‘国光’苹果红色芽变果实着色分子机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果(Malus domestica Borkh)是世界上最主要的鲜食果品之一,其果实色泽是重要的外观品质,直接决定其商品价值。‘国光’是20世纪80年代中国北方广泛种植的苹果品种之一,具有晚熟、酸甜适口及抗逆性强等特点,近年来再次受到消费者的青睐,但着色差一直是限制其发展的重要因素。2005年课题组在山东省五莲县发现了一株‘国光’的红色突变,其突出的特点是比国光着色早,着色好,成熟时果面片红。果皮的红色主要由花青苷类物质的含量和成分决定的,花青苷是由一系列的酶促反应生成的次生代谢物。前人以‘国光’为对照,从生理层面上对红色芽变花青苷积累及合成途径关键酶的活性进行了研究。本文在此基础上,比较了两试材中花青苷合成相关结构基因、调节基因的表达水平以及三个调节基因的编码区,找出了引发红色突变的关键基因;并通过对关键基因MdMYB1基因组和上、下游调控序列的扩增和比对,以及MdMYB1启动子区域的甲基化状态的比较,阐明了MdMYB1表达量差异的原因。主要研究结果如下:
     1.果实发育后期正常光照条件下的果实MdCHS、MdF3H、和MdUFGT表达量逐渐上升,采收前达到最大值;MdCHI、MdDFR1及MdLDOX的表达量亦逐渐上升,但在采收前略有下降;套袋处理(盛花后30天套袋,采收前30天除袋)的果实除袋前花青苷合成结构基因表达量均很低,除袋后迅速上升;与正常光照条件下的果实相比,套袋处理明显提高了MdDFR1, MdLDOX及MdUFGT的表达水平,但两不同光照处理MdCHS, MdCHI和MdF3H的表达差异不大。两种试材相对比,不同光照处理下红色芽变6个结构基因表达水平均不同程度地高于‘国光’,且位于合成途径下游的结构基因表达量差异更加明显。类黄酮合成另两条分支途径中,黄酮醇合成酶基因MdFLS的表达水平明显低于‘国光’,而单宁生物合成途径中无色花色素还原酶基因MdLAR1和MdANR的表达量在两种试材中差异不明显,仅个别阶段芽变表达量略低。
     2.根据MdMYB1, MdbHLH3及MdbHLH33的cDNA序列设计特异引物,分别从‘国光’及其红色芽变中克隆出以上三个花青苷合成调节基因的编码区并进行测序比对。结果表明两种试材中MdMYB1和MdbHLH3两种调节基因的编码序列完全一致,编码结构相同的蛋白质;MdbHLH33蛋白的结构略有差异:氨基酸序列中第304位的氨基酸不同,‘国光’为甲硫氨酸(Met),而芽变中为苏氨酸(Thr)。
     3.正常光照条件下,MdMYB1的表达量随着果实成熟逐渐升高,后期达到最大值并略微呈现下降趋势;套袋处理果实除袋前MdMYB1表达量很低,除袋后迅速上升。与正常光照条件下的果实相比,套袋处理明显提高了MdMYB1的表达水平。两种试材相对比,不同光照处理下芽变MdMYB1的表达量均明显高于‘国光’。MdbHLH3的表达与花青苷积累相关性不明显,MdbHLH33的表达与MdMYB1显著相关;两试材MdbHLH3和MdbHLH33的表达量无明显差异。
     4.对‘国光’及其芽变MdMYB1基因组及上、下游序列进行克隆比对,琼脂糖凝胶电泳检测显示对应序列的长度无差异,说明芽变MdMYB1内含子及上、下游调节序列中无基因片段如反转录转座子等插入或缺失;对基因片段进行测序比对,也未发现两种试材中有明显差异,说明芽变MdMYB1未发生DNA水平上的变化。对两种试材MdMYB1启动子区甲基化水平进行比较,发现红色芽变-965~-416区域甲基化水平明显低于‘国光’。
     综上所述,红色芽变中花青苷合成结构基因表达水平协同上调;MdMYB1表达量的升高是引起结构基因上调的关键原因;MdMYB1启动子区甲基化水平的降低是其表达上升的根本原因。
Apple (Malus×domestica Borkh) is one of several main types of fresh fruits in the world. Skin color is an important component of fruit quality and significantly influences the market value of apple fruits.‘Ralls’apple is one of the apple cultivars that widely planted in northern China in 1980s. It has the characters of late maturing, good flavors and strong stress resistance and has regained popularity with people in recent years. But poor coloration is the main limiting factor of its development. In 2005, we found a mutation which had been proved to be a bud sport of‘Ralls’. Fruits of the bud sport colored eailier and better, and were blushed-red at ripening. The degree of red coloration in apple skin is determined by the content and composition of anthocyanins, which are secondary metabolites synthesized through a series of enzymatic reactions. Previous work had studied the accumulation of anthocyanins and the activity of key enzymes in the biosynthetic pathway compared with‘Ralls’apple. In this study, we compared the transcript levels of anthocyanin biosynthetic and regulatory genes during late developing stage, cloned and compared the coding regions of MdMYB1, MdbHLH3 and MdbHLH33 to find out the key gene that caused the mutation. We also compared the genomic sequences and upstream, downstream regions of MdMYB1 and methylation status of MdMYB1 promoter region to explain the reason for the increasing of MdMYB1expression in the bud sport. The results are shown as follows:
