G S,Srivastava D N.Epidemiology of bacterial leaf streak of rice.A nn Phytopath Soc Jap,1972,38:7-34.
    25.Swords KM,Dahlbeck D,Kearney B,Roy M,Staskawicz BJ.Spontaneous and induced mutations in a single openreading frame alter both virulence and avirulence in Xanthomonas campestris pv.vesicatofia avrBs2.J Bacteriol 1996;178:4661-9.
    26.Wichmann G,Bergelson J.Effector genes of Xanthomonas axonopodis pv.vesicatofia promote transmission and enhance other fitness waits in the field.Genetics 2004;166:693-706.
    27.White F F,Yang B,Johnson L B.Prospects for understanding avirulence gene function.Current Opinion in Plant Biology,2000,3:291-298.
    28.Yang Y,Yuan Q,Gabriel DW.1996.Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family.Mol.Plant Microbe.Interact.9:105-13
    29.Zhao,B.,Ardales,E.Y.,Raymundo,A.,Bai,J.,Trick,H.N.,Leach,J.E.and Hulbert,S.H.(2004a) The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv.oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1.Mol.Plant-Microbe Interact.17:771-779.
    30.Marois E,Van den Ackerveken G,Bonas U.The Xanthomonas type Ⅲ effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host.Mol Plant-Microbe Interact 2002;15:637-46.
    31.Schornack S,Ballvora A,Gu"rlebeck D,Peart J,Baulcombe D,Baker B,et al.The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3.Plant J 2004;37:46-60.
    32.Sidhu GS,Khush GS,Mew TW.Genetic-analysis of bacterial-blight resistance in 74cultivars of flee,Oryza-sativa-L.Theor Appl Genet 1978;53:105-11.
    33.Swarup S,De Feyter R,Brlansky RH,Gabriel DW.A pathogenicity locus from Xanthomonas cirri enables strains from several pathovars of Xanthomonas campestris to elicit cankerlike lesions on citrus.Phytopathology 1991;81:802-9.
    34.Yang YN,Gabriel DW.Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals.Mol Plant-Microbe Interact 1995b;8:627-31.
    35.Yang B,White FF.Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice.Mol Plant Microbe Interact 2004;17:1192-200.
    36.Yang B,Zhu W,Johnson LB,White FF.The virulence factor AvrXa7 of Xanthomonas oryzae pv.oryzae is a type Ⅲ secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein.Proc Natl Acad Sci USA 2000;97:9807-12.37.Yang B,Sugio A,White FF.Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7,a type Ⅲ effector of Xanthomonas oryzae pv.oryzae.Mol Plant-Microbe Interact 2005;18:142-9.
    38.Xia Y H(夏怡厚),Lin W y(林维英),Ceng O Y(陈藕英).Identification of strains of X.oryzicola.J Fujian A gric Univ(福建农业大学学报),1992,21(3):278-282.(in Chinese with English abstract
    39.Xu 2 G(许志刚) Sun Q M(孙启明),Lie F Q(刘凤权),Chen Z Y(陈志谊),Hu B S(胡白石)Guo Y H(郭亚辉),Lie L H(刘永峰),Lie H X(刘红霞).2004.Race Monitoring of Rice Bacterial Blight(Xanthomonas oryzae pv.oryzae) in China.Chinese J Rice Sci(中国水稻科学),18(5):469-472
    40.Zhu WG,Yang B,Chittoor JM,Johnson LB,White FF.AvrXal0 contains an acidic transcriptional activation domain in the functionally conserved C terminus.Mol Plant-Microbe Interact 1998;11:824-32.
    41.Zhu WG,Yang B,Wills N,Johnson LB,White FF.The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus.Plant Cell 1999;11:1665-74.
    1.Alegria,M.C.,Docena,C.,Khater,L.,Ramos,C.H.,da Silva,A.C.,and Farah,C.S.(2004) New protein-protein interactions identified for the regulatory and structural components and substrates of the type Ⅲ secretion system of the phytopathogen Xanthomonas axonopodis pathovar cirri.J Bacteriol 186:6186-6197.
