中国胭脂鱼遗传多样性及亚口鱼科分子系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚口鱼科(Catostomidae),淡水鱼类,呈泛北极(holarctic)分布。全球范围内共14属,约80种。绝大多数种类分布于北美洲和中美洲,约有13属75种;仅有少数分布在亚洲,即分布于西伯利亚的Catostmus catostomus以及我国的Myxocyprinus asiaticus。中国胭脂鱼,Myxocyprinus asiaticus,是亚口鱼科在亚洲大陆分布的唯一单型属、种,主要生活于我国长江的干支流和附属湖泊以及闽江流域。由于人类活动的影响,中国胭脂鱼已被列为国家二级野生保护动物,濒危等级:易危。围绕这一珍稀物种,主要进行了三个方面的研究:一,应用限制性酶切片断长度多态(RFLP)、随机扩增长度多态性(RAPD)、微卫星标记(SSR)、DNA直接测序(DNA sequencing)等分子检测技术,分别在基因组DNA和线粒体DNA层次上分析了中国胭脂鱼长江中上游四个采样群体(宜宾,万州,宜昌,武汉)的遗传多样性,并且探讨了其形成机制。二,分别以核DNA和线粒体DNA的18S-ITS1-5.8S序列片段和细胞色素b(cytochrome b)基因片段作为分子标记,对亚口鱼科鱼类进行了分子系统学研究,并比较了中国胭脂鱼与亚口鱼科代表属种的分子变异模式。三,据化石证据、地球地质演化等最新进展,结合以上分子标记,进行了亚口鱼科鱼类的生物地理学研究。
     在对中国胭脂鱼进行保护和人工繁殖工作中,调查其种群遗传结构是十分重要和基础性的工作。我们首次用分子生物学方法在基因组DNA和线粒体DNA层次上分析了中国胭脂鱼长江中上游四个采样群体的遗传结构及其遗传分化。在RAPD分析中,对约80个RAPD引物进行了筛选扩增,仅有3个引物的扩增带型具多态性。中国胭脂鱼宜昌江段群体内个体之间的遗传相似度平均为0.9274,武汉江段群体内个体之间的遗传相似度平均为0.931,群体之间遗传相似度为0.900。在线粒体ND-5/6基因(NADH dehydrogenase)的PCR-RFLP分析中,12个限制性内切酶酶切只检测出了2种单倍型(haplotype),基因型间的核苷酸序列歧化距离为0.235%,核苷酸多样性为0.004。PCR-RFLP及RAPD分析共同揭示:长江中游宜昌和武汉江段群体的遗传多样性水平较低,且两江段群体之间出现了一定的遗传分化。对长江中上游四个群体70尾中国胭脂鱼线粒体DNA的控制区(D-Loop)序列进行了测序,序列长度约为920bp。分析表明,其平均碱基组成具有与其它鱼类D-Loop相
    
    似的碱基组成特点:平均AT含量明显高于GC含量(21.55C: 28.94T:犯.09A:
    17.42G)。控制区序列共观察到223(约为23.45%)多态位点,由此定义了39个单
    倍型。D一Loop序列间基于Jukes一Cantor距离测度得到的成对序列距离变异范围在
    0.000一0.167之间,平均为0.052。平均核普酸多样性是0.052士0.025,平均单倍型多
    样性为0.958士0.012。我们对长江中上游胭脂鱼四个群体进行了分子变异分析
     (analysis or moleculary而ation),揭示其遗传变异主要是来源于群体之间(占
    60.29%),群体内的变异较少(占39.71%)。成对Fst值提示中国胭脂鱼群体之间存
    在一定的遗传分化,特别是宜宾江段群体与其它群体之间分化显著。我们还用微卫
    星标记初步调查了以上4个群体%尾中国胭脂鱼的群体遗传结构,筛选的3个微
    卫星位点分析的结果与D一Loop测序分析类似。综合以上研究,我们得出以下初步
    结论:由于小群体的遗传漂变,遗传结构易受各种随机事件的影响,中国胭脂鱼种
    群结构较为单一;不同江段群体具有适应当地水文特点的基因库,加之生境的片段
    化造成相互之间基因交流的机会较少,长江不同江段群体之间已存在一定的遗传分
    化。
     我们用PCR方法得到了亚口鱼科17个代表属种线粒体DNA的细胞色素b基
    因和核DNA的185一ITSI一5.85部分序列,并进行了序列对比以分析其遗传变异模式。
    从细胞色素b基因成对序列变异来看,种间核昔酸变异的范围较大,变异率从最小
    的Thoburnia rkothoeca和Catostomus macroc人eilus之间(2.60%)到最大的Cyc妙tus
    elongates和人勿工ostoma anisurum之间(19.10%)。中国胭脂鱼与亚口鱼科其它属种
    之间核普酸的差异总体来说较大。其中与Ictiobus cyPrinellus之间核普酸差异最小
     (共38个核营酸替代,其中转换32个,颠换6个),与均夕entelium nigricans之IbJ
    核普酸差异最大(共55个核普酸替代,其中转换47个,颠换8个)。从6属7种
    亚口鱼的185一ITsl一5.85部分序列的变异模式来看,185一5.85序列较为保守,而ITsl
    长度变化较大,主要是存在较大片段的缺失。ITSI区长度变异范围很大,在
    从玖{ostoma robustom最短仅53bP,在Ictiobus呷rinellus最长达289bP。Ictiobus
    心尹rinellus和入为优o。岁rinus asiaticu、的ITSI区域明显比其它属种长些,分别为289
    饰和285 bp。以非加权对组算术平均法(UPGMA)及最大简约数法(MP)构建的
    分子系统发育树提示:中国胭脂鱼与CyclePtus etong以tus是并系关系。这与H翻s
     (2001)等基于125和165川NA基因研究的结果相同,而与Smith(1990)基于
    化石、生活史和形态等证据研究的结果不同(认为中国胭脂鱼与仰‘7ePtus elongatus
    是单系类群)。Tho石urnia rko功oeea和功夕entelium nigrieans是复系类群,关系较远。
    Thoburnia rkothoeca和Catostominae亚科中的Catostomin
