无线协作通信网络中自适应调制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协作通信通过共享移动终端的天线来提高无线通信系统的容量或传输可靠性,有效对抗了信道衰落的不利影响,降低了服务中断概率。自适应传输是在满足目标误比特率的情况下,通过自适应改变调制方式来提高无线通信系统的频带利用率。天线分集是对抗信道衰落的一种有效手段,可以提高无线系统的容量和传输可靠性。常用的天线分集技术有接收分集、发送分集、多输入多输出(MIMO)最大比合并(MRC)天线分集等。为进一步提高协作无线通信系统的性能,本文研究将自适应传输技术和几种天线分集技术应用于协作无线通信系统的理论与技术。
     第一章阐述协作传输方式和几种常用的协作系统模型、协作通信系统中的自适应调制技术、MIMO天线分集技术及其在协作通信中的应用现状。
     第二章研究在变速率变功率(VRVP)、变速率恒定功率(VR)、固定速率截断式信道反转(TIFR)自适应传输策略下采用天线分集接收的单中继解码转发(DF)协作系统、多中继放大转发(AF)协作系统和多跳DF协作系统的平均信道容量,并推导了使用恒定功率自适应M进制正交幅度调制(MQAM)时,上述自适应协作系统的中断概率、频谱效率和平均误比特率(BER)的解析表达式。计算机仿真结果验证了理论分析的正确性。数值计算和仿真结果表明:采用分集接收能够改善自适应协作通信系统的性能,但随着系统中接收天线数目的增加,性能差距不断变小
     第三章研究采用MIMO MRC和自适应传输的两跳DF协作通信系统的性能,推导其在VRVT、VR、TIFR自适应传输策略下的中断概率、平均信道容量的精确解析表达式和使用恒定功率自适应MQAM的MIMO MRC两跳DF系统的中断概率、平均频谱效率及平均BER的解析表达式。数值计算和仿真结果表明:增加系统中节点的收/发天线数能够有效提高MIMO MRC两跳DF自适应协作通信系统的性能。
     第四章研究在通信节点的发送端采用空时分组码(STBC)、接收端采用MRC的两跳DF自适应协作通信系统的性能,推导其在VRVP、VR、TIFR自适应传输策略下的中断概率、平均信道容量的精确解析表达式和使用恒定功率自适应MQAM的STBC两跳DF系统的中断概率、平均频谱效率、平均BER的解析表达式,并与MIMO MRC系统进行比较。数值计算和仿真结果表明:采用STBC能够显著改善两跳DF自适应协作系统的性能;采用MIMO MRC的自适应协作系统性能要优于采用STBC的自适应协作系统。
     第五章为本文的结论。
Cooperative communication technique can be used to improve the capacity and transmission reliability of wireless communication systems by sharing the antennas of mobile terminals, which can effectively combat the adverse impact of channel fading and reduce the outage probability of service. Adaptive transmission technique can improve the spectral efficiency of wireless communication systems under a target bit error rate(BER) by changing the mode of modulation adaptively. Antenna diversity is a powerful technique to combat channel fading, which can be used to improve the capacity and transmission reliability of wireless communication systems. The common antenna diversity technique includes receive diversity, transmit diversity, multiple-input multiple-output (MIMO) maximal ratio combining (MRC) and so on. For further improving the performance of cooperative wireless communication system, this thesis investigates the theory and technique of cooperative wireless communication system using adaptive transmission technique and several antenna diversity techniques.
     Chapter 1 presents a brief review of the transmission manners of cooperative communication and several common cooperative system models, adaptive modulation technique in cooperative communication systems, and MIMO antenna diversity technique and its application in cooperative systems.
     Chapter 2 derives the average channel capacity of single relay decode-and-forward(DF) cooperative system, multiple relay amplify-and-forward(AF) cooperative system, and multi-hop relay cooperative system which uses diversity reception technique under variable rate and variable power(VRVP), variable rate with constant power(VR), and truncated channel inversion with fixed rate(TIFR) adaptive transmission strategies, respectively. The closed-form expressions of outage probability, spectral efficiency, and the average BER of the above adaptive cooperative systems using constant power M-ary quadrature amplitude modulation(MQAM) are derived. Simulation results verify the accuracy of theoretical analysis. Numerical and simulation results show that the performance of adaptive cooperative communication systems can be improved by using diversity reception, but the distinction of performance will be getting smaller with the increase of the number of receive antenna.