    2.Anderson,D.M.,and Schneewind,O.(1997) A mRNA signal for the type Ⅲ secretion of Yop proteins by Yersinia enterocolitica.Science 278:1140-1143.
    3.Anderson,D.M.,Fours,D.E.,Collmer,A.,and Schneewind,O.(1999) Reciprocal secretion of proteins by the bacterial type Ⅲ machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals.Proc Natl Acad Sci USA 96:12839-12843.
    4.Büttner,D.,and Bonas,U.(2002) Port of entry-the type Ⅲ secretion translocon.Trends Microbiol 10:186-192.
    5.Büttner,D.,Gurlebeck,D.,Noel,I.D.,and Bonas,U.(2004) HpaB from Xanthomonas campestris pv.vesicatoria acts as an exit control protein in type Ⅲ-dependent protein secretion.Mol Microbiol 54:755-768.
    6.Buttner,D.,Lorenz,C.,Weber,E.,and Bonas,U.2006.Targeting of two effector protein classes to the type Ⅲ secretion system by HpaC- and HpaB-dependent perotein complex from Xanthomonas campestris pv.vesicatoria.Mol Microbio159:513-527.
    7.Chang,J.H.,Goel,A.K.,Grant,S.R.,and Dangl,J.L.(2004) Wake of the flood:ascribing functions to the wave of type Ⅲ effector proteins of phytopathogenic bacteria.Curr Opin Microbiol 7:11-18.
    8.Dalai,S.,P.I.Hanson,Membrane traffic:what drives the AAA motor? Cell 104(2001) 5-8.
    9.Espinosa,A.,and Alfano,J.R.(2004) Disabling surveillance:bacterial type Ⅲ secretion system effectors that suppress innate immunity.Cell Microbiol 6:1027-1040.
    10.Feldman,M.F.,and Cornelis,G.R.(2003) The mulfitalented type Ⅲ chaperones:all you can do with 15 kDa.FEMS Microbiol Lett 219:151-158.
    11.He,S.Y.(1998) Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria.Annu Rev Phytopathol 36:363-392.
    12.Hueck,CJ.(1998) Type Ⅲ protein secretion systems in bacterial pathogens of animals and plants.Microbiol Mol Biol Rev 62:379-433.
    13.Hugnet,E.,Hahn,K.,Wengelnik,K.,and Bonas,U.(1998) hpaA mutants of Xanthomonas campestris pv.vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction.Mol Microbiol 29:1379-1390.
    14.Jackson,M.W.,and G.V.Piano.2000.Interactions between type Ⅲ secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system.FEMS Microbiol.Lett.186:85-90.
    15.Lloyd,S.A.,Norman,M.,Rosqvist,R.,and Wolf-Warz,H.(2001b) Yersinia YopE is targeted for type Ⅲ secretion by N-terminal,not mRNA,signals.Mol Microbiol 39:520-532.
    16.Mudgett,M.B.(2005) New insights to the function of phytopathogenic baterial type Ⅲ effectors in plants.Annu Rev Plant Biol 56:509-531.
    17.Nakal,K.,and M.Kanehisa.1991.Expert system for predicting protein localization sites in gram-negative bacteria proteins.Struct.Funct.Genet.11:95-110.
    18.Navarro,L.,Alto,N.M.,and Dixon,J.E.(2005) Functions of the Yersinia effector proteins in inhibiting host immune responses.Curt Opin Microbiol 8:21-27.
    19.Parsot,C.,Hamiaux,C.,and Page,A.L.(2003) The various and varying roles of specific chaperones in type Ⅲ secretion systems.Curt Opin Microbiol 6:7-14.
    20.Peters,J.M.,MJ.Walsh,W.W.Franke,An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF,EMBO J.9(1990)1757-1767.
    21.Rossier,O.,G.Van den Ackerveken,and U.Bonas.2000.HrpB2 and HrpF from Xanthomonas are type Ⅲ-secreted proteins and essential for pathogenicity and recognition by the host plant.Mol.Microbiol.38:828-838.
