葡萄酚类物质及其生物合成相关结构基因表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以‘左山一’、‘左山二’、‘双红’、‘双优’、‘双丰’5个山葡萄品种和2个山-欧杂种葡萄品种‘左红一’、‘左优红’果皮和酒为试验材料,应用HPLC-MS/MS技术,对果实发育过程中果皮及酒中花色苷和非花色苷酚种类及含量变化规律进行了研究。同时,以‘双红’山葡萄果实为试材,应用HPLC-MS/MS和实时荧光定量PCR技术对果实发育过程中酚类物质的含量变化及生物合成相关的14个结构基因mRNA转录水平进行了定量分析。
     研究结果表明,不同品种果皮中花色苷组成不同,在7个品种果实发育过程中果皮中共检测到花色苷15种。其中,双糖苷6种,单糖苷9种,单糖苷中检测出乙酰化葡萄糖苷1种,香豆酰化葡萄糖苷1种。7个品种转色前均未检测到花色苷,随着果实发育,花色苷含量不断增加,到达成熟时含量最高。主成分分析表明,花青素类、二甲花翠素类和甲基花青素类花色苷对果皮中花色苷的组成起决定作用。7个品种酒中共检测到花色苷15种。其中,双糖苷6种,单糖苷9种,在果皮及酒中首次检测到花葵素-3,5-双葡萄糖苷,在酒中未检测出乙酰化和香豆酰化花色苷。主成分分析表明,花青素类、甲基花翠素类和花翠素类花色苷对酒中花色苷组成起决定作用。
     7个品种果实发育过程中果皮中共检测到18种非花色苷酚。其中,苯甲酸类3种,肉桂酸类4种,黄烷-3-醇类3种,黄酮醇类5种,白藜芦醇类3种。果皮中非花色苷酚的变化为转色前含量呈上升趋势,转色期至100%着色呈下降趋势,而后缓慢上升至成熟。主成分分析表明,肉桂酸类、白藜芦醇类和黄酮醇类对果实发育过程中果皮中非花色苷酚的组成起决定作用。在7个品种酒中,共检测到30种非花色苷酚。其中,苯甲酸类5种,肉桂酸类7种,黄烷-3-醇类5种,黄酮醇类9种,白藜芦醇类4种。主成分分析表明,肉桂酸类、黄烷-3-醇类和苯甲酸类对酒中非花色苷酚组成起决定作用。
     ‘双红’山葡萄果实的生长曲线表现为双“S”型。转色前未检测到花色苷,转色后花色苷不断积累,至成熟含量最高,花翠素类、甲氧基类、单糖苷类花色苷与总花色苷的变化规律相一致。苯甲酸类花后2-6周未检测到,花后8周至100%着色含量呈上升趋势,而后下降至成熟。肉桂酸类、黄烷-3-醇类在果实整个发育过程中含量呈下降趋势。转色前未检测到白藜芦醇类物质,转色期至成熟含量呈上升趋势。
     ‘双红’果实发育过程中,酚类物质生物合成相关结构基因的表达因果实发育时期而不同。PAL、CHI1、F3H2、DFR、LDOX花后2-4周为上调表达,花后6周至转色期为下调表达,转色期至成熟为上调表达,转色期至成熟花色苷的含量变化与这5个酶基因的转录水平呈正相关;CHS3、RS、UFGT、GST、OMT花后2周至转色期为下调表达,转色期至成熟为上调表达,转色期至成熟花色苷的含量变化与CHS3、UFGT、GST的转录水平呈正相关,白藜芦醇类的含量变化与RS的转录水平呈正相关,甲氧基类花色苷的含量变化与OMT的转录水平呈正相关;F’3’H花后2-4周为上调表达,花后6周为下调表达,花后8周至成熟为上调表达,转色期至成熟花青素类花色苷的含量变化与F3'H的转录水平呈正相关;F3'5'H花后2周至转色期为下调表达,转色后为上调表达,转色期至成熟花翠素类花色苷的含量变化与F3'5'H的转录水平呈正相关ANR花后2周至转色期为上调表达,转色后为下调表达,花后2周至成熟表儿茶素的含量变化与ANR的转录水平呈正相关;LAR2花后2周至转色期为上调表达,转色后为下调表达,花后2周至成熟儿茶素的含量变化与LAR2的转录水平呈正相关。
The anthocyanin and non-anthocyanin phenolic compounds profiles in grapevine skins and wines from five varieties('Zuoshanyi','Zuoshaner','Shuanghong','Shuangyou' and 'Shuangfeng')of Vitis amurensis and two hybrid varieties('Zuohongyi' and 'Zuoyouhong') were investigated by HPLC-MS/MS for revealing the changes of their varieties and contents during berry development. In combination with real-time fluorescence quantitative PCR, the phenolic compounds and mRNA transcriptional level of 14 structural genes related to biosynthesis of phenolic compounds were analyzed in variety of'Shuanghong' during berry development.
     The results indicated that the component of anthocyanins greatly varied with grapevine varieties. A total of 15 kinds of anthocyanins including 6 diglucosides and 9 monoglucosides of anthocyanins were identified in skins, in which one acetylglucoside and one coumarylglucoside were detected. No anthocyanins were detected until veraison, and then the anthocyanins contents increased with berry development and reached the maximum at the stage of maturity. Principal component analysis showed that cyanidin, malvidin and peonidin derivatives played key roles in the composition of anthocyanins in berry skins. In addition,15 kinds of anthocyanins were detected in wines, including 6 diglucosides and 9 monoglucosides of anthocyanidins. Pelargonidin-3,5-diglucosides was first found in the skins and wines, however, no acetyl and coumaryl anthocyanin was detected in wines. Accordingly, the cyanidin, petunidin and delphinidin derivatives played crucial roles in the composition of anthocyanins in wines, as indicated by principal component analysis.