     Chapter 3 investigates the performance of two-hop DF cooperative communication system using MIMO MRC and adaptive transmission. The exact closed-form expressions of outage probability and average channel capacity of the above system under VRVP, VR, and TIFR adaptive transmission strategies are derived. The closed-form expressions of outage probability, average spectral efficiency, and average BER of MIMO MRC two-hop DF system using constant power MQAM are also presented. Numerical and simulation results show that the performance of MIMO MRC two-hop DF cooperative communication system can be improved by increasing the number of transmit and receive antennas of the nodes.
     Chapter 4 investigates the performance of two-hop DF adaptive cooperative communication system using space time block codes(STBC) on transmit terminal of the communicate nodes, and MRC on receive terminal. The exact closed-form expressions of outage probability and average channel capacity of the above system under VRVP, VR, and TIFR adaptive transmission strategies are derived, respectively. The closed-form expressions of outage probability, average spectral efficiency, and average BER of STBC two-hop DF system using constant power MQAM are also obtained. We also compared the above system with the adaptive cooperative systems with MIMO MRC. Numerical and simulation results show that the performance of two-hop DF adaptive cooperative system can be effectively improved by using STBC, and that the performance of MIMO MRC adaptive cooperative system is superior to that of adaptive cooperative system with STBC.
     Chapter 5 concludes the thesis.
引文
[1]Cover T., Gamal A. E.. Capacity theorems for the relay channel[J]. IEEE Trans. Inform. Theory,1979,25(5): 572-584.
    [2]Laneman J. N., Wornell G. W., and Tse D. N. C.. An efficient protocol for realizing cooperative diversity in wireless networks[C]. in Proc. IEEE International Symposium on Information Theory(ISIT), Washington DC, USA,2001,294.
    [3]Hunter T. E., Nosratinia A.. Cooperation diversity through coding[C]. in Proc. IEEE International Symposium on Information Theory(ISIT), Lausanne, Switzerland,2002,220.
    [4]Ikki S., Ahmed M. H.. Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel[J]. IEEE Commun. Lett.,2007,11(4):334-336.
    [5]张静美,邵春菊,王莹等.基于选择性分集技术的无线中继系统性能[J].电子与信息学报,2006,28(3):419-423.
    [6]Ikki S., Ahmed M. H.. Performance of decode-and-forward cooperative diversity networks over Nakagami-m fading channels[C]. in Proc. IEEE Global Telecommunications Conference (GLOBECOM), Washington DC, USA,2007,4328-4332.
    [7]Datsikas C. K., Sagias N. C., Lazarakis F I, and Tombras G S. Outage analysis of decode-and-forward relaying over Nakagami-m fading channels[J]. IEEE Signal Processing Lett.,2008,15:41-44.
    [8]Costa da D. B., AIssa S.. Performance of cooperative diversity networks:analysis of amplify-and-forward Relaying under equal-gain and maximal-ratio combining[C]. in Proc. IEEE International Conference on Communications(ICC), Dresden,2009,1-5.
    [9]Ikki S., Ahmed M. H.. Performance analysis of decode-and-forward cooperative diversity using differential EGC over Nakagami-m fading channels[C]. in Proc. IEEE Vehicular Technology Conference(VTC), Barcelona,2009,1-6.
    [10]Su W., Liu X.. On optimum selection relaying protocols in cooperative wireless networks[J]. IEEE Trans. Commun.,2010,58(1):52-57.
    [11]Ikki S., Ahmed M. H.. Exact error probability and channel capacity of the best-relay cooperative-diversity networks[C]. IEEE Signal Processing Lett.,2009,16(12):1051-1054.
    [12]Ikki S., Ahmed M. H.. Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-rely selection[J]. IEEE Trans. Commun.,2010,58(1):68-72.
    [13]Sadek A., Zhu H., Liu K. J. R.. A distributed relay-assignment algorithm for cooperative communication in wireless networks[C]. in Proc. IEEE International Conference on Communications(ICC), Istanbul,2006, 1592-1597.
    [14]邹玉龙,郑宝玉,崔景伍等.基于跨层机制的最佳协作中继选择及其系统实现[J].通信学报,2008, 29(8),1-10.
    [15]余菲,杨绿溪.基于中继协作与选择的有效分集方案[J].通信学报,2010,31(8),45-53.