    22.Schechter,L.M.,Roberts,K.A.,Jamir,Y.,Alfano,J.R.,and Collmer,A.(2004) Pseudomonas syringae type Ⅲ secretion system targeting signals and novel effectors studied with a Cya translocation reporter.J Bacteriol 186:543-555.
    23.Zou,L.F.,X.P.Wang,Y.Xiang,B.Zhang,Y.R.Li,Y.L.Xiao,J.S.Wang,R.W.Adrian,and G.Y.Chen.2006.Elucidation of the hrp clusters of Xanthomonas oryzae pv.oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice.Appl.Environ.Microbiol.72:6212-6224
    24.Zhu,W.,M.M.Magbanua,F.F.White.2000.Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv.oryzae.Journal of Bacteriology.182:1844-1853
    1.Abramovitch,R.B.,Anderson,J.C.,Martin,G.B.2006.Bacterial elicitation and evasion of plant innate immunity.Meolecular Cell Biology.7:601-611.
    2.Alfano,J.R.,and Collmer,A.(1997) The type Ⅲ(Hrp) secretion pathway of plant pathogenic bacteria:trafficking harpins,Avr proteins,and death.J Bacteriol 179:5655-5662.
    3.Arlat,M.,C.Cough,C.E.Barber,C.Boucher,and M.Daniels.1991.Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum.Mol.Plant-Microbe Interact.4:593-601.
    4.Arlat,M.,Van Gijsegem,F.,Huet,J.C.,Pernollet,J.C.,and Boucher,C.A.(1994) PopA1,a protein which induces a hypersensitivity-like response on specific Petunia genotypes,is secreted via the Hrp pathway of Pseudomonas solanacearum.EMBO J 13:543-553.
    5.Bender,C.L.,Alarcon-Chaidez,F.,and Gross,D.C.(1999).Pseudomonas syringae phytotoxins:mode of action,regulation,and biosynthesis by peptide and polyketide synthetases.Microbiol.MoL Biol.Rev.63,266-292.
    6.Bogdanove,A.,S.V.Beer,U.Bones,C.A.Boucber,A.Collmer,D.L.Coplin,G.R.Cornelis,H.-C.Huang,S.W.Hutcbeson,N.J.Panopoulos,and F.Van Gijsegem.1996.Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria.Mol.Microbiol.20:681-683.
    7.Bones,U.1994.hrp genes of phytopathogenic bacteria.Curr.Top.Microbiol.Immunol.192:79-98.
    8.Bones,U.,R.Schulte,S.Fenselau,G.V.Minsavage,B.J.Staskawicz,and R.E.Stall.1991.Isolation of a gene-cluster from Xanthomonas campestris pv.vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato.Mol.Plant-Microbe Interact.4:81-88.
    9.Broms,J.E.,Sundin,C.,Francis M.S.,and Forsberg,A.2003.Comparative analysis of type Ⅲeffector translocation by Yersinia pseudotuberculosis expressing native LcrV or PcrV from Pseudomones aeruginosa.J.Infect.Dis.188:239-249.
    10.Brown,I.R.,Mansfield,J.W.,Taira,S.,Roine,E.,and Romantschuk,M.2001.Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv.tomato across the host plant cell wall.Mol.Plant-Microbe Interact.14:394-404.
    11.Buttner,D.and Bones,U.(2002) Getting across-bacterial type Ⅲ effector proteins on their way to the plant cell.EMBO J.21,5313-5322.
    12.Buttner,D.,and Bonas,U.2002b.Port of enVy-the type Ⅲ secretion translocon.Trends Microbiol.10:186-192.
    13.Buttner,D.,Lorenz,C.,Weber,E.and Bonas,U.(2006) Targeting of two effector protein classes to the type Ⅲ secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv.vesicatoria.MoL Microbiol.59,513-527.