The family Catostomidae has 14 genera and about 80 species all over the world, mainly in North America. The Chinese sucker, Myxocyprinus asiaticus, is an endemic freshwater fish in China and the only representative of family Catostomidae in Asia. The fish is naturally distributed mainly in the Yangtze River, especially in the upper reaches. The wild fish source was greatly damaged due to over-harvesting and other human activities, to date the Chinese sucker has been an endangered species and has been listed in the second class of preserved animals in China. About this precious fish species, we have performed research work on 3 aspects. Firstly, on genome DNA and mitochondrial DNA levels, we detected the genetic diversity and population differentiation among 4 Chinese sucker geographical populations (Yibin, Wanzhou, Yichang, and Wuhan) from the Yangtze River based on RFLP, RAPD, SSR and DNA sequencing analyses. Secondly, we sequenced the 18S-ITS1-5.8S partial sequences from nuclear DNA and cytochrome b partia
    l sequences from mitochondrial DNA respectively. By using these two markers, we performed molecular systematics research on Catostomidae fishes and compared the molecular variation model between Chinese sucker and other representative Catostomids. Thirdly, we studied the biogeography of Catostomidae fishes based on the molecular, fossil, and biogeographical evidences, especially about the biogeographical history of the Chinese sucker.
    It is necessary to learn the genetic background of the Chinese sucker in the Yangtze River in order to preserve and restore this endangered fish. We are the first research group to do this work using molecular methods. The RAPD and PCR-RFLP methods were used to detect genetic structure of Chinese sucker populations from the middle reaches of Yangtze River: Yichang section and Wuhan section. We screened about 80 RAPD primers, and only 3 primer produced polymorphism. The genetic similarity within the Yichang and the Wuhan population is 0.9274, 0.9313 respectively. The genetic
    
    
    similarity between them is about 0.9000. In PCR-RFLP analysis, 4uL aliquots of the PCR products of mitochondrial NADH dehydrogenase (ND-5/6) genes were digested by 12 restriction enzymes. Of 12 restriction enzymes types, 11 are monomorphic except Ncil enzyme. Only two kinds of haplotypes were found. The nucleotide diversity was 0.004, and the pair-wise sequence divergence was about 0.235%, which suggested that the genetic diversity of Chinese sucker was low. Seen from the electrophorisis patterns in the PCR-RFLP and RAPD analysis, we found that the genetic differentiation was formed between the two populations to some extent. Genetic diversity and population structure of the Chinese sucker was also assessed by sequencing the mtCR (mitochondrial control region) in 4 natural populations from