     1. Under normal sunlight condition, the transcript levels of MdCHS, MdF3H and MdUFGT in the skin tissues of fruits increased gradually during late developmental stage till harvesting, but that of MdCHI, MdDFR1 and MdLDOX peaked earlier and then declined to a lower level. The transcript levels of six anthocyanin biosynthetic genes in the fruits covered in bags were very low, but induced greatly after bag removal. Compared with those under normal sunlight, the transcript levels of MdDFR1, MdLDOX and MdUFGT were significantly improved in bagging treated fruits; but MdCHS, MdCHI and MdF3H showed little differece. Take a comparison between the two varieties, transcript levels of the biosynthetic genes in the bud sport were significantly higher than that in‘Ralls’; the differences were more obvious in late genes of the pathway. In the other two branches of flavonoid biosynthesis, the transcript levels of MdFLS in the bud sport were significantly lower than that in‘Ralls’. The transcription of MdLAR1and MdANR showed little difference between the two materials. They were a little lower in the bud sport only at one stage.
     2. Specific primers were designed according to the cDNA regions of MdMYB1, MdbHLH3 and MdbHLH33. The coding regions of the three common regulatory genes were isolated from both‘Ralls’and its bud sport. Sequence comparison revealed that the coding regions of MdMYB1 and MdbHLH3 were identical between the two varieties. So the transcription factors they encode were of the same structure. The amino acid residues at the 304 position of transcription factor MdbHLH33 were different: it was Met in‘Ralls’while Thr in the bud sport.
     3. Analysis of transcription of MdMYB1, MdbHLH3 and MdbHLH33 suggested that: under normal sunlight, the transcript level of MdMYB1 increased progressively during late developing stage, reached its maximum level before harvesting and then declined to a lower level. MdMYB1 transcript level in the fruits covered in bags was very low, but induced greatly after bag removal. Compared with those fruits under normal sunlight, the transcript level of MdMYB1 was greatly improved in those bagging treated fruits. Take a comparison between the two varieties, the transcript level of MdMYB1 in the bud sport was significantly higher than‘Ralls’under both treatments. The transcription profile of MdbHLH3 did not show any link with the accumulation of anthocyanin. Whereas MdbHLH33 shared the similar transcription profile with that of MdMYB1. However, both their transcript levels showed no significant differences between the two apple varieties.
     4. The genomic sequences and upstream, downstream regions of MdMYB1 were isolated and compared. Analysis by agarose gel electrophoresis showed no size differences between the corresponding fragments of the two cultivars; sequence alignment also showed no significant differences between different varieties. Therefore, there were no large insertions or deletions like transposable element occurred in the DNA sequence of MdMYB1 in the bud sport. Besides,the methylation status of MdMYB1 promoter region was discovered much lower in the bud sport.
     5. From the findings above, it can be concluded that the transcription of all the biosynthetic genes was coordinately up-regulated; elevation of MdMYB1 transcription was the main reason that caused the up-regulation of biosynthetic genes; the lowered methylation level of MdMYB1 promoter region resulted in the elevation of MdMYB1 transcription.
引文
傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册[M].北京:中国科学技术出版社,1994,131-132.
    郝玉金.柑橘和苹果等果树种质资源的立体保存及遗传变异.[博士学位论文].武汉:华中农业大学图书馆,2000.
    洪柳,邓秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析.中国农业科学,2005,38:2301-2307
    鞠志国.花青苷合成与苹果果皮着色.果树科学,1991,8(3):176-180.
    鞠志国,原永兵,刘成连等.苹果果皮中酚类物质合成规律的研究.莱阳农学院学报,1992, 9(3):222-225.
    Lewin B (2005).余龙,江松敏,赵寿元译. GenesⅧ.北京:科学出版社, 725~729.