    14.Buttner,D.,Nennstiel,D.,Klusener,B.and Bonas,U.(2002) Functional analysis of HrpF,a putative type Ⅲ translocon protein from Xanthomonas campestris pv.vesicatoria.J.Bacteriol.
    15.Charkowski,A.O.,Alfano,J.R.,Preston,G.,Yuan,J.,He,S.Y.,and Collmer,A.1998.The Pseudomonas syringae pv.tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate.J.Bacteriol.180:5211-5217.
    16.da Silva,A.C.,Ferro,J.A.,Reinach,F.C.,Farah,C.S.,Furlan,L.R.,Quaggio,R.B.,Monteiro-Vitorello,C.B.,Van Sluys,M.A.,Aimeida,N.F.,Alves,L.M.,do Amaral,A.M.,Bertolini,M.C.,Camargo,L.E.,Camarotte,G.,Cannavan,F.,Cardozo,J.,Chambergo,F.,Ciapina,L P.,Cicarelli,R.M.,Coutinho,L.L.,Cursino-Santos,J.R.,El-Dorry,H.,Faria,J.B.,Ferreira,A.J.,Ferreira,R.C.,Ferro,M.L,Formighieri,E.F.,Franco,M.C.,Greggio,C.C.,Gruber,A.,Katsuyama,A.M.,Kishi,L.T.,Leite,R.P.,Lemos,E.G.,Lemos,M.V.,Locali,E.C.,Machado,M.A.,Madeira,A.M.,Martinez-Rossi,N.M.,Martins,E.C.,Meidanis,J.,Menck,C.F.,Miyaki,C.Y.,Moon,D.H.,Moreira,L,M.,Novo,M.T.,Okura,V.K.,Oliveira,M.C.,Oliveira,V.R.,Pereira,H.A.,Rossi,A.,Sena,J.A.,Silva,C.,de Souza,R.F.,Spinola,L.A.,Takita,M.A.,Tamura,R.E.,Teixeira,E.C.,Tezza,R.I.,Trindade dos Santos,M.,Truffi,D.,Tsai,S.M.,White,F.F.,Setubal,J.C.and Kitajima,J.P.2002.Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.Nature 417:459-463.
    17.David,O.N.,Pamela,C.R.,and Bogdanove,A.2006.Xanthomonas oryzae pathovars:model pathogens of a model crop.Molecular Plant Pathologu.7(5):303-324
    18.Deng,W.L.,and Huang,H.C.(1999) C,eilular locations of Pseudomunas syringae pv.syringae HrcC and HrcJ proteins,required for harpin secretion via the type Ⅲ pathway.J Bacteriol 181:2298-2301.
    19.Eckardt,N.A.,2002.Plant disease susceptibility genes? The Plant Cell.14:1983-1986
    20.Fang,Z.D.1990.Pathotypes of Xanthomonas oryzae pv.oryzae in China.Acta Phytopathologia Sinica.20:81-87.(in Chinese)
    21.Fenselan,S.,Balbo,I.,and Bonas,U.(1992) Determinants of pathogenicity in Xanthomonas campestris pv.vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals.Mol Plant Microbe Interact 5:390-396.
    22.Furutani,A.,Tsuge,S.,Oku,T.,Tsuno,K.,Inoue,Y.,Ochlai,H.,Kaku,H.and Kubo,Y.(2003)Hpal secretion via type Ⅲ secretion system in Xanthomonas oryzae pv.oryzae.J.Gen.Plant Pathol.69,271-275.
    23.Guo,Y.H.,Xu,Z.G.,Hu,B.S.,Shen,X.P.,Chen,Z.Y.,Liu,Y.F.2004.Virulence Differentiation of Xanthomonas oryz ae pv.oryz icola in Southern Region of China.Chinese J Rice Sci.18(1):83-85
    24.Gurlebeck,D.,Thieme,F.and Bonas,U.(2006) Type Ⅲ effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant.J.Plant Physiol.163,233-255.
    25.He,S.Y.1998.Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria.Annu.Rev.Phytopathol.36:363-392.