     A total of 18 kinds of non-anthocyanin phenolic compounds were identified in the skins during berry development, which included 3 benzoic acids,4 cinnamic acids,3 flavan-3-ols,5 flavonols and 3 resveratrols. The contents of non-anthocyanin phenolic compounds kept increasing before veraison, and decreased afterwards until 100% colored, thereafter the contents of non-anthocyanin phenolic compounds tended to increase again until maturity. The cinnamic acids, resveratrols and flavonols played crucial roles in the composition of non-anthocyanin phenolic compounds in berry skins, according to principal component analysis. There were also 30 non-anthocyanin phenolic compounds in their wines, including 5 benzoic acids,7 cinnamic acids,5 flavan-3-ols,9 flavonols and 4 resveratrols. Principal component analysis showed that the composition of non-anthocyanin phenolic compounds depended on cinnamic acids,flavan-3-ols and benzoic acids.
     The growth dynamics of'Shuanghong'can be fitted to a double-sigmoid curve. No anthocyanins were detected before veraison, but the anthocyanins content tended to increase in the wake of veraison and reached a peak at stage of maturity. The content of delphinidin, methoxy and monoglucoside of anthocyanins varied similar to that of anthocyanin. Benzoic acids were not detected during the 2nd and 6th week after flowering, but the contents increased from the 8th week until 100% colored, and then decreased until maturity. The contents of cinnamic acids and flavan-3-ols showed a tendency to decreasing during berry development. Resveratrols were detected only after veraison, and the contents tended to increase until maturity.
     The expression of structural gene in relation to biosynthesis of phenolic matters in 'Shuanghong' varied with the berry development. The genes of PAL, CHI1,F3H2, DFR,and LDOX were up-regulated from the 2nd to 4th week after flowering, down-regulated from the 6th week to veraison, and then up-regulated from veraison to maturity. The genetic transcriptional level had a positive correlation with the content of anthocyanins from veraison to maturity stage.The CHS3,RS, UFGT, GST, and OMT were down-regulated from the 2nd week during flowering and veraison stage, and then up-regulated from veraison to maturity. The genetic transcriptional level also showed a positive correlation with the content of anthocyanins from veraison to maturity stage. This positive correlation was also abserved between the RS transcriptional level and the content of resveratrols, and between OMT transcriptional level and the content of methoxyl-anthocyanins as well. F3'H expression was up-regulated from the 2nd to 4th week after flowering, down-regulated during the 6th to 8th week, and then up-regulated again from the 8th week to maturity. F3'H transcriptional level was correlated positively with the content of cyanidin anthocyanins from veraison to maturity. F3'5'H expression was down-regulated from the 2nd week after flowering to veraison stage, and then up-regulated after veraison. F3'5'H transcriptional level was correlated positively with the content of delphinidin anthocyanins from veraison to maturity. ANR expression was up-regulated from the 2nd week after flowering until the veraison stage, and then down-regulated after veraison, its transcriptional level was positively related to the content of epicatechin from the 2nd week after flowering until maturity. LAR2 expression was up-regulated from the 2nd week after flowering until the veraison stage, and then down-regulated thereafter, its transcriptional level had a positive relationship with the content of catechin since the 2nd week after flowering until maturity.
引文
[1]Hardie WJ, Considine JA. Response of grapes to water-deficit stress in particular stages of development. American Journal of Enology and Viticulture,1976,27(2):55-61
    [2]Gawel R. Red wine astringency:a review. Australian Journal of Grape and Wine Research, 1998,4(2):74-95
    [3]Picinelli A, Suarez B, Garcia L, Mangas JJ. Changes in phenolic contents during sparkling apple winemaking. American Journal of Enology and Viticulture,2000,51(2):144-149
    [4]孙明霞,王宝增,范海,赵可夫.叶片中的花色素苷及其对植物适应环境的意义.植物生理学通讯,2003,39(6):688-694
    [5]徐渊金,杜琪珍.花色昔分离鉴定方法及其生物活性.食品与发酵工业,2006,32(3):67-72
    [6]Wu X, Ronald L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common food in the United States:fruits and berries.Journal of Agricultural and Food Chemistry,2005,53(7):2589-2599
    [7]李华,王华,袁春龙,王树生.葡萄酒化学.北京:科技出版社,2005:106-110
    [8]凌关庭.红葡萄酒及其衍生制品的生理功能(续).江苏食品与发酵,2001,1(14):18-20
    [9]Bakker J, Timberlake CF. Isolation identification and characterization of new color-stable anthocyanins occurring in some wines. Journal of Agriculture and Food Chemistry,1997, 45(1):35-43
