茶树查尔酮异构酶、黄酮醇合成酶和无色花色素还原酶等基因的克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶叶是世界上最流行的无酒精健康饮品之一,含有许多有价值的次生代谢产物,如类黄酮、咖啡碱等。其中类黄酮是由类苯基丙烷等前体缩合而成一组天然化合物,它们在植物的生长、发育和防御疾病等方面有着重要作用。而且,这些化合物具有较强的抗氧化活性,对于改善人体健康的效果也非常突出。因此,分离克隆茶树类黄酮生物合成途径中相关酶的基因具有重要的理论意义和实践价值。主要研究结果如下:
     1.在原有茶树EST基础上,利用T_4RNA连接酶介导的5′RACE技术获得了茶树查尔酮异构酶(CHI)基因的全长序列,其在GenBank的登录号是DQ904329,其序列全长1163bp,其中开放阅读框长723bp,编码240个氨基酸,3′端有一个明显的多聚腺苷酸加尾信号,推测的蛋白分子量约为26.4kD,pI为5.19。序列分析表明它在GenBank已登录的植物中与番茄CHI基因序列的亲缘关系比较近。
     2.根据原有EST设计引物,利用RT-PCR技术获得了茶树黄酮醇合成酶(FLS)基因全长序列,在GenBank登录号为EF205150,其序列全长1317bp,其中开放阅读框长996bp,编码331个氨基酸,3′端有一个明显的多聚腺苷酸加尾信号,推测的蛋白分子量约为37.5kD,pI为5.80。序列分析表明它在GenBank已登录的植物中与葡萄FLS基因序列的亲缘关系比较近。将该基因重组到表达载体pET-32a(+)中进行原核表达,经IPTG诱导、SDS-PAGE检测,结果表明茶树黄酮醇合成酶基因能在大肠杆菌BL21中表达,电泳检测到一条大约61kD的外源蛋白,与预测的融合蛋白分子量相符。
     3.利用3′RACE技术获得了茶树无色花色素还原酶(LAR)的3′端,将其与原有EST片段拼接,得到了LAR基因的全长序列,其在GenBank的登录号为EF205148,其序列全长1301bp,其中开放阅读框长1029bp,编码342个氨基酸,3′端有一个明显的多聚腺苷酸加尾信号,推测的蛋白分子量约为37.5kD,pI为5.81。同源性分析表明得到的LAR序列与亚洲棉(Gossypium arboreum)、洋莓(Fragaria ananassa)和葡萄(Vitis vinifera)的氨基酸序列相似性分别为70%、68%、71%。十种植物的联配表明其氨基酸序列较为保守。
     4.利用半定量PCR技术检测了类黄酮的主要成分——儿茶素含量不同4个茶树品种中与类黄酮合成相关的查尔酮合成酶(CHS)、黄烷酮3-羟化酶(F3H)、黄酮醇合成酶(FLS)、二氢黄酮醇4-还原酶(DFR)、无色花色素还原酶(LAR)、花色素还原酶(ANR)和花青素合成酶(ANS)等7个基因的表达情况,结果表明DFR和LAR基因的表达量与茶树中儿茶素含量呈一定的相关性,而其它基因则与其相关性不大。
Tea is the most popular non-alcoholic and healthy beverages in the world, which has plentiful secondary metabolic products, such as, flavonoids, purine, etc. Flavonoids are a diverse group of plant natural products synthesized from phenylpropanoid and acetate-derived precursors, which play important roles in plant growth, development, and defense against microorganisms and pests. These compounds often possess antioxidant activity, and the potential health benefits of tea might mostly be because of this property of flavonoids and other phytochemicals. Isolation and cloning of important functional genes of tea plant (Camellia sinensis), which involved in flavonoids biosynthesis pathway, has crucial significance for using biotechnology method to regulate the metabolism of tea plant. The main results are as follow:
     1. The chalcone isomerase (CHI) gene, which was an important functional gene of catechins biosynthesis pathway, was cloned from tea plant by using EST sequencing and RACE (rapid amplification of cDNA ends) approaches. The full-length cDNA of chalcone isomerase gene is 1 163bp (GenBank accession No. DQ904329), containing a 723bp open reading frame (ORF) encoding a 240 amino acids protein, and its 3' untranslated region has an obvious polyadenylation signal. The deduced protein molecular weight was 26.4 kD and its theoretical isoelectric point was 5.19. Sequence analysis result showed that it is closely related with that of Lycopersicon esculentum.