    26.He,S.Y.,H.C.Huang,and A.Collmer.1993.Pseudomonas syringae pv.syringae HarpinPss:a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants.Cell 73:1255-1266.
    27.Holmstrom,A.,Olsson,J.,Cherepanov,P.,Maier,E.,Nordfelth,R.,Pettersson,J.,Benz,R.,Wolf-Watz,H.,and Forsberg,A.2001.LcrV is a channel size-determining component of the Yop effector translocon of Yersinia.MoL Microbiol.39:620-632.
    28.Huguet,E.,and Bonas,U.1997.hrpF of Xanthomonas campestris pv.vesicatoria encodes an 87-kDa protein with homology to NoⅨ of Rhizobium fredii.Mol.Plant-Microbe Interact.10:488-498.
    29.Huguet,E.,Habn,K.,Wengelnik,K.,and Bonas,U.(1998) hpaA mutants of Xanthomonas campestris pv.vesicatoria are affected in pathogenicity but retain the ability to induce
    30.host-specific hypersensitive reaction.Mol Microbiol 29:1379-1390.
    31.Kim,J.F.,and Beer,S.V.1998.HrpW of Erwinia amylovora,a new harpin that contains a domain homologous to pectate lyases of a distinct class.J.BacterioL 180:5203-5210.
    32.Kim,J.G.,Park,B.K.,Yco,C.H.,Jeon,E.,Oh,J.,and Hwang,I.2003.Characterization of the Xanthomonas axonopodis pv.glycines Hrp pathogenicity island.J.BacterioL 185:3155-3166.
    33.Lee,J.,Klusener,B.,Tsiamis,G.,Stevens,C.,Neyt,C.,Tampakaki,A.P.,Panopoulos,N.J.,Noller,J.,Weiler,E.W.,Comelis,G.R.,Mansfield,J.W.,and Numberger,T.2001.HrpZ(Psph)from the plant pathogen Pseudomonas syringae pv.phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro.Proc.Natl.Acad.Sci.U.S.A.98:289-294.
    34.Lindgren,P.B.,Peer,R.C.,and Panopoulos,N.J.1986.Gene cluster of Pseudomonas syringae pv.phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants.J. Bacteriol.168:512-522.
    35.Ma,S.W.,Morris,V.L.,and Cuppels,D.A.(1991).Characterization of a DNA region required for production of the phytotoxin coronatine by Pseudomonas syringae pv.tomato.Mol.Plant Microbe Interact.4,69-77.
    36.Melotto,M.,Underwood,W.,Koczan,J.,Nomura,K.,He,S.Y.2006.Plant stomata function in innate immunity against bacterial invasion.Cell 126:969-980
    37.Merighi,M.,D.R.Majerczak,E.H.Stover,and D.L.Coplin.2003.The HrpX/HrpY two-component system activates hrpS expression,the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp.stewartii.MoL Plant-Microbe Interact.16:238-248.
    38.Neyt,C.,and Cornelis,G.R.1999.Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica:Requirement for translocators YopB and YopD,but not LcrG.MoL MicrobioL 33:971-981.
    39.Noel,L.,Thieme,F.,Nennstiel,D.,and Bongs,U.2002.Two novel type Ⅲ-secreted proteins of Xanthomonas campestris pv.vesicatoria are encoded within the hrp pathogenicity island.J.Bacteriol.184:1340-1348.
    40.Okn,T.,Alvarez,A.M.and Kado,C.I.(1995) Conservation of the hypersensitivity-pathogenicity regulatory gene hrpX of Xanthomonas campestris and X.oryzae.DNA Seq.5,245-249.
    41.Oku,T.,Tanaka,K.,Iwamoto,M.,Inoue,Y.,Ochiai,H.,Kaku,H.,Tsuge,S.and Tsuno,K.(2004)Structural conservation of the hrp gene cluster in Xanthomons oryzae pv.oryzae.J.Gen.Plant Pathol.70,159-167.