    [10]Fulcrand H, Benabdeljalil C, Rigaud J, Cheynier V, Moutounet M. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry,1998,47(7):1401-1407
    [11]Mateus N, Silva AMS,Vercauteren J, de Freitas V. Occurrence of anthocyanin-derived pigments in red wines. Journal of Agriculture and Food Chemistry,2001,49(10): 4836-4840
    [12]Hayasaka Y, Asenstorfer RE. Screening for potential pigments derived from anthocyanins in red wine using nanoelectrospray tandem mass spectrometry. Journal of Agriculture and Food Chemistry,2002,50(4):756-761
    [13]Mateus N, Silva AMS,Santos-Buelga C, Rivas-Gonzalo JC, de Freitas V. Identification of anthocyanin-flavanol pigments in wines by NMR and mass spectrometry. Journal of Agriculture and Food Chemistry,2002,50(7):2110-2116
    [14]Mateus N, Carvalho E, Carvalho ARF, Melo A, Gonzalez-Paramas AM, Santos-Buelga C, Silva AMS,de Freitas V. Isolation and structural characterization of new acylated anthocyanin-vinyl-flavanol pigments occurring in aging wines. Journal of Agriculture and Food Chemistry,2003,51(1):277-282
    [15]Schwarz M, Jerz G, Winterhalter P.Isolation and structure of Pinotin A, a new anthocyanin derivative from Pinotage wine. Vitis,2003,42(2):105-106
    [16]Vivar-Quintana AM, Santos-Buelga C, Rivas-Gonzalo JC. Anthocyanin-derived pigments and colour of red wines. Analytica Chimica Acta,2002,458(1):147-155
    [17]唐传核,杨晓泉.葡萄及葡萄酒生理活性物质的研究概况(Ⅰ)生理活性物质概况.中国食品添加剂,2003,(1):41-48
    [18]唐传核,彭志英.天然花色苷类色素的生理功能及应用前景.冷饮与速冻食品工业,2000,6(1):26-28
    [19]钟瑞敏,姚宝书.甜红葡萄酒花色苷增色稳定应用研究.食品科学,2002,23(8):44-47
    [20]Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry,2003,64(5):923-933
    [21]温普红,王晓玲,杨得锁.葡萄籽中花色素的分离研究.精细化工,2001,18(4):218-219
    [22]邓军哲,屈慧鸽.葡萄花色素的研究概况.中外葡萄与葡萄酒,1996,(2):25-27
    [23]段长青,贺普超,康靖全.中国葡萄野生种花色素双糖苷的研究.西北农业大学学报,1997,25(5):23-28
    [24]Ibern-Gomez M, Andres-Lacueva C, Lamuela-Raventos RM, Waterhouse AL. Rapid HPLC analysis of phenolic compounds in red wines. American Journal of Enology and Viticulture,2002,53(3):218-221
    [25]Alcalde-Eon C, Escribano-Bailon MT, Santos-Buelga C, Rivas-Gonzalo JC. Changes in the detailed pigment composition of red wine during maturity and ageing:a comprehensive study. Analytica Chimica Acta,2006,563(1-2),238-254
    [26]龚盛昭.天然食用色素的化学结构和稳定性的关系.广州化工,2002,30(4):11-14
    [27]郭金耀,杨晓铃.葡萄皮色素的提取及其性能研究.山西农业大学学报,1994,14(4):415-418
    [28]许辉,米拉,田福利.天然葡萄皮紫色素提取条件的研究.内蒙古农牧学院学报,1998,19(1):64-67
    [29]Cantos E, Espin JC, Tomas-Barberan FA. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS.Journal of Agricultural and Food Chemistry,2002,50(20):5691-5696
    [30]Kennedy JA, Matthews MA, Waterhouse AL. Effect of maturity and vine water status on grape skin and wine flavonoids. American Journal of Enology and Viticulture,2002,53(4): 268-274
    [31]Ryan JM, Revilla E. Anthocyanin composition of Cabernet Sauvignon and Tempranillo grapes at different stages of ripening. Journal of Agricultural and Food Chemistry,2003, 51(11):3372-3378
    [32]Yokotsuka K, Singleton VL. Effects of seed tannins on enzymatic decolorization of wine pigments in the presence of oxidizable phenols. American Journal of Enology and Viticulture,2001,52(2):93-99
    [33]Esteban MA, Villanueva MJ, Lissarrague JR. Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo(Vitis vinifera L.) grape berries during ripening. Journal of the Science of Food and Agriculture,2001,81(4):409-420
    [34]Yokotsuka K, Nagao A, Nakazawa K, Sato M. Changes in anthocyanins in berry skins of Merlot and Cabernet Sauvignon grapes grown in two soils modified with limestone or oyster shell versus a native soil over two years.American Journal of Enology and Viticulture,1999,50(1):1-12
    [35]邵建辉.葡萄与葡萄酒中花色素苷分离和鉴定方法.中外葡萄与葡萄酒,2006,(2):44-46
    [36]姜平平,吕晓玲,朱惠丽.花色苷类物质分离鉴定方法.食品添加剂,2003,(4):108-111
    [37]卢钰,董现义,杜景平,李永强,王明林.花色苷研究进展.山东农业大学学报(自然科学版),2004,35(2):315-320
    [38]宋长铣.花色素类色素的分析方法.化工时刊,1999,13(1):20-24
    [39]秦含章.葡萄酒分析化学.北京:中国轻工业出版社,1991,734-735
    [40]Riccardo F. Mass spectrometry in grape and wine chemistry. Part 1:Polyphenols. Mass Spectrometry Reviews,2003,22:218-250
    [41]Baldi A, Romani A, Mulinacci N, Vincieri FF, Casettaa B.HPLC/MS application to anthocyanins of Vitis vinifera L. Journal of Agriculture and Food Chemistry,1995,43(8): 2104-2109
    [42]Revilla I, Perz-Magarino S,Gonzalez-SanJose ML, Beltran S.Identification of anthocyanin derivatives in grape skin extracts and red wines by liquid chromatographic with diode array and mass spectrometric detection. Journal chromatographic A,1999, 847(1-2):83-90
    [43]任玉华,李华.天然色素.花色苷.食品科学,1995,16(7):22-27