    [16]高伟东,王文博,袁广翔等.协作通信中的中继节点选取和功率分配联合优化[J].北京邮电大学学报,2008,31(2),68-71.
    [17]李国兵,朱世华,惠鏸.最佳中继协作通信系统的功率分配算法[J].电子学报,2008,36(10).
    [18]Fareed M. M., Shakeel U. R., and Uysal M.. Performance analysis of a multi-relay two-way cooperative communication system over Rayleigh fading channels[C]. in Proc. IEEE PACRIM, Victoria BC,2009, 211-214.
    [19]Li C., Yang L., Zhu W. P., and He Z Y. Cooperative schemes for two-way relaying protocol[C]. in Proc. IEEE PRIMEASIA, Shanghai,2009,49-52.
    [20]Li C., Yang L., and Shi Y.. An asymptotically optimal cooperative relay scheme for two-way relaying protocol[J]. IEEE Signal Processing Lett.,2010,17(2):145-148.
    [21]Li Q., Ting S. H., Pandharipande A., and Han Y.. Adaptive two-way relaying and outage analysis[J]. IEEE Trans. Wireless Commun.,2009,8(6):3288-3299.
    [22]程卫军,朱柏承.Nakagami衰落信道下多跳合作分集系统的中断率[J].电子与信息学报,2006,28(10),1892-1896.
    [23]Alouini M. S., Goldsmith A. J.. Adaptive modulation over Nakagami fading channels[J]. Wireless Personal Communications,2000,13:119-143.
    [24]Hasna M. O.. On the capacity of cooperative diversity systems with adaptive modulation[C]. in Proc. IEEE Wireless and Optical Communications Networks(WOCN),2005,432-436.
    [25]Nechiporenko T, Plan K., Tellambura C.. On the capacity of Rayleigh fading cooperative systems under adaptive transmission [J]. IEEE Trans. Wireless Commun.,2009,8(4),1626-1631.
    [26]Vo-Nguyen B. Q., Duong T. Q., and Tran N. N.. Ergodic capacity of cooperative networks using adaptive transmission and selection combining[C]. in Proc. IEEE International Conference on Signal Processing and Communication Systems(ICSPCS), Omaha NE,2009,1-6.
    [27]Kalansuriya P., Tellambura C.. Capacity analysis of a decode-and-forward cooperative network under adaptive transmission [C]. in Proc. IEEE Canadian Conference on Electrical and Computer Engineering(CCECE), St. John's, NL,2009,298-303.
    [28]Farhadi G., Beaulieu N. C.. Capacity of amplify-and-forward multi-hop relaying systems under adaptive transmission[J]. IEEE Trans. Commun.,2010,58(3):758-763.
    [29]Hwang K. S., Ko Y. C., and Alouini M. S.. Performance analysis of incremental Relaying transmission with adaptive QAM over Nakagami-m fading channels[C]. in Proc. IEEE Wireless Communications and Mobile Computing Conference (IWCMC), Crete Island,2008,458-463.
    [30]Hwang K. S., Ko Y. C., and Alouini M. S.. Performance analysis of opportunistic incremental relaying with adaptive modulation over cooperative networks[C]. in Proc. IEEE International Symposium Wireless Pervasive Computing(ISWPC), Santorini,2008,586-590.
    [31]Hwang K. S., Ko Y. C.. Performance analysis of incremental Opportunistic Relaying over Identically and over non-identically distributed cooperative paths[J]. IEEE Trans. Wireless Commun.,2009,8(4): 1953-1961.
    [32]Yazdian E., Pakravan M. R.. Adaptive modulation technique for amplify & forward cooperative diversity and fairness analysis[C]. in Proc. IEEE International Conference on Telecommunications(ICT), St. Petersburg,2008,1-6.
    [33]Choi S., Alouini M. S., Yang H. C., and Hasna M. O.. Comparison of Relaying strategies for cooperative diversity systems with adaptive modulation[C]. in Proc. IEEE Vehicular technology conference (VTC), Barcelona,2009,1-5.
    [34]Hwang K. S., Ko Y. C., and Alouini M S. Low complexity cooperative communication with switched Relay selection and adaptive modulation[C]. in Proc. IEEE Vehicular technology conference (VTC), Barcelona, 2009,1-5.