    42.Ou,S.H.(1985) Rice Diseases.Kew,Surrey:Commonwealth Agricultural Bureau
    43.Page,A.L.,and Parsot,C.(2002) Chaperones of the type Ⅲ secretion pathway:jacks of all trades.Mol Microbiol 46:1-11.
    44.Page,A.L.,Sansonetti,P.,and Parsot,C.(2002) Spa15 of Shigella flexneri,a third type of chaperone in the type Ⅲ secretion pathway.Mol Microbiol 43:1533-1542.
    45.Parsot,C.,Hamiaux,C.,and Page,A.L.(2003) The various and varying roles of specific chaperones in type Ⅲ secretion systems.Curt Opin Microbiol 6:7-14.
    46.Roine,E.,Wei,W.,Yuan,J.,Nurmiaho-Lassila,E.L.,Kalkldnen,N.,Romantschuk,M.,and He,S.Y.1997.Hrp pilus:An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv.tomato DC3000.Prec.NatL Acad.Sci.U.S.A.94:3459-3464.
    47.Rossier,O.,Wengeinik,K.,Hahn,K.,and Bonas,U.(1999) The Xanthomonas Hrp type Ⅲ system secretes proteins from plant and mammalian bacterial pathogens.Proc Natl Acad Sci USA 96:9368-9373.
    48.Rossier,O.,Van den Ackerveken,G.,and Bonas,U.2000.HrpB2 and HrpF from Xanthomonas are type Ⅲ-secreted proteins and essential for pathogenicity and recognition by the host plant.Mol.Microbiol.38:828-838.
    49.Salanoubat,M.,Genin,S.,Artiguenave,F.,Gouzy,J.,Mangenot,S.,Arlat,M.,Billault,A.,Brottier,P.,Camus,J.C.,Cattolico,L.,Chandler,M.,Choisne,N.,Claudel-Renard,C.,Cunnac,S.,Demange,N.,Gaspin,C.,Lavie,M.,Moisan,A.,Robert,C.,Saurin,W.,Schiex,T.,Siguier,P.Thebault,P.,Whalen,M.,Wincker,P.,Levy,M.,Weissenbach,J.,and Boucher,C.A.2002.Genome sequence of the plant pathogen Ralstonia solanacearum.Nature 415:497-502.
    50.Sugio,A.,Yang,B.and White,F.F.(2005) Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv.oryzae.Mol.Plant-Microbe Interact.18,546-554.
    51.Szurek,B.,Marois,E.,Van Bonas,U.,Rossier,O.,Hause,G.and Bonas,U.(2002) Type Ⅲ-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell.Mol.MicrobioL 46,13-23.
    52.Tan,G.-X.,Ren,X.,Weng,Q.-M.,Shi,Z.-Y.,Zhu,L.-L.and He,G.-C.(2004) Mapping of a new resistance gene to bacterial bright in rice line introgressed from Oryza officinalis.Yi Chuan Xue Bao,31,724-729(in Chinese).
    53.Tsuge,S.,Furutani,A.,Fukunaka,R.,Oku,T.,Tsuno,K.,Ochiai,H.,Inoue,Y.,Kaku,H.and Kubo,Y.(2002) Expression of Xanthomonas oryzae pv.oryzae hrp genes in XOM2,a novel synthetic medium J.Gen.Plant Pathol.68,363-371.
    54.Tsuge,S.,Nakayama,T.,Terashima,S.,Ochiai,H.,Furutani,A.,Oku,T.,Tsuno,K.,Kubo,Y.and Kaku,H.(2006) Gene involved in transcriptional activation of the hrp regulatory gene hrpG.Xanthomonas oryzae pv.oryzae.J.Bacteriol.188,4158-4162.
    55.Tsuge,S.,Terashima S.,Furutani,A.,Ochiai,H.,Oku,T.,Tsuno,K.,Kaku,H.and Kubo,Y.(2005) Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv.oryzae.J.Bacteriol.187,2308-2314.
    56.Wei,Z.M.,R.J.Laby,C.H.Zumoff,D.W.Bauer,S.Y.He,A.Collmer,and S.V.Beer.1992.Harpin,elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora.Science 257:85-88.