    [44]Negueruela AI, Echavarri JF, Perez MM. A study of correlation between enological colorimetric indexes and CIE colorimetric parameters in red wines. American Journal of Enology and Viticulture,1995,46(3):353-356
    [45]范彩霞,曹磊,胡涛.CIE色度学在彩色印品质量检测中的应用.印刷质量与标准化,2006,(11):48-49
    [46]Ayala F, Echavarri JF, Negueruela AI. A new simplified method for measuring the color of wines.III. all wines and brandies. American Journal of Enology and Viticulture,1999, 50(3):359-363
    [47]Perez-Caballero V, Ayala F, Echavarri J, Negueruela AI. Proposal for a new standard OIV method for determination of chromatic characteristics of wine. American Journal of Enology and Viticulture,2003,54(1):59-62
    [48]孙建平.葡萄与葡萄酒中酚类物质LC-UV-MS/MS谱库构建及应用[博士学位论文].北京:中国农业大学,2006,2-3
    [49]Shahidi F, Janitha PK,Wanasundara PD. Phenolic antioxidants.Critical Reviews in Food Science and Nutrition,1992,32(1):67-103
    [50]Winter M, Herrmann K. Esters and glucosides of hydorxycinnamic acids in vegetables. Journal of Agricultural and Food Chemistry,1986,34(4):616-620
    [51]Klick S,Herrmann K. Glucosides and glucose esters of hydroxybenzico acids in plants. Phytochemistry,1988,27(7):2177-2180
    [52]Kroon PA, Williamson G Hydroxycinnamates in plants and food:current and future perspectives.Journal of Science of Food and Agriculture,1999,79(3):355-361
    [53]Clifford MN. Chlorogenic acids and other cinnamates-nature, occurrence, dietary burden, absorption and metabolism. Journal of Science of Food and Agriculture,2000,80(7): 362-372
    [54]陈建业.葡萄酒中酚酸及葡萄果实苯丙烷类代谢途径研究[博士学位论文].北京:中国农业大学,2005,61-65
    [55]姜寿梅.西拉葡萄果实成熟过程中果皮中非花色苷酚类物质的变化.中外葡萄与葡萄酒,2008,(6):20-24
    [56]Palomero F, Morata A, Benito S, Gonzalez MC, Suarez-Lepe JA. Conventional and enzyme-assisted autolysis during ageing over lees in red wines:influence on the release of polysaccharides from yeast cell walls and on wine monomeric anthocyanin content. Food Chemistry,2007,105(2):838-846
    [57]Isidro HG, Lorenzo E, Almudena V. Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chemistry,2005,92(2),269-283
    [58]Somers TC, Verette E, Pocock KF. Hydroxycinnamate esters of Vitis vinifera:changes during white vinification, and effects of exogenous enzymic hydrolysis. Journal of the Science of Food and Agriculture,1987,40(1):67-78
    [59]Perez-Magario S, Gonzalez-SanJose ML. Polyphenols and colour variability of red wines made from grapes harvested at different ripeness grade. Food Chemistry,2006,96(2): 197-208
    [60]陈海燕.艾佐迈肥料和橡木桶陈酿对赤霞珠干红葡萄酒酚类物质的影响[硕士学位论文].北京:中国农业大学,2007,29-30
    [61]Puech JL,Feuillat F, Mosedale JR. The tannins of oak heartwood:structure, properties, and theirinfluence on wine flavor. American Journal of Enology and Viticulture,1999,50(4): 469-478
    [62]Forrest GI, Bendall DS.The distribution of polyphenols in the tea plant (Camellia sinensis L.).Bilchemical Journal,1969,113(5):741-755
    [63]何非.葡萄果实无色花色素还原酶基因的表达研究[硕士学位论文].北京:中国农业大学,2008,2-4
    [64]Hollman PCH,Arts LCW. Flavonols,flavones and flavanols-nature,occurrence and dietary burden. Journal of the Science of Food and Agriculture,2000,80(7):1081-1093
    [65]Kennedy JA, Powell HKJ. Polyphenol interactions with aluminium (III) and iron (III):their possible involvement in the podzolization process. Australian Journal of Chemistry,1985, 38(6):879-888
    [66]Souquet JM, Cheynier V, Brossaud F, Moutounet M. Polymeric proanthocyanidins from grape skins. Phytochemistry,1996,43(2):509-512
    [67]刘金豹,杜中军,翟衡.葡萄浆果中的主要多酚化合物及影响因素.中外葡萄与葡萄酒,2003,(2):22-26
    [68]Revilla I, Conaalez-SanJose ML. Compositional changes during the storage of red wines treated with pectolytic enzymes:low molecular-weight phenols and flavan-3-ols derivative levels. Food Chemistry,2003,80(2):205-214
    [69]温鹏飞.葡萄与葡萄酒中黄烷醇类多酚和果实原花色素合成相关酶表达规律的研究[博士学位论文].北京:中国农业大学,2005,40-41
    [70]孙文基,绳金房.天然活性成分简明手册.北京:中国医药科技出版社,1998,148
    [71]赵霞,陆阳,陈泽乃.白藜芦醇的化学药理研究进展.中草药,1998,29(12):837-839
    [72]Trela BC, Waterhouse AL. Resveroctrol:isomeric molarabsorptivities and stability. Journal of Agricultural and Food Chemistry.1996,44(5):1253-1257
    [73]陈雷,韩雅珊.葡萄不同品种和组织白藜芦醇含量的差异.园艺学报,1999,26(2):118-119
    [74]Creasy L, Coffee M. Phytoalexin production potential of grape berries. Journal of the American Society for Horticultural Science,1988,113(2):230-234
    [75]Ector BJ, Magee JB, Hegwood CP, Coign MJ. Resveratrol concentration in muscadine berries, juice, pomace, purees, seeds and wines. American Journal of Enology and Viticulture,1996,47(1):57-62
    [76]Jeandet P, Bessis R, Gautheron B.The production of resveratrol(3,5,4'-trihydroxystilbene) by grape berries indifferent developmental stages. American Journal of Enology and Viticulture,1991,42(1):41-46