    李军,李洪清,李美茹.大花美人蕉查尔酮异构酶基因的cDNA克隆和序列分析.植物生理学通讯, 2006,42(3):449-453.
    李兴军,刘熔山,张光伦.生态因子对苹果着红色的生态生理效应.四川农业大学学报, 1997, 15(4):491-496.
    刘娟,冯群芳,张杰.二氢黄酮醇4-还原酶基因(DFR)与花色的修饰.植物生理学通讯,2005,41(6):715-719.
    刘晓静,冯宝春,冯守千,陈学森.‘国光’苹果及其红色芽变花青苷合成与相关酶活性的研究.园艺学报, 2009, 36 (9) : 1249– 1254.
    卢钰,董现义,杜景平,李永强,王明林花色苷研究进展。山东农业大学学报, 2004, 35, 315-320.
    孟凡静主编.植物花发育的分子生物学.北京:中国农业出版社, 2000: 265-269.
    任玉林,李华,郝贵德天然食用色素花色苷.食品科学, 1995, 16 (7) : 22– 271.
    沈德绪主编.果村育种学[M].北京:中国农业出版杜.1997.55-64.
    沈德绪,王元格,陈力耕编著.柑橘遗传育种学[M].北京:科学出版社. 1998. 159-192.
    陶能国.甜橙(Citrus sinensi Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析.[博士学位论文].武汉:华中农业大学图书馆,2006.
    王惠聪,黄旭明,胡桂兵,黄辉白.荔枝果皮花青苷合成与相关酶的关系研究.中国农业科学, 2004, 37(12): 2028-2032.
    许本波.甘蓝型油菜类黄酮途径CHI、F3H和F3’H基因家族的克隆及在黄、黑籽之间的差异表达:[学位论文].重庆:西南大学,2006.
    徐娟.几个柑桔产区果实色泽评价及红肉脐橙(Citrus sinensis L. cv. Cara cara)果肉呈色机理初探[博士论文].武汉:华中农业大学图书馆,2002.
    杨振锋,丛佩华,聂继云,李静,李海飞.我国苹果产业现状、存在问题及建议.北方果树,2006,(5):34-36
    伊华林,邓秀新.培养三倍体柑橘植株的研究果树科学,1998,15,212-216.
    原永兵,刘成连,鞠志国等.苹果果皮红色形成的机制.园艺学年评,北京:科学出版社, 1995,1: 121-129.
    张华磊,毛柯,刘志,谢兴斌,冯晓明,郝玉金. MdMYB1转录因子调控红星苹果果实着色的计算机模拟分析及表达验证.园艺学报. 2009, 36:1581-1588.
    周爱琴,祝军,生吉萍.苹果花青素形成与PAL活性及蛋白质含量的关系.中国农业大学学报,1997,2(3):97-99.
    周波,阎海芳. UV-A特异诱导花青素合成信号转导因子的研究,中国病理生理学会受体和信号转导专业委员会暨消化专业委员会联合学术会议,广州,2008.
    朱玉贤,李毅,郑晓峰编著.现代分子生物学[M].北京:高等教育出版社. 2007. 292-293.
    Aharoni A,de Vos CH,Wein M,Sun Z,Greeo R,Kroon A,Mol JN,O,Connell AP. The strawberry FaMYB1 transcription factor suppresses anthoeyanin and flavonol accumutation in transgenic tobacco. Plant J,2001,28(3): 319-332.
    Allan AC, Hellens RP, Laing WA. MYB transcription factors that colour our fruit. Trends Plant Sci. 2008, 13: 99–102.
    Arakawa O, Shinoda M, Hiraga M, Wang H. Comparison of anthocyanin synthesis of true-to-type‘Tsugaru’apple and its red sport strains. J Hortic Sci Biotechnol. 1999, 74:738–742.
    Antonius-Klemola K,Kalendar R,Schulman AH. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and applied Genetics,2006, 112:999-1008.
    Attwood JT, Yung RL, Richardson BC. DNA methylation and the regulation of gene transcription [ J ]. Cell Mol. Life Sci., 2002, 59 (2): 241-257.
    Awad MA, de Jager A, van Westing LM. Flavonoid and chlorogenic acid levels in apple fruit: characterisation of variation. Sci Hortic-Amsterdam. 2000, 83: 249-263.
    Azuma A, Kobayashi, Goto-Yamamoto N, Shiraishi M, Mitani N et al. Color recovery inberries of grape (Vitis vinifera L.)‘Benitaka’, a bud sport of‘Italia’, is caused by a novel allele at the VvmybA1 locus. Plant Science, 2009, 176: 470-478.