    57.Wengelnik,K.and Bonas,U.(1996) HrpXv,an AraC-type regulator,activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv.vesicatoria.J.Bacteriol.178,3462-3469.
    58.Wengelnik,K.,Marie,C.,Russel,M.,and Bonas,U.1996a.Expression and localization of HrpA1,a protein of Xanthomonas campestris pv.vesicatoria essential for pathogenicity and induction of the hypersensitive reaction.J.Bacteriol.178:1061-1069.
    59.Wengelnik,K.,Rossier,O.and Bonas,U.(1999) Mutations in the regulatory gene hrpG of Xanthomonas campestris pv.vesicatoria result in constitutive expression of all hrp genes.J.Bacteriol.181,6828-6831.
    60.Wengeinik,K.,Van den Ackcrveken,G.and Bonas,U.(1996b) HrpG,a key hrp regulatory protein of Xanthomonss campestris pv.vesicatoria is homologous to two-component response regulators.MoL Plant-Microbe Interact.9,704-712.
    61.Zhu,W.,Magbanua,M.M.and White,F.F.(2000) Identification of two novel hrp-associated genes in the hrp gene duster of Xanthomonas oryzae pv.oryzae.J.Bacteriol.182,1844-1853.
    1.尹钧,任江萍,宋丽,李磊,余桂荣,师学珍.2004.小麦不同转基因受体材料的植株再生培养研究.麦类作物学报2004,24(2):1-4
    2.Chan M.,H.Cheng.,S.HO.1993.Agrobacterium-mediated production of transgenic rice plants expressing a chimeric -amylase promoter/glucuronidase gene[J].Plant Molecular Biology.22:491-506.
    3.Smith,R.H.1995.Agrobacterium tamefaciens transformation of monocoty ledoms[J].Crop Science.35:301-309.
    4.Debasis,P.,and Paramjit,K.2001.Wheat biotechnology:A minireview[J].Electronic Journal of Biotechnology,2001,4(2),This paper is available on line at http://www.ejb.org/content/vol4/issue2/full/4/
    5.Vasil V,Brown SM,Re D,Fromm ME,Vasil IK(1991) St(ab1y transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat.Bio/Technology 9 743-747
    6.Vasil V,Castillo A,Fromm M,Vasil I(1992) Herbicide resistant fertile transgenic wheat plants obtained by micro-projectile bombardment of regenerable embryogcnic callus.Bio/Technology 10:667-674
    7.Weeks,J.T.,O.D.Anderson,and A.E.Blechl.Plant Physiol.1993.Rapid Production of Multiple Independent Lines of Fertile Transgenic Wheat(Triticum aestivum)102:1077-1084
    8.翟文学,李小兵,田文忠等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种.中国科学(C辑),2000,30(2):200-206
    9.Huang J.Q.(黄健秋),乙M.Wei(卫志明),H.L An(安海龙).2000.H igh efficiency of genetic transfor mation 0f rice using A grobacterium mediated procedure.(植物学报)11:1172-1178
    10.刘庆法,唐克轩,叶建明,等.农杆菌介导的小麦遗传转化条件的研究[J].复旦学报(自然科学版),1998,37(4):569-572.
    11.王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究[J].遗传学报,2002,29(3):260-265.
    12.叶兴国,Shirley sato,徐惠君,等.小麦农杆菌介导转基因植株的稳定获得和检测[J].中国农业科学,2001,34(5):469-474.
    13.曾君祉,王东江,吴有强,等.用花粉管途径获得小麦转基因植株[J].中国科学(B辑),1993,23(3):256-262.
    14.Indra,K.V.,and O.D.Anderson.1997.Genetic engineering of wheat gluten,trends in plant science 8:292-297.
    15.雷振生,世界小麦生产近况[J].作物杂志,1996,2:36-38.
    16.夏光敏,李忠谊,贺晨霞,等.根癌农杆菌介导的小麦转基因植株再生[J].植物生理学报,1999,25(1):22-28.