    [77]Gu X, Creasy L, Kester A, Zeece MX. Capillary electrophoretic determination of resveratrol in wines. Journal of Agricultural and Food Chemistry,1999,47(8):3223-3227
    [78]王华,尉亚辉,王庆俐,刘树文.葡萄酒中白藜芦醇的HPLC测定.西北农业大学学报,1999,27(4):83-87
    [79]马亭,李攻科,李晓东,田雪梅,张展霞,鲍伦军,周辉棠.葡萄酒中白藜芦醇的固相苯取GC/MS法测定及其生理活性的初步研究.高等学校化学学报,2000,21(7):1023-1027
    [80]张宏芳,张秀琦,郑建斌,高鸿.葡萄酒中白藜芦醇的二次微分简易示波伏安法测定.分析测试学报,2001,20(2):21-23
    [81]Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P.Effect of enological practices on the resveratrol isomer content of wine. Journal of Agricultural and Food Chemistry,1995,43(2):316-319
    [82]Guillen DA,Barroso CG,Perez-Bustamante JA. Selection of column and gradient for the separation of polyphenols in sherry wine by high-performance liquid chromatography incorportating internal standards.Journal of Chromatography A,1996,724(1-2):117-124
    [83]韩雅珊,陈雷,戴蕴青.高效液相色谱法测定葡萄酒中的白藜芦醇.色谱,1999,(4):366-368
    [84]Neira AP, Hernandez T, Vallejo CG. A survey of phenolic compounds in Spanish wines of different geographical origin. European Food Research Technology,2000,210(6): 445-448
    [85]Rodriguez-Delgado MA, Malovana S, Perez JP, Borges T, Garcia Montelongo FJ. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. Journal of Chromatography A,2001,912(2): 249-257
    [86]Dixon RA, Xie DY, Sharma SB. Proanthocyanidins-a final frontier in flavonoid research? New phytologist,2005,165(1):9-28
    [87]Rice-Evans C, Miller N, Paganga G Antioxidant properties of phenolic compounds. Trends in Plant Science,1977,2(4):152-159
    [88]Logemann E, Parniske M, Hahlbrock K. Modes of expression and common structral features of the complete phenylalanine ammonialyase gene family in parsley. Proceedings of the National Academy of Sciences of the United States of America,1995,92(13): 5905-5909
    [89]Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology Part C:Toxicology and Pharmacology,2003,135(3):357-364
    [90]Ong KC, Khoo HE. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sciences,2000,67(14):1695-1705
    [91]Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein b100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes,2005,54(6):1676-1683
    [92]Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats.Basic Clinical Pharmacology Toxicology,2006,98(1):97-103
    [93]Sanoner P, Guyot S,Marnet N, Molle D, Drilleau JF. Polyphenol profiles of French cider apple varieties (Malus domestica sp.).Journal of Agriculture and Food Chemistry,1999, 47(12):4847-4853
    [94]陆茵.原花青素抗促癌物诱发H2O2释放及脂质过氧化.中国药理学通报,2001,17(5):562-565
    [95]凌智群,谢笔均.莲房原花青素抗氧化损伤作用的研究.食品科学,2002,23(7):98-100
    [96]Yamagishi M, Natsume M, Osakabe N, Nakamura H, Furukawa F, Imazawa T, Nishikawa A, Hirose M. Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague-Dawley rats. Cancer Letter,2002,185(2):123-130
    [97]赵万州,陆茵,阮君山,张世玮,孙志广.葡萄籽原花青素抗促癌作用的实验研究.中草药,2003,1(12):917-920
    [98]凌智群,张晓辉,谢笔均,曾繁典.原花青素的药理学研究进展.中国药理学通报,2002,18(1):9-12
    [99]凌智群,谢笔均,江涛,曾繁典.莲房原花青素对大鼠实验性心肌缺血的保护作用.中国药理学通报,2001,17(6):687-690
    [100]张小郁,李文广,高明堂,田暄.葡萄籽中原花青素对心肌细胞的保护作用.中国药理与临床,2001,17(6):14-16
    [101]刘协,李小宁,包六行,凌宝银.葡萄籽提取物原花青素的抗疲劳作用的研究.实用预防医学,2004(1):36-37
    [102]赵超英,姚小曼.葡萄籽提取物原花青素的营养保健功能.中国食品卫生杂志,2000(6):38-41
    [103]段玉清,谢笔均.原花青素在化妆品领域的研究与开发现状.香料香精化妆品,2002,12(6):23-26
    [104]郑永丽.葡萄籽中原花色素的分析、提纯与纯化[硕士学位论文].天津:河北工业大学,2004,2-3
    [105]郭斌,尉亚辉.He-Ne激光诱变选育高产白黎芦醇细胞系.光子学报,2002,31(4):34-36
    [106]尉亚辉,刘兴旺,李华.白黎芦醇的研究进展.西北农业大学学报,1999,7(2):188-195
    [107]Frankel EN, Bosanek CA, Meyer AS,Silliman K, Kirk LL. Commerial grape juices inhibit in vitro oxidation of human low-density lipoproteins. Journal of Agriculture and Food Chemistry,1998,46(3):834-838
    [108]Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnswort NR, Kinghorn AD,Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes.Science,1997,275(5297):218-220
    [109]马卡姆(Markham, KR)著,张宝琛,唐崇实译.黄酮类化合物结构鉴定技术.北京:科学出版社,1990,43-45
    [110]Dixon RA, Paiva NL. Stress-induced phenyl-propanoid metabolism. The Plant Cell,1995, 7(7):1085-1097
    [111]Winkel-Shirley B.Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology,2001,126(2):485-493
    [112]Robbins RJ. Phenolic acids in foods:an overview of analytical methodology. Journal of Agriculture and Food Chemistry,2003,51(10):2866-2887
    [113]Marles MAS,Ray H, Gruber MY. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry,2003,64(2):367-383
    [114]Xie DY, Dixon RA. Proanthocyanidin biosynthesis-still more questions than answers? Phytochemistry,2005,66(18):2127-2144
    [115]Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS,Harper JF. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America,2005, 102(7):2649-2654