    Bagchi D, Sen CK, Bagchi M Anti-angiogenic antioxidant, and anti-carcinogenic properties of a novel anthocyanin rich berry extract formula Biochemistry (Mosc), 2004, 69 (1): 75-80.
    Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 2007, 48:958–970.
    Ballare C. Stress under the sun: spotlight on ultrabiolet-B responses. Plant Physiol, 2003, 132:1725-1727.
    Bender J, Fink GR. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. 1995,Cell, 83:725–734.
    Bongue BM, Neill SD, Tong Y. Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene, 1994, 138:153-157.
    Ben-Yehudah G, Korchinsky R, Redel G, Ovadya R, Oren-shamir M, Cohen Y. Colour accumulation patterns and the anthocyanin biosynthetic pathway in 'Red Delicious' apple variants. J Hortic Sci Biotechnol. 2005, 80:187-192.
    Boss PK. Analysis of the expression of anthocyanin pathway genes in developing vitis vinifera L.cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol,1996, 111:1059-1066.
    Borovsky Y, Oren SM, Ovadia R, De JW, Paran I. The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin 2 of Petunia. Theor Appl Genet, 2004, 109:23–29.
    Braun EL,Grotewold E. Newly discovered Plant c- MYB like genes rewrite the evolution of the Plant myb gene family. Plant Physiol, 1999, 121:21-24
    Breto MP,Ruiz C,Pina JA,Asins MJ. The diversification of Citrus clementina Hort.ex Tan., a vegetatively propagated crop species. Molecular phylogenetics and evolution,2001,21:285-293.
    Britsch L, Ruhnau B, Forkmann G. Molecular cloning, sequence analysis, and in Vitro expression of flavanone 3β-Hydroxylase from Petunia hybrida. The Journal of Biological Chemistry, 1992, 267: 5380-5387.
    Cai Q,Guy CL,Moore GA. Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus. Genome,1996,39: 235-242.
    Carey C, Strahle J, Selinger D, Chandler V. Mutations in the pale aleurone color regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar transparent testa glabral gene in Arabidopsis thaliana. Plant Cell, 2004, 16(2):450-464.
    Cervera MT , Cabezas JA , Sanchez-Eseribano E , Cenis JL , Martine-Zapater JM. Characterization of genetic variation within table grape varieties (Vitis vinifera L.) based on AFLP markers. Vitis,2000, 39:109-114.
    Chang S,Puryear J,Cairney J. A simple and sufficient method for isolating RNA from pine trees [J]. Plant Mol Biol. ReP,1993, 11:113-116.
    Chaparro JX,Werner DJ,Whetten RW,Omalley DM. Inheritance,genetic interaction,and biochemical-characterization of anthocyanin phenotypes in Peach. Journal of Heredity,1995, 86: 32-38.
    Charrier B, Coronado C, Kondorosia A, Ratet P. Molecular characterization and expression of alfafa flavanone 3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol Biol, 1995, 29(4):773-786.
    Charrier B, Leroux C, Kondorosi A, Ratet P The expression pattern of alfalfa flavanone 3-hydroxylase promoter-gus fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ. Plant Mol Biol, 1996, 30(6): 1153-1168.
    Cocciolone SM, Cone KC. Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics, 1993, 135: 575-588.
    Cone KC,Burr FA,Burr B. Molecular analysis of the maize anthocyanin regulatory Locus Cl. Proe Natl Acad sci,1986,83 (24):9631-9635.
    Dangl JL, Hahlborock K, Schell J. Regulation and structure of chalcone synthase genes. New York, Academic Press, 1989:155-173.
    Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica. 2003, 131:259–268.
    Deboo G, Albertsen M, Taylor L. Flavanone 3β-hydroxylase transcripts and flavonol accumulation are temporally coordinate in Maize anthers. Plant J, 1995, 7(5): 703-713.
    Deng XW,Quail PH. Genetic and Phenotypic charaeterization of cop1 mutants of Arabdopsis thaliana. Plant J 1992, 2(1):83-95.
    Deng XW,Matsui M,Wei N,Wanger D,Chu AM,Felmatm KA,Quail PH. COPI: anArabdopsis regulatory gene,encodes a protein with Zine-binding motif and a Gβhomologus domain. Cell,1992,71(5): 791-801.
    Dickinson JP, White A.G. Red color distribution in the skin of Gala apple and some of its sports. NZ J Agric Res 1986, 29:695–698.
    Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J, 2007. 49:414-427.