     2. The flavonol synthase (FLS) gene was cloned from tea plant by using RT-PCR approaches based on our previous EST sequencing project. The full-length cDNA of flavonol synthase gene is 1 317bp (GenBank accession No. EF205150), containing a 996bp ORF encoding a 331 amino acids protein, and its 3' untranslated region has an obvious polyadenylation signal. The deduced protein molecular weight was 37.5 kD and its theoretical isoelectric point was 5.80. Sequence analysis result showed that it is closely related with that of Vitis vinifera. The gene was then constructed into expression vector pET-32a (+) for over expression in prokaryotic cells. The SDS-PAGE showed that induced by IPTG, the flavonol synthase proteins was expressed in Escherichia coli BL21, and its molecular weigh was found to be about 61 kD by checking with SDS-PAGE, nearly equal to the predicted.
     3. The 3'-end fragment of leucoanthocyantin reducase (LAR) gene was amplified using 3' RACE PCR technology. Then complete LAR gene was obtained by BLAST comparison the 3'-end fragment and the other fragment that we have known, and splicing according to the overlapping region. The full-length cDNA of LAR gene is 1 301bp (GenBank accession No. EF205150), containing a 1 029bp ORF encoding a 342 amino acids protein, and its 3' untranslated region has an obvious polyadenylation signal. The deduced protein molecular weight was 37.5kD and its theoretical isoelectric point was 5.81. The deduced amino acid sequence of LAR gene from tea plant showed high identity with that of other plants, for instance 71%, 70% and 68% with Vitis vinifera, Gossypium arboretum and Fragaria ananassa, respectively.
     4. Four different catechin content cultivars were selected from our tea germplasm appraisal database to assay the gene expression level of the seven genes, chalcone synthase、flavanone 3-hydroxylase、flavonol synthase、dihydroflavonol 4-reductase、leucoanthocyanidin reductase、anthocyanidin reductase and anthocyanidin synthase, which were involved in the flavonoids biosynthesis. The result showed that, the DFR and LAR transcripts were expressed increased with the increasing of tea catechin content. Nevertheless, the others did not show this tendency clearly.
引文
1.陈亮,赵丽萍,高其康.茶树新梢cDNA文库的构建和ESTs测序成功率初步分析.茶叶科学,2004,24(1):18-22
    2.冯艳飞,梁月荣.茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析.茶叶科学,2001,21 (1): 21-25
    3.何小解,易著文,田云,卢向阳,党西强,莫双红,杨华彬.儿茶素清除(O-·2)与·OH的能力.中南大学学报(医学版),2006,31(1):138-140
    4.李远华,江昌俊,杨顺利,余有本.茶树β-葡萄糖苷酶cDNA克隆和原核表达.农业生物技术学报,2004,12(6):625-629
    5.李远华,江昌俊,宛晓春.茶树咖啡碱合成酶基因mRNA表达的研究.茶叶科学,2004,24(1): 23-28
    6.李常应,周薇,曹娟,刘晓萍,邹少娜,罗招阳.表没食子儿茶素没食子酸酯诱导人胃癌细胞裸鼠移植瘤凋亡的研究.中国癌症杂志,2006,16(9):737-740
    7.陆建良,林晨,骆颖颖,张广辉,梁月荣.茶树重要功能基因克隆研究进展.茶叶科学,2007,27(2):95-103
    8.林海,邱振国.天然抗氧剂茶多酚的化学和应用.海峡药学,1997,9(2):99-101
    9.罗一帆,郭振飞,许旋,陈剑经.儿茶素及其组合物清除自由基能力的研究.林产化学与工业,2005,25(4):27-30
    10.明亚玲,骆丹,徐晶,吉玺,朱洁,林向飞。茶多酚单体和黄芩苷对紫外线辐射皮肤成纤维细胞的影响.中国美容医学,2005,14(5):541-544
    11.马春雷,陈亮.茶树功能基因分离克隆研究进展.分子植物育种,2006.4(3S):16-22
    12.宋秀祖,夏济平,毕志刚.茶多酚单体对中波紫外线辐射培养的成纤维细胞氧化损伤的保护机制研究.临床皮肤科学杂志,2003,32(6):315-317