    [35]Chen H., Ahmed M. H.. Throughput enhancement in cooperative diversity wireless networks using adaptive modulation[C]. in Proc. Canadian Conference on Electrical and Computer Engineering(CCECE), Niagara Falls, ON,2008,000527-000530.
    [36]Zhang Y. Y., Ma Y., and Tafazolli R.. Modulation-adaptive cooperation schemes for wireless networks[C]. in Proc. IEEE Vehicular technology conference (VTC), Singapore,2008,1320-1324.
    [37]Lin Z., Erkip E., Ghosh M.. Adaptive modulation for coded cooperative systems[C]. Signal processing advances in wireless communications,2005,615-619.
    [38]Feghhi M. M., Abolhassani B.. Spectrally efficient cooperative coded schemes for next generation wireless networks[C]. in Proc. IEEE Canadian Conference on Electrical and Computer Engineering(CCECE), St. John's, NL,2009,152-156.
    [39]Nechiporenko T., Kalansuriya P., and Tellambura C.. Performance of optimum switching adaptive M-QAM for amplify-and-forward relays[J]. IEEE Trans. Veh. Technol.,2009,58(5):2258-2268.
    [40]Lo T. K. Y.. Maximum ratio transmission [J]. IEEE Trans. Commun.,1999,47(10):1458-1461.
    [41]Maaref A., Aissa S.. Closed-form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems [J]. IEEE Trans. Commun.,2005,53(7):1092-1095.
    [42]Rao B. D., Yan R.. Performance of maximal ratio transmission with two receive antennas [J]. IEEE Trans. Commun.,2003,51(6):894-895.
    [43]Dighe P. A., Mallik R. K., and Jamuar S.. Analysis of transmit-receive diversity in Rayleigh fading[J]. IEEE Trans. Commun.,2003,51(4):694-703.
    [44]Li M., Lin M., and Gong Z. Q.. et al. Performance analysis of MIMO MRC systems [J]. Electronics Lett., 2007,43(23).
    [45]Yang L., Zhang Q. T.. Outage performance of MIMO relay channels with maximal ratio transmission [J]. Electronics Lett.,2009,45(5).
    [46]Yilmaz E., Sunay M.O.. Amplify-and-forward capacity with transmit beamforming for MIMO multiple-relay channels[C]. in Proc. IEEE GLOBECOM, Washington DC,2007,3873-3877.
    [47]Talebi A., Krzymien W. A.. Multiple-antenna multiple-relay cooperative communication system with beamforming[C]. in Proc. IEEE GLOBECOM, Singapore,2008,2350-2354.
    [48]Yilmaz E., Sunay M.O.. Effects of transmit beamforming on the capacity of multi-hop MIMO relay channels [C]. in Proc. IEEE PIMRC, Athens,2007,1-5.
    [49]Rong Y., Gao F. F.. Optimal beamforming for non-regenerative MIMO relays with direct link[J]. IEEE Commun. Lett.,2009,13(12),926-928.
    [50]李春国,仲崇显,杨绿溪.中继辅助MIMO系统中基于有限反馈的分布式波束成形[J].通信学报,2010,31(7),61-67.
    [51]唐岚,王树勋,梁应敞.在相关多入多出(MIMO)信道中的可变速率多用户分集技术[J].电子学报,2005,33(4),629-633.
    [52]Paris J. F., Goldsmith A. J.. Adaptive modulation for MIMO beamforming under average BER constraints and imperfect CSI [C]. in Proc. IEEE International Conference on Communications(ICC), Istanbul,2006, 1312-1317.
    [53]Huang J. K., Yang L.. MIMO MRT-MRC systems with rate adaptive modulation[C]. in Proc. Networks Security, Wireless Communications and Trusted Computing(NSWCTC), Wuhan, Hubei,2009,12-16.
    [54]Cocheril Y., Abdaoui A., Berbineau M., and Moniak G. Cooperative MIMO communications for transport applications[C]. in Proc. IEEE ITS Telecommunications(ITST), Phuket,2008,317-322.
    [55]Chen S. P., W, Wang W. B., Zhang X., and Sun Z.. Performance analysis of OSTBC transmitssion in amplify-and-forward cooperative relay networks[J]. IEEE Trans. Veh. Technol.,2010,59(1):105-113.
    [56]Yang Q., Kwak K. S., and Fu F. Closed-form symbol error rate expression of decode-and-forward relaying using orthogonal space-time block coding[J]. IET Commun.,2010,4(3):368-375.