    Espley RV, Brendolise C, Chagne′D, Kutty-Amma S, Green S, Allan AC et al. Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. The Plant Cell, 2009, 21: 168–183.
    Faragher JD, Chalmers DJ. Regulation of anthocyanin in apple skin.III. Involvement of phenylalanine ammonialyase. Aust J Plant Physiol, 1977, 4:133-141.
    Fiona C, Laurence B, Norman G. The Arabidopsis phenylalanine ammonia-lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry, 2004, 65(11): 1557-1564.
    Federoff NV, Furtek DB, Nelson OE Cloning of the bronze locus in maize by a simple and generalized procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA, 1984, 87:3825-3829.
    Gail LS, Wesley SV, Kenneth LK. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry, 2003, 64 (1):153-161.
    Giannetto S, Velasco R, Troggio M, Malacarne G, Storchi P et al.. A PCR-based diagnostic tool for distinguishing grape skin color mutants. Plant Sci. 2008, 175: 402-409.
    Given NK, Venis NA, Grierson D. Phenylalanine ammonialyase activity and anthocyanin synthesis in ripening strawberry fruit. J Plant Physiol, 1988, 133:25-30.
    Given NK, Venis NA, Grierson D. Purification and properties of phenylalanine ammonialyase from strawberry fruit and its synthesis during ripening. J Plant Physiol, 1988, 133:31-37.
    Gleitz J, Seitz HU. Induction of chalcone synthase in cell suspension cultures of carrot by ultraviolet light. Planta. 1989, 179:323-330.
    Gong Z, Yamazaki M, Sugiyama M Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol, 1997, 35: 915-927.
    Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL Identification ofthe residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci USA, 2000, 97:13579-13584 .
    Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761-780.
    Habu, Y, Hisatomi, Y, Iida, S. Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory. Plant J. 1998, 16, 371–376.
    Hanson KR, Havir EA.The biochemistry of plants volⅦsecondary plant products. New York Academic press, 1981, 577-626.
    Harada T,Sunako T,Wakasa Y,Soejima J,Satoh T,Niizeki M. An allele of the 1-aminocy- clopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theoretical and Applied Genetics,2000,101:742-746.
    Harborne JB. Plant phenolics In Bell EA, Charwood BV. (eds)Secondary plant products. Springer-Verlag 1980, 329-402.
    Heim MA, Jakoby M, Werber M, Martin C, Bailey PC and Weisshaar B. The basic helix-loop- helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 2003, 20, 735–747.
    Hetzl J, Foerster AM, Raidl G, Scheid MO. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J, 2007, 51:526–536.
    Hisatomi Y, Hanada K, Iida S. The retrotransposon RTip1 is integrated into a novel type of minisatellite, MiniSip1, in the genome of the common morning glory and carries another new type of minisatellite, MiniSip2. Theor. Appl. Genet. 1997, 95, 1049–1056.
    Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7 (7):1071-1083.
    Honda C., Kotoda N., Wada M., Kondo S., Kobayashi S., Soejima J., Zhang Z., Tsuda T., Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem. 2002, 40: 955–962.
    Hong SH,Kim HJ,Ryu JS,Choi H,Jeong S,Shin J,Choi G,Nam HG. CRYI Inhibits COPI-mediated degradation of BIT1,a MYB transcription factor,to activate blue Iight-dependent gene expression in Arabdopsis. Plant J. 2008,55: 361-371.
    Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S. Isolation of a suppressor-mutator /enhancer-like transposable element, Tpn1, from Japanese morning glory bearingvariegated flowers. Plant Cell, 1994, 6: 375–383.
    Jaakola L et al. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol Levels during bilberry fruit development. Plant Physiol, 2002, doi: 10.1104/pp.006957.
    Jeong S,Goto-Yamamoto N,Hashizume K,Kobayashi S,Esaka M. Expression of VvmybA1 gene and anthocyanin accumulation in various grape organs. Am J Enol Vitic,2006,57(4): 507-510.
    Jiang C, Gu J, Chopra S, Gu X, Peterson T. Ordered origin of the typical two-and three-repeat Myb genes. Gene, 2004, 326:13-22.
    Jin H,Martin C. Multifunctionality and diversity within the Plant MYB-gene family. Plant Mol Biol, 1999,41: 577-585.
    Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B and Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 2000, 19: 6150-6161.
    Johnson ET,Yi H,Shin B,Oh BJ,Cheong H,Choi G. Cymbidium Hybrid dihydrokaempferol 4-reductase does not effieiently reduce dihydrokaempferol to produce orange pelargonidin- type anthocyanins. Plant J, 1999, 19: 81-85.