    13.王广立,唐茂芝.水稻10KD醇溶蛋白基因克隆序列分析及对植物百脉根的转化.植物学报,1994,16(5):351-357
    14.王朝霞,李叶云,江昌俊,余有本.茶树巯基蛋白酶抑制剂基因的cDNA克隆与序列分析.茶叶科学,2005,25(3):177-182
    15.韦朝领,江昌俊,陶汉之,宛晓春.茶树紫黄素脱环氧化酶基因的cDNA克隆及其生物信息学分析.南京农业大学学报,2003,26(1):14-19
    16.韦朝领,江昌俊,陶汉之,宛晓春.茶树紫黄素脱环氧化酶基因的体外定点突变及其突变体的表达和活性鉴定.中国生物化学与分子生物学学报,2004,20(1):73—78
    17.吴姗,梁月荣,陆建良,黎昊雁.基因枪及其与农杆菌相结合的茶树外源基因转化条件优化,茶叶科学,2005,25(4):255-264
    18.赵东,刘祖生,奚彪.茶树多酚氧化酶基因的克隆及其序列比较.茶叶科学,2001,21(2):94-98
    19.赵淑娟,刘涤,胡之壁.植物次生代谢基因工程.中国生物工程杂志,2003,23(7):52-56
    20.周兆斓,朱祯.水稻cDNA文库的构建及巯基蛋白酶抑制剂cDNA的分离.中国科学(C辑),1996,(2):149-155
    21.朱永兴,周巨根,杨昌云.中国茶多酚类文献研究.浙江大学学报(农业与生命科学版),2002,28(6):703-706
    22.张晓国,朱英国.水稻花药特异表达基因启动子的扩增及克隆.武汉大学学报(自然科学版),1997,43(4):480-484
    23. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, and Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochemical Pharmacology, 1997, 53(11): 1649-1657
    24. Aida R, Yoshida K, Kondo T, Kishimoto S, and Shibata M. Copigmentation gives bluer flowers on transgenic torenia plants with the anti-sense dihydroflavonoll-4-reductase gene. Plant Science, 2000, 160: 49-56
    25. Bhatia N and Garwal R. Hydrogen peroxide-mediated prooxidant activity of epigallocatechin 3-gallate in human prostate carrcinoma DU145 cells: effect on cell growth and viability, and MAP kinase. Proceedings of the American Association for Cancer Research, 2000, 41: 533-538
    26. Bruce W, Folkerts O, Garnaat C, crasta O, Roth B, and Bowen B. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. The Plant Cell, 2000, 12(1): 65-80
    27. Chen L, Zhao LP, and Gao QK. Generation and analysis of expressed sequence tags from the tender shoot cDNA library of tea plant (Camellia sinensis). Plant Science, 2005, 168: 359-363
    28. Chuck G, Robbins T, Nijjar C, Ralston E, Dooner HK. Tagging and cloningn of a petunia flower colour gene with zhe maize transposable element activator. The Plant Cell, 1993, 5: 371-378
    29. Eksittikul T and Chulavatnatol M. Charaterization of cyanogenic β-glucosidase (linamarase) from cassava (mahihot esculent cranta). Archives of Biochemistry and Biophysics, 1988, 266 (1): 263-269
    30. Elias M, Nambisan B, and Sudhakaran PR. Characterization of linamarase of latex and its localization in petioles in cassava. Archives of Biochemistry and Biophysics, 1997, 341 (2): 222-228
    31. Forkmann G, and Martens S. Metabolic engineering and appli-cations of flavonoids. Current Opinion in Biotechnology, 2001, 12: 155-160
    32. Furukawa T, Eshima A, Kouya M, Takio S, Takano H, and Ono K. Coordinate expression of genes involved in catechin biosynthesis in Polygonum hydropiper cells. Plant Cell Reports, 2002, 21: 385-389
    33. Frohman MA, Dush MK, and Martin G. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85: 8998-9002
    34. Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, Clair G S, and Bowen B. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. The Plant Cell, 1998, 10: 721-740
    35. Hayakawa S, Saeki K, Sazuka M, Suzuki Y, Shoji Y, Ohta T, Kaji K, and Yuo A. Isemura M.Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochemical and Biophysical Research Communications, 2001, 285(5): 1102-1106.