    [116]刘闯萍,王军.葡萄花色苷的生物合成.植物生理学通讯,2008,44(2):363-377
    [117]Camm EL, Towers GHN.Phenylalanine ammonia-lyase. Phytochemistry,1973,4: 691-973
    [118]Given NK, Venis MA, Grierson D.Purification and properties of phenylalanine ammonia-lyase from strawberry fruit and its synthesis during ripening. Plant Physiology, 1988,133(1):31-37
    [119]Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C.Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape(Vitis vinifera L.). Plant Molecular Biology,1994,24(5):743-755
    [120]Hahlbrock K, Scheel D.Physiology and molecular biology of phenylpropanoid metabolism. Annual Reviews of Plant Physiology and Plant Molecular Biology,1989,40: 347-369
    [121]Jones DH.Phenylalanine ammonia-lyase:regulation of its induction, and role in plant development. Phytochemistry.1984,23(7):1349-1359
    [122]Hiratsuka S, Onodera H, Kubo T, Itoh H, Wada R. Enzyme activity changes during anthocyanin synthesis in'Olympia' grape berries. Scientia Horticulturae,2001,90(3-4): 255-264
    [123]Chen JY, Wen PF, Kong WF, Pan QH, Wan SB, Huang WD.Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. Journal of Plant Physiology,2006,163(2):115-127
    [124]Arakawa O. Photoregulation of anthocyanin synthesis in apple fruit under UV-B and red light. Plant Cell Physiology,1988,29(8):1385-1389
    [125]周爱琴,祝军,生吉萍,申琳,生兆江.苹果花青素形成与PAL活性及蛋白质含量的关系.中国农业大学学报,1997,2(3):97-99
    [126]Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Journal of Plant Physiology,1996,111(4):1059-1066
    [127]Kobayashi S,Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta,2002,215(6):924-933
    [128]Schroder G, Brown JW, Schroder J.Molecular analysis of resveratrol synthase:cDNA, genomic clones and relationship with chalcone synthase. European Journal of Biochemistry,1988,172(1):161-169
    [129]Schoppner A, Kindl H. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. Journal of Biological Chemistry,1984,259(11): 6806-6811
    [130]Liswidowati MF, Hohmann F, Burkhardt S, Kindl H. Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta,1991,183(2):307-314
    [131]Melchior F, Kindl H. Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coil into a catalyically active enzyme. FEBS Letters,1990,268(1):17-20
    [132]Hipskind JD, Paiva NL. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Molecular Plant-Microbe Interactions,2000,13(5):551-562
    [133]Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP.Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis.Nature Structural and Molecular Biology,1999,6(8):775-784
    [134]Sommer H, Saedler H. Structure of the chalcone synthase gene of Antirrhinum majus. Molecular and General Genetics,1986,202(3):429-434
    [135]Yang J, Huang J, Gu H, Zhong Y, Yang Z. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae).Molecular Biology and Evolution, 2002,19(10):1752-1759
    [136]Herrmann A, Schulz W, Hahlbrock K. Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element. Molecular and General Genetics,1988, 212(1):93-98
    [137]Feinbaum RL, Ausubel FM. Transcriptional regulation of the Arahidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology,1988,8(5):1985-1992
    [138]Wienand U, Sommer H, Schwarz Zs, Shepherd N, Saedler H, Kreuzaler F, Ragg H, Fautz E, Hahlbrock K, Harrison B, Peterson PA. A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations. Molecular and General Genetics,1982,187(2):195-201
    [139]Koes E, Spelt CE, van den Elzen PJ, Mol JN. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida.Gene,1989,81(2):245-257
    [140]Waters DLE, Holton TA, Ablett EM, Lee LS,Henry RJ.cDNA microarray analysis of development grape(Vitis vinifera cv Shiraz) berry skin. Functional & Integrative Genomics,2005,5(1):40-58
    [141]Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell,1995,7(7):1071-1083
    [142]Moustafa E, Wong E. Purification and properties of chalcone-flavanone isomerase from soybean seed. Phytochemistry,1967,6(5):625-632
    [143]Springob K, Nakajima J, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins. Natural Product Report,2003,20(3):288-303
    [144]Mehdy MC, Lamb CJ.Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. The EMBO Journal,1987,6(6):1527-1533
    [145]van Tunen AJ, Hartman SA, Mur LA, Mol JN. Regulation of chalcone flavonone isomerase (CHI) gene expression in Petunia hybrida:the use of alternative promoters in corolla, anthers and pollen. Plant Molecular Biology,1989,12(5):539-551
    [146]Boss PK, Davies C, Robinson SP. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology,1996,32(3):565-569
    [147]Forkmann G, Dangelmayr B.Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus.Biochemical Genetics,1980,18(5-6):519-527.