    Johnson ET,Ryu S,Yi H,Shin B,Cheong H,Choi G. Alteration of a single amino acid changes the substrate specificity of dihydrofavonol 4-reductase [J]. Plant J,2001,25(3): 325-333.
    Ju ZG, Yuan YB, Liou CL, Xin SH. Relationships among phenylalanine ammonia-lyase activity, simple phenol concentrations and anthocyanin accumulation in apple. Scientia Horticulturae, 1995a, 61: 215-226.
    Ju ZG, Liu CL, Yuan YB. Activities of chalcone synthase and DPGal: flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple. Scientia Horticulturae, 1995b. 63:175-185.
    Ju ZG, Yuan YB, Liu CL, Wang YZ, Tian XP. Dihydroflavonol reductase activity and anthocyanin accumulation in‘Delicious’,‘Golden Delicious’and‘Indo’apples. Sci Hortic. 1997, 70:31- 43.
    Ju ZG. Fruit bagging, a useful method for studying anthocyanin synthesis and gene expression in apples. Sci Hort, 1998, 77(3/4):155-164.
    Ju ZG, Yuan YB, Liu CL. Coloration potential, anthocyanin accumulation, and enzyme activity in fruit of commercial apple cultivars and their F1 progeny. Scientia Horticulturae,1999, 79: 39-50.
    Karin Springo, Junichior Nakajima, Mami Yamazaki. Recent advances in the biothynthesis and accumulation of anthocyanins. Natural Product Report, 2003, (20): 288-303.
    Kataoka I, Kusunoki R, Inoue H. Effect of abscisic acid on anthocyanin accumulation and sugar content in berry skin of grapes. J Jpn Soc Hortic Sci,1992,61(1):84-85.
    Kim B, Tenessen D, Last R UV B induced photomorphogenesis in Arabidopsis thaliana. Plant Journal, 1998, 15:667-674.
    Kim S, Jones R, Yoo K S, Pike L M. Gold color in onions(Allium cepa): a natural mutation of the chalcone isomerase gene resulting in a premature stop codon.Mol Gen enomics, 2004,272:411-419.
    Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-Induced Mutations in Grape Skin Color. Science, 2004, 304:982.
    Kobayashi S, Goto-Yamamoto N, Hirochika H. Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin color mutants. J Jpn Soc Hortic Sci, 2005, 74:196-203.
    Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10: 236-242.
    Kondo S, Maeda M, Kobayashi S, Honda C. Expression of anthocyanin biosynthetic genes in Malus sylvestris L.‘Mutsu’non-red apples. J Hortic Sci Biotechnol. 2002, 77: 718–723.
    Kose RE, Spelt CE, Mol JNM The chalcone synthase multigene family of Petunia hybrida. Gene: Differential light regulated expression during flower development and UV light induction. Plant Mol Biol, 1989a, 30:213-225.
    Koes RE, Spelt CE, Vanderelzen PJM. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene, 1989b, 81:245-257.
    Lancaster JE. Regulation of skin color in apples. Crit Rev Plant Sci. 1992, 10:487-502.
    Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ, Neves N, Viegas W, Pikaard CS. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell. 2004, 13:599–609.
    Lijavetzky D, Ruiz-García L, Cabezas JA et al. Molecular genetics of berry colour variation in table grape. Mol Gen Genomics, 2006, 276:427–435.
    Lion PC,Glnitter FG,Moore GA. Characterization of the Citrus genome through Analysis of restriction fragment length polymorphisms. Theoretical and Applied Genetics,1996,92: 425-435.
    Lister CE, Lancaster JE. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. Journal Science of Food Agriculture, 1996, 71:313-320.
    Liu YG, Chen YL. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Bio Techniques, 2007, 43:649-656.
    Livak KJ,Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4):402-408.
    Ludwig SR, Habera LF, Dellaporta SL A member of the maize R gene family responsible fortissuespecific anthocyanin production, encodes a protein similar to transcriptional activators and contains the mybc-homology region. Proc Natl Acad Sci USA, 1989, 86: 7092-7096.
    Martin C, Carpenter R, Sommer H. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J, 1991, 1:37-49.
    Mckhann H, Hirsch A.Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Mol Biol, 1994, 24:767-777.
    Mehdym C, Ambc J. Chalcone isomerase cDNA cloning and Mrna induction by fungal elicitor, wounding and infection. EMBO J, 1987,6: 1527-1533.
    Mehrtens F,Kranz H,Bednarek P,Weisshaar B.The Arabidopsis transeription Factor MYB12 is a flavonol-spceific regulator of phenylpropanoid biosynihesis [J]. Plant Physiol,2005,138(2): 1083-1096.