    36. Kato M, Mizuno K, Crozier A, Fujimura T, and Ashihara A. Caffeine synthase gene from tea leaves. Nature, 2000, 406: 956-957
    37. Kato M, Mizuno K, Fujimura T, Iwama M, Irie M, Corzier A, and Ashihara H. Purification and characterization of caffeine synthase from tea leaves. Plant Physiology, 1999, 120: 579-586
    38. Kato M and Uenatu K. Biochemistry and molecular biology in caffeine biosynthesis: Molecular cloning and gene expression of caffeine synthase, In: Proceedings of 2001 International Conference on O-Cha (Tea) Science (Session II), 2001, 21-24
    39. Liang YC, Lin-Shiau SY, Chen CF, and Lin JK. Inhibition of Cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (-)-epigallocatechin-3-gallate. Journal of Cellular Biochemistry, 1999, 75(1): 1- 12.
    40. Li H and Chan TH. Enantioselective synthesis of epigallocatechin-3-gallate (EGCG),the active polyphenol component from green tea. Organic Letters, 2001, 3 (5) : 739-741
    41. Li CP, Swain E, and Poulton JE. Prunus serotina amygdalin hydrolase and prunasin hydrolase: Purification, N-terminal sequencing and antibody prodution. Plant physiology, 1992, 100 (1):282-290
    42. Lin YL, Juan IM, Chen YL, Liang YC, and Lin JK. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radicalabsorbing capacity with antiproliferative actions in fibroblast cells. Journal of Agricultural and Food Chemistry, 1996, 44: 1387-1394
    43. Liang P and Pardee A. Differential display of eukayotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971
    44. Matsumoto S, Takeuchi A, and Hayatsu M. Molecular cloning of phenylalanine ammonialyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probe. Theoretical and Applied Genetics, 1994,89: 671-675
    45. Mizutani M, Nakanishi H, Ema J, Ma SJ, Noguchi E, Inohara-Ochiai M, Fukuchi-Mizutani M, Nakao M, and Sakata K. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiology, 2002,130: 2164-2176
    46. Mondal Tk, Bhattacharya A, Ahuja PS, and Chand P. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangral Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Reporters, 2001, 20(8): 712-720
    47. Maruyama K and Sugano S. Oligo-capping:A simple method to replace the cap structure of eucaryotic mRNA with oligoribonucletides. Gene, 1994, 138(1-2): 171-174
    48. Masaru M, Sasaki J, and Murao S. Studies on β-glucosidase from soybeans that hydrolyze daidzin and genistin, isolation and characterizetion of an isozyme. Bioscience Biotechnology and Biochemistry, 1995, 59 (9): 1623-1627
    49. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric DVC, Tunen AJV, and Verhoeyen ME. Over expression of petunia flavonol synthase in tomatoresults in fruits containing increased levels of flavonols. Nature Biotechnology, 2001, 19: 470-474
    50. Mamati EG and Liang YR. Genetic control studies to exploit flavonoids synthesis pathway in tea biochemical. Journal of Tea Science, 2005, 25(2): 81-89
    51. Ma ZS, Huynh TH, Ng CP, Do PT, Nguyen TH, and Huynh H. Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation. InternationalJournal of Oncology, 2004, 24(5): 1297-1304
    52. Nielsen K, Deroles SC, M arkham KR, Bradley MJ, Podivinsky E, and Manson D. Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Molecular Breeding. 2002,9:217-229
    53. Park JS, Kim JB, Hahn BS, Kim KH, Ha SH, Kim JB, and Kim YH. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Science, 2004,166:953-961