    [148]Martin C, Carpenter R, Sommer H. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus.The Plant Journal,1991,1(1):37-49
    [149]Shen G, Pang Y, Wu W, Deng Z, Zhao L, Cao Y, Sun X Tang K. Cloning and characterization of a flavanone 3-hydroxylase gene from Ginkgo biloba.Bioscience Reports.2006,26(1):19-29
    [150]Charrier B, Coronado C, Kondorosi A, Ratet P. Molecular characterization and expression of alfalfa (Medicago sativa L.)flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Molecular Biology,1995,29(4): 773-786
    [151]Quattrocchio F, Wing JF, Leppen HT, Mol JN, Koes R. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. The Plant Cell,1993,5(11):1497-1512
    [152]Jeong ST, Goto-Yamamoto N, Kobayashi S,Esaka M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science,2004,167(2):247-252
    [153]Castellarini SD, Matthews MA, Di Gaspero G, Gambetta GA. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta,2007,227(1):101-112
    [154]Castellarin SD, Pfeiffer A, Silvilotti P, Degan M, Peterlunger E, Di Gaspero G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell and Environment,2007,30(11):1381-1399
    [155]Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R. Colour variation in red grapevines(Vitis vinifera L.):genomic organisation, expression of flavonoid 3-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics,2006,7:12
    [156]Ayabe S, Akashi T. Cytochrome P450s in flavonoid metabolism. Phytochemistry Reviews.2006,5(2-3):271-282
    [157]Holton TA, Brughera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson T, Cornish EC. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature,1993,366(6452):276-279
    [158]Koes RE, Quattrocchio F, Mol JNM.The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays,1994,16(2):123-132
    [159]Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M. Expression of the flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes and flavonoid composition in grape (Vitis vinifera).Plant Science,2006,170(1):61-69
    [160]Bogs J, Ebadi A, McDavid D, Robinson SP.Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiology,2006, 140(1):279-291
    [161]Holton TA, Tanaka Y.Blue roses-a pigment of our imagination? Trends in Biotechnology. 1994,12(2):40-42
    [162]Beld M, Martin C, Huits H, Stuitje AR, Gerats AG. Flavonoid synthesis in Petunia hybrida:partial characterization of dihydroflavonol-4-reductase genes.Plant Molecular Biology,1989,13(5):491-502
    [163]Huits HS,Gerats AG, Kreike MM, Mol JN, Koes RE.Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida.The Plant Journal,1994,6(3):295-310
    [164]Schwarz-Sommer Z, Shepherd N, Tacke E, Gierl A, Rohde W, Leclercq L, Mattes M, Berndtgen R, Peterson PA, Seadler H. Influence of transposable elements on the structure and function of the Al gene of Zea mays. The EMBO Journal,1987,6(2):287-294
    [165]Kristiansen KN, Rohde W. Structure of the Hordeum vulgare gene encoding dihydroflavonol 4-reductase and molecular analysis of Ant 18 mutants blocked in flavonoid synthesis. Molecular and General Genetics,1991,230(1-2):49-59
    [166]Gollop R, Even S,Colova-Tsolova V, Perl A. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. Journal of Experimental Botany,2002, 53(373):1397-1409
    [167]Rosati C, Cadic A, Duron M, Ingouff M, Simoneau P. Molecular characterization of the anthocyanidin synthase gene in Forsythia×intermedia reveals organ-specific expression during flower development. Plant Science,1999,149(1):73-79
    [168]Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens.Plant Molecular Biology,1997,35(6):915-927
    [169]Gollop R, Even S,Farhi S,Perl A. Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera.Plant Science,2001,161(3):579-588
    [170]Bogs J, Downey MO, Harvey JS,Ashton AR, Tanner GJ, Robinson SP. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology,2005,139(2):652-663
    [171]Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA.Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiology.2007,145(3), 601-615
    [172]Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA.Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science,2003,299(5605): 396-399
    [173]Xie DY, Sharma SB, Dixon RA. Anthocyanidin reductases from Medicago truucatula and Arabidopsis thaliaua. Archives of Biochemistry and Biophysics,2004,422(1):91-102
    [174]Punyasiri PAN,Abeysinghe ISB,Kumar V, TreutterD,Duy D, Gosch C, MartensS, Forkmann G,Fischer TC.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways.Archives of Biochemistry and Biophysics,2004,431(1):22-30
    [175]Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR. Proanthocyanidin biosynthesis in plants:purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA.Journal of Biologycal Chemistry,2003, 278(34):31647-31656
    [176]Stafford HA,Lester HH. Flavan-3-ol biosynthesis. The conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of Douglas fir. Plant Physiology,1984,76(1), 184-186
    [177]孟繁静.植物花发育的分子生物学.北京:中国农业出版社,2000,225-269
    [178]Federoff NV, Furtek DB, Nelson OE. Cloning of the bronze locus in maize by a simple and generalized procedure using the transposable controlling element Activator(Ac). Proceedings of the National Academy of Sciences of the United States of America,1984, 81(12):3825-3829