    Messen A, Hohmann S, Martin W. The En\Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm elment in the A2 gene.EMBO J.1990, 9:3051-3058.
    Murre C, Bain G, VandijkM A, et al. Structure and function of helix- loop -helix proteins. Biochimica et Biophysica. Acta, 1994, 1218: 129-135.
    Niesbach KU, Brazen E, Bernhardt J Chalcone synthase genes in plants: a tool to study evolutionary relationship. Mol Evol, 1987, 26:213-225.
    Oreilly C, Shepherd NS, Pereira A. Molecular cloning of the allocus in Zea Mays using the transposable elements En and Mul. EMBO J, 1985, 4:877-882.
    Pais I. Anthocyanin pigments of Jonathan apple. Kertesz Foskola Kozlem, 1967, 31:71-77.
    Park YD, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJ, Matzke MA. Gene silencing mediated by promoter homology occurs at the level of transcription and results inmeiotically heritable alterations in methylation and gene activity. Plant J. 1996, 9:183–194.
    Peer WA, Brown DE, Tague BW. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol, 2001, 126:536-548.
    Pelletier MK and Shirley W. A genomic clone encoding flavanone 3-hydroxylase (Accession No. U33932) from arabidopsis thaliana (PGR95-080). Plant Physiol, 1995, 109(3):1125.
    Pirie A., Mullins M.G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit 427 tissues treated with sucrose, nitrate abscisic acid. Plant Physiol. 1976, 58:468–472.
    Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell, 1993, 5: 1497-1512.
    Quattroeehio F,Wing J,vander Woude K,Souer E,de Vetten N,Mol J,Koes R. Molecular analysis of the anthocyanin gene of Petunia and its role in the evolution of flower color. Plant Cell,1999,11: 1433-1444.
    Ramsay NA, Walker AR, Mooney M, Gray JC Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered matthiola incana mutant. Plant Mol Biol, 2003, 152:679-688.
    Ramsay NA,Glover BJ. MYB-bHLH-WD40 Protein complex and the evolution of cellular diversity. Trends Plant Sci,2005,10(2): 63-70.
    Rao MV, Paliyath G, Armrod DP Ultraviolet-B radiation and ozone-induced biochemical changes in the antioxidant enzymes of arabidopsis thaliana. Plant Physiology, 1996, 110 (1):125-136.
    Reay PF, Lancaster JE. Accumulation of anthocyanins and quercetin glycosides in‘Gala’and ‘Royal Gala’apple fruit skin with UV-B-Visible irradiation: modifying effects of fruit maturity, fruit side, and temperature. Sci Hortic 2001:57-68.
    Regan BC,Julliot C,Simmen B,Vienot F,Charles-Dominique P,Mollon JD. Fruits, Foliage and the evolution of Primate color vision [J]. Philos Trans R Soc Lond B Biol Sci,2001,356: 229-283.
    Richards EJ. DNA methylation and plant development [J]. Trends Genet, 1997,13(8): 293- 295.
    Rico-Cabanas L,Martinez-IZquierdo JA. CIREI,a novel transvriptionally active Tyl-copia retrotransposon from Citrus sinensis. Molecular Genetics and Genetics,2007,277:365-377.
    Ritenour M, Schrader L, Kammereck R, Donahue R, Edwards G. Bag and liner color greatly affect apple temperature under full sunlight. Horti Sci. 1997, 32:272.
    Rodrigo MJ,Marcos JF,Zaearias L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. Joumal of Agricultural and Food chemristry,2004,52: 6724-6731.
    Rosati C, Duron M, Cadic A Transformation of Forsythia×intermedia cv.‘Spring Glory’with two flavonoid pathway genes leads to anthocyanin synthesis in petals at early flowering stages. Polyphenols Commun, 2000, 1:57-58.
    Ryder TB, Hedrick SA, Bell JN Organization and differential activation of a gene family encoding the plant defence enzyme chalcone synthase in Phaseolus vulgris. Mol Gen Gent, 1987, 210:219-233.
    Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 1997, 9:611-625.
    Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell, 2006, 18:831-851.
    Schr?der J, Raiber S, Berger T, Schmidt A. Plant polyketide synthases: a chalconesynthase-type enzyme which performs a condensation reaction with methylmalonyl -CoA in the biosynthesis of C-methylated chalcones, Biochemistry, 1998, 37 (23): 8417-8425.
    Sehaefer HM,Sehaefer V,Levey DJ. How Plant-animal interactions signal new insights in communication[J]. Trends Ecol Evol,2004,19: 577-584.