    54. Payne G, Ahl P, Moger M, Harper A, Beck J, Meins F,and Ryals J.Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q two acidicchitinases from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 1990,87:98-102
    55. Polashock JJ, Griesbach RJ, Sullivan RF, and Vorsa N. Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Science, 2003, 163:241-251
    56. Punyasiri PA, Abeysinghe IS, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, and Fischer TC. Flavonoid biosynthesis in the tea plant Camellia sinensis: Properties of enzymes of the prominent epicatechin and catechin pathway. Archives of Biochemistry and Biophysics, 2004, 431: 22-30
    57. Roberts EAH, Cartwright RA, and Oldschool M. The phenolic substances of manufactured tea. I. Fractionation and paper chromatography of water-soluble substances. Journal of the Science of Food and Agriculture, 1957, 8: 72-80
    58. Sugiyama T and Sadzuka Y. Combination of theanine with doxorubicin inhibitors hepatic metastasis of M5076 ovarian sarcoma. Clinical Cancer Research, 1999, 5(2): 413-416
    59. Siddiqui IA, Adhami VM, Afaq F, Ahmad N, and Mukhtar H. Modulation of phosphatidylinositol-3-kinase protein kinase B- and mitogen-activated protein kinase pathways by tea polyphenols in human prostate cancer cells. Journal of Cell Biochemistry, 2004, 91(2): 232-242
    60. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, and Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of Biochemistry and Biophysics, 1995,322(2): 339-346
    61. Sawai Y and Sakata K.. NMR analytical approach to clarify the antioxidative molecular mechanism of catechins using 1,1-diphenyl-2-picrylhydrazyl. Journal of Agricultural and Food Chemistry, 1998,46(1): 111-114
    62. Shi ST, Wang ZY, Smith TJ, Hong JY, Chen WF, Ho CT, and Yang CS. Effects of green tea and black tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone bioactivation, DNA methylation, and lung tumorigenesis in A/J mice. Cancer Research, 1994, 54(17):4641-4647
    63. Takeuchi A, Matsumoto S, and Hayatsu M. Chalcone synthase from Camellia sinensis isolation of the cDNAs and the organ-specific and sugar-responsive expression of the Genes. Plant Cell Physiology, 1994,35(7): 1011-1018
    64. Takos AM, Ubi BE, Robinson SP, and Walker AR. Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Science , 2006, 170:487-499
    65. Takeo T. Production of linalool and geraniol by hydrolytic breakdown of bound forms in disrupted tea shoots. Phytochemistry, 1 981, 120 (9): 2145-2147
    66. Tunen AJV, Koes RE, Spelt CE, Krol ARV, Stuitje AR, and Mol JN. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. The EMBO Journal, 1988, 7(5): 1257-1263
    67. Thompson JD, Higgins DG, and Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673-4680
    68. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, and Colliver S. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2002, 53: 2099-2106
    69. Vom ED, Kijne JW, and Memelink J. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry, 2002, 61: 107-114
    70. Vinson JA, Dabbagh YA, Serry MM, and Jang J. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. Journal of Agricultural and Food Chemistry, 1995, 43( 11 ):2800-2802
    71. Wang ZY, Cheng SJ, Zhou ZC, Athar M, Khan WA, Bickers DR, and Mukhtar H. Antimutagenic activity of green tea polyphenols. Mutation Research, 1989, 223: 273-285
    72. Yu HN, Yin JJ, and Shen SR. Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu~(2+). Journal of Agricultural and Food Chemistry, 2004, 52 (3) : 46224661