    [179]王军,于淼.葡萄次生代谢UDP-糖基转移酶研究进展.园艺学报,2010,37(1):141-150
    [180]刘海峰,杨成君,于淼,王军.山葡萄UDP-葡萄糖:类黄酮-3-O-葡萄糖基转移酶基因(3GT) cDNA的克隆和分析.植物生理学通讯,2009,45(8):748-752
    [181]Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase(UFGT) gene sequences between white grapes(Vitis vinifera) and their sports with red skin. Plant Science,2001,160(3):543-550
    [182]Kim BG, Lee HJ, Park Y, Lim Y, Ahn JH. Characterization of an O-methyltransferase from soybean. Plant Physiology and Biochemistry,2006,44(4):236-241
    [183]Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C.Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Science,2006,170(2):372-383
    [184]Neish AC. Monomeric intermediates in the biosynthesis of lignin. In: Freudenberg K, Neish AC (Eds.), Constitution and Biosynthesis of Lignin. Berlin: Springer-Verlag,1968:2-43
    [185]陈立余.秦艽AtNHXl基因转化及 O-甲基转移酶基因克隆[硕士学位论文].西安:西北大学,2008,7-8
    [186]Paul MJ, Cockburn W. Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? Journal of Experimental Botany,1989,40(10):1093-1098
    [187]陈丽君,徐毓其.谷胱甘肽-S-转移酶基因家族研究进展.皖南医学院学报,2003,22(2):144-146
    [188]杨海灵,聂力嘉,朱圣庚,周先碗.谷胱甘肽硫转移酶结构与功能研究进展.成都大学学报(自然科学版),2006,25(1):19-24
    [189]DeJong JL, Morgenstern R, Jornvall H, DePierre JW, Tu CP. Gene expression of rat and human microsomal glutathione S-transferases. The Journal of Biological Chemistry,1988, 263(17):8430-8436
    [190]Mozer TJ, Tiemeier DC, Jaworski EG.Purification and characterization of corn glutathione S-transferase. Biochemistry,1983,22(5):1068-1072
    [191]Wilce MCJ, Parker MW. Structure and function of glutathione S-transferases. Biochimica et Biophysica Acta,1994,1205(1):1-18
    [192]Shimabukuro RH,Swanson HR, Walsh WC.Glutathione conjugation:atrazine detoxification mechanism in corn. Plant Physiology,1970,46(1):103-107
    [193]Marrs KA, Alfenito MR, Lloyd AM, Walbot V.A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature,1995,375 (6530):397-400
    [194]Dixon D, Cole DJ, Edwards R. Characterisation of multiple glutathione transferases containing the GST1 subunit with activities to ward herbicide substrates in mlaize (Zea mays).Pesticide Science,1997,50(1):72-82
    [195]Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.The Plant Cell,1998,10(7):1135-1150
    [196]Tian QG, Giusti MM, Stoner GD, Schwartz SJ. Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. Journal of Chromatography A,2005,1091(1-2): 72-82
    [197]Wang HB, Race EJ, Shrikhande AJ.Characterization of anthocyanins in grape juices by ion trap liquid chromatography-mass spectrometry. Journal of Agriculture and Food Chemistry,2003,51(7):1839-1844
    [198]Stobiecki M. Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry,2000,54(3):237-245
    [199]程国利.浸渍酶对蛇龙珠红葡萄酒花色苷的影响[博士学位论文].北京:中国农业大学,2007,38-39
    [200]Ribereau-Gayon P. In Anthocyanins as Food Colors, Markakis P (ed).Academic Press: New York,1982,209
    [201]Mazza G. Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition,1995,35(4):341-371
    [202]Es-Safi N, Cheynier V, Moutounet M. Interaction between cyanidin-3-O-glucoside and furfural derivatives and their impact on food color change. Journal of Agriculture and Food Chemistry,2002,50(20):5586-5595
    [203]Brouillard R, Chassaing S,Fougerousse A. Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry,2003,64(7): 1179-1186
    [204]Revilla E, Garcia-Beneytez E, Cabello F, Martin-Ortega G, Ryan JM. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. Journal of Chromatography A,2001, 915(1-2):53-60
    [205]Keller M, Hrazdina G Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. American Journal of Enology and Viticulture,1998,49(3):341-349
    [206]Gonzalez-SanJose ML, Diez C. Relationship between anthocyanins and sugars during the ripening of grape berries. Food Chemistry,1992,43(3):193-197
    [207]段朝辉.中国葡萄野生种白藜芦醇含量分析的研究[硕士学位论文].杨凌:西北农林科技大学,2002,22-23
    [208]Garcia-Viguera C, Bridle P. Analysis of non-coloured phenolic compounds in red wines, A comparison of hige-performance liquid chromatography and capillary zone electrophresis. Food Chemistry,1995,54(4):349-352
    [209]陈颖,徐宝梁,苏宁,葛毅强,王曙光.实时荧光定量PCR技术在转基因玉米检测中的应用研究.作物学报,2004,30(6):602-607
    [210]阎隆飞,张玉麟.分子生物学.北京:北京农业大学出版社,1993,226-227
    [211]张治安,张美善,尉荣海.植物生理学实验指导.北京:中国农业科学技术出版社,2004.89-9065-70
    [212]Blnakenshi PSM, Vnrath CR. PAL and dethylene content during maotartion of Red and Golden delieious apples.Phytochemistry,1987,27(4):1001-1003
    [213]Cheng GW, Breen PJ.Activity of Phenylalanine ammonia-lyase(PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science,1991,116(5):865-869
    [214]Kataoka I, KuboY, Sugiura A, Tomana T. Changes in L-Phenylalanine Ammonia-lyase activity and anthocyanin synthesis during berry ripening of three grape cultivars. Journal of the Japanese Society for Horticultural Science,1983,52(3):273-279
    [215]Viljoen MM, Hoysame RM. Biochemical and regulatory as aspects of amthocyanin synthesis in apple and pears. Journal of the Southern African Society for Horticultural Sciences,1995,5(1):1-6
    [216]Castellarin SD, Gaspero GD. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biology,2007,7:46