    Shepherd NS,Schwarz-Sommer Z,Blumberg vel Spalve J,et al. Similarity of the Cin1 repetitive family of Zea mars to eukaryotic transposable elements.Nature,1984,307 (5947):185-187.
    Shi YZ,Yamamoto T,Hayashi T. Characterization of copia-like retrotransposons in pear. Journal of the Japanese Soeiety for Horticultural Science,2002,71:723-729.
    Sommer H and Saedler H. Structure of the chalcone synthase gene of antirrhinum majus. Mol Gen Genet,1986, 202: 429-434.
    Sparvoli F, Martin C, Scienza A, Gavazzi G. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape. Plant Mol Biol, 1994, 24:743-755.
    Spelt C, Quattrocchio F, Mol JNM, Koes R Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell, 2000, 12:1619-1631.
    Stokes TL, Kunkel BN, Richards EJ. Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 2002, 16:171–182.
    Springob K, Nakajima JI, Yamazaki M Recent advances in the biosynthesis and accumulation of anthocyanins. Natural Product Reports, 2003, 20:288-303.
    Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001,4: 447-456.
    Sweeney M, Thomson M, Cho Y, Park Y, Williamson S, Bustamante C, and McCouch S. Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet, 2007, 3: e133.
    Takos AM, Ubi BE, Robinson SP, Walker AR. Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Sci. 2006a, 170:487–499.
    Takos AM, Jaffe′FW, Jacob SR., Bogs J, Robinson SP, Walker AR. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006b. 142:1216–1232.
    Tamagnone L, Merida A, Parr A, Mackay S. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulated phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell, 1998,10:135-154.
    Tao NG,Xu J,Cheng YJ,Hong L,Guo WW,Yi HL,Deng XX. Isolation and Characterization of Copia-like retrotransposons from12 sweet orange (Citrus sinensis Osbeck) cultivars. Journal of Integrative Plant Biology,2005,47: 1507-1515.
    Thilo CF, Christian G, Judith P, Heidrun H, Christian H, Karl S, Gert F. Flavonoid genes of pear (Pyrus communis). Trees, 2007, 21:521-529.
    Timberlake CF and Bridle P. Anthocyanins. In: Walford J, Editor, Developments in food colours vol 1, Applied Science Publication Ltd, London, 1980, pp. 115-149.
    Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K. Functional genomics by integrated analysis of metabolome and transcription of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005, 42:218–235.
    Tsuda T, Horio F, Uchida K Dietary cyaniding 3-o-dglucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition, 2003, 133(7): 2130.
    Vander Meer IM, Stuitje AR, Mol NJM. Regulation of general phenylpropanoid and flavonoid gene expression. Boca Ratan: CRC Press, 1993, 125-155.
    Van Tunen A, Mur L, Recourt K. Regulation and manipulation of flavonoid gene expression in anthers of petunia: the molecular basis of the Po mutation. Plant Cell, 1991, 3:39-48.
    Vitrac X, Larronde F, Krisa S, Decendit A, Deffeux G, Mérillon JM. Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry, 2000, 53: 659-665.
    Von Arnim AG,Osterlund MT,Kwok SF,Deng XW. Genetic and development control of nuclear accumulation of COPI,a repressor of photomorphogesis in Arabdopsis. Plant Physiol,1997,114(3): 779-788.
    Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, and Robinson SP. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 2007, 49: 772–785.
    Wang H, Arakawa O and Motomura Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in 'Jonathan' apples. Postharvest Biol Technol 2000,19: 123-128.
    Wang HQ, Duan YS, Ju ZG. Effeces of covering the orchard floor with reflecting films on pigment accumulation and fruit coloration in'Fuji' apples. Sci Hort,1999, 82(1/2):47-56.
    Weiss D,Vander L,Kroon J.The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes:homology to flavonone 3-hydroxylase and the ethylene forming enzyme.Plant Mol Biol, 1993, 22: 893-897.
    Weisshaar B, Armstrong GSA,Block A. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J, 1991, 10: 1777-1786.
    Yao JL,Dong YH,Moris BAM. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS一box transcription factor. Proeeedings of the National Academy of Sciences of the Unite States of Ameriea,2001, 98:306-1311.
    Zhang F, Gonzalez A, Zhao M, et al. A network of redundant bHLH p roteins functions in all TTG12dependent pathways of A rabidopsis. Development, 2003, 130: 4859-4869.
    Zimmermann IM, Heim MA, Weisshaar B and Uhrig JF. Comprehensive identification ofArabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 2004, 40, 22–34.