    [57]Ganwani V., Dey B. K., Sharma G. V. V., and Merchant S. N.. et al. Performance analysis of amplify and forward based cooperative diversity in MIMO relay channels[C]. in Proc. IEEE Vehicular technology conference (VTC), Barcelona,2009,1-5.
    [58]Atapattu S., Rajatheva N., and Tellambura C.. Performance analysis of TDMA relay protocols over Nakagami-m fading[J]. IEEE Trans. Veh. Technol.,2010,59(1):93-104.
    [59]Sharma G. V. V., Ganwani V., Desai U. B., and Merchant S. N.. Maximum Likelihood Detection for Cooperative Diversity in MIMO Relay Channels[C]. in Proc. IEEE Vehicular technology conference (VTC), Calgary BC,2008,1-5.
    [60]Song Y., Shin H., and Hong E. K.. MIMO Cooperative Diversity with Scalar-Gain Amplify-and-Forward Relaying[J]. IEEE Trans. Commun..2009,57(7):1932-1938.
    [61]Bastami A. H., Olfat A.. Optimal SNR-based selection relaying scheme in multi-relay cooperative networks with distributed space-time coding[J]. IET Commun.,2010,4(6):619-630.
    [62]Xu Y., Bail Z., and Kwak K.. Outage Probability Evaluation of an Improved Cooperative Network Based on STBC Scheme[C]. in Proc. International Symposium on Communica- tions and Information Technology(ISCIT), Icheon,2009,710-714.
    [63]Vajapeyam M., Mitra U.. Performance analyisis of distributed space-time coded protocols for wireless multi-hop communications[J]. IEEE Trans. Wireless Commun.,2010,9(1):122-133.
    [64]赵贤敬,郑宝玉,钱小聪等.协作发射分集系统及其误码性能分析[J].通信学报,2007,28(1),40-48.
    [65]Musavian L., Nakhai M. R.. On the capacity of orthogonalised correlated MIMO channels under different adaptive transmission techniques[J]. IET Commun.,2007,1(3):464-471.
    [66]Maaref A., AIssa S.. Capacity of space-time block codes in MIMO Rayleigh fading channels with adaptive transmission and estimation errors[J]. IEEE Trans. Wireless Commun.,2005,4(5):2568-2578.
    [67]Yu X. B., Li Y. F., Zhou T. T., and Xu D. H.. Performance analysis of discrete-rate adaptive modulation with space-time coding in multiple antennas system[C]. Wuhan:Proc of IEEE NSWCTC,2010:105-108.
    [68]Huang J. L., Signell S.. On performance of adaptive modulation in MIMO systems using orthogonal space-time block codes[J]. IEEE Trans. Veh. Technol.,2009,58(8):4238-4247.
    [69]Kim J. B., Kim D.. Joint adaptive modulation and power allocation for variable-rate space-time block codes[J]. IEEE Commun. Lett.,2008,12(1):26-28.
    [70]Yu X. B., Leung S. H., Mow W. H., and Wong W. K.. Performance of variable-power adaptive modulation with space-time coding and imperfect CSI in MIMO systems[J]. IEEE Trans. Veh. Technol.,2009,58(4): 2115-2120.
    [71]Alouini M. S., Goldsmith A. J.. Capacity of Rayleigh fading channels under different adaptive transmitssion and diversity-combining techniques [J]. IEEE Trans. Veh. Technol.,1999,48(4):1165-1181.
    [72]Gradshteyn I. S., Ryzhik I. M.. Table of Integrals, Series, and Products[M]. San Diego, CA:Academic,1994.
    [73]Musavian L., Dohler M., Nakhai M. R., et al. Closed-form capacity expressions of orthogonalized correlated MIMO channels[J]. IEEE Commun. Lett.,2004,8(6):365-367.
    [74]Lee J. S., Miller L. E.. CDMA System engineering[M]. Arech house publishers,1998.
    [75]Chen Y., Tellambure C.. Performance analysis of maximum ratio transmission with imperfect channel estimation[J]. IEEE Commun. Lett.,2005,9(4):322-324.
    [76]Shin H., Lee J. H.. Performance analysis of space-time block codes over keyhole Nakagami-m fading channels[J]. IEEE Trans. Veh. Technol.,2004,53(2):351-362.