the Yibin, the Wanzhou, the Yichang, and the Wuhan section of the Yangtze River. We obtained the mtCR sequences of about 920 base pairs. The average base composition was similar to other fishes that the average A and T contents were much higher than the average G and C contents (21.55C: 28.94T: 32.09A: 17.42G) . A total of 223 nucleotide positions were polymorphism, and these defined 39 haplotypes. Of the 39 haplotypes, 37(90%) are private and multi-sharing of haplotypes was seldom observed among populations. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated higher level of genetic diversity of Chinese sucker globally. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) that most variation was from among populations (60.29%), and less from within populations (39.71%). The dendrogram or phylogenetic trees by the NJ (neighbor joining) and MP (maximum parsimorny) methods showed mosaic composition of the 39 haplotypes, suggesting that the populations were not significantly divergent. Nevertheless, we still recognized two divergence phylogenetic clusters: haplotype 34, 35, 36, and 39 consisted of the cluster B and the
引文
1.蔡明艳,邓中粦,余志堂等。胭脂鱼的早期发育。淡水渔业,1992,1:8-12
    2.何平。真核生物中的微卫星及其应用。遗传HEREDITAS,1998,20(4):42—47
    3.何舜平,乐佩琦,陈宜瑜。鲤形目鱼类咽齿形态及发育的比较研究。动物学报,1997,43(3):255-262
    4.李明,王小明,盛和林等。四种鹿属动物线粒体DNA差异和系统进化研究。动物学报,1999,45(1):99-105
    5.李思发,吕国庆,Bernatchez L。长江中游鲢鳙草青四大家鱼线粒体DNA多样性分析。动物学报,1998,44(1):82—93
    6.李思忠。中国淡水鱼类的分布区划。科学出版社,1981
    7.李树深等。中国胭脂鱼的核型研究。动物学研究,1983,4:182-183
    8.刘健康主编。高级水生生物学,科学出版社,1999
    9.刘乐和,吴国犀,王志玲。葛洲坝水利工程对胭脂鱼性腺发育及自然繁殖的影响。水产学报,1992,16(4):346—45
    10.刘乐和。胭脂鱼生物学特征的研究。水利渔业,1996,3:3-6
    11.宋平,胡珈瑞,胡隐昌等。依据RAPD片段克隆而建立的团头鲂PCR鉴定法。武汉大学学报(理学版),2001,47(4):493—497
    12.唐琼英,杨秀平,刘焕章。刺鲃基于线粒体细胞色素b基因的生物地理学过程。水生生物学报,2003,27(4):352-355
    13.唐伯平,周开亚,宋大祥。核rDNA ITS区序列在无脊椎动物分子系统学研究中的应用。动物学杂志,2002,37(4):67—73
    14.吴国犀,刘乐和,王志玲等。葛洲坝下宜昌胭脂鱼年龄与生长。淡水渔业,1990,2:3—7
    15.杨群。分子古生物学原理与方法。科学出版社,2003,北京
    16.万松良,裴家田,刘兴国。胭脂鱼人工繁殖和鱼苗培育的初步研究。水利渔业,2002,22(2):20-22
    
    
    17.王以康。鱼类分类学。北京,1958。科学出版社
    18.汪松主编,乐佩琦,陈宜瑜。中国濒危动物红皮书——鱼类。北京,科学出版社,1998,57-60
    19.吴力钊,王祖熊。长江中游白鲢天然群体的生化遗传和变异。水生生物学报,1997,21(2):157—162
    20.伍献文,陈宜瑜,陈景星等。鲤亚目鱼类分科的系统和科间系统发育的相互关系。中国科学,1981,(3):369—376
    21.相建海。海洋动物细胞和种群生化遗传学。济南,山东科学技术出版社。1999
    22.肖武汉,张亚平。鱼类线粒体DNA的遗传与进化。水生生物学报,2000,24(4):384—391
    23.熊全沫,夏盛林。中国胭脂鱼同工酶的研究。动物学报,1985,31(1):20—27
    24.乐佩琦,何舜平。胭脂鱼仔幼鱼的咽齿发育及系统学意义。动物学研究(增刊),1994,15:45-51
    25.余志堂,邓中粦,周春生等。长江葛洲坝水利枢纽兴建后鱼类资源变化预测。中国鱼类学会编,鱼类学论文集,第四集。北京:科学出版社,1985,4:193-205
    26.张春光,赵亚辉,康景贵。我国胭脂鱼资源现状及其资源恢复途径的探讨。自然资源学报,2000,15(2):155-159
    27.章怀云,刘荣宗,张学文等。草鱼和鲤鱼群体遗传变异的RAPD分析。水生生物学报,1998,22(2):168—175
    28.张春光,赵亚辉。长江胭脂鱼的洄游问题及水利工程对其资源的影响。动物学报,2001,47(5):518-521
    29.张弥曼,陈宜瑜。中国中生代晚期及第三纪鱼类区系中若干分布格局问题。古脊椎动物学报,2000,38(3):161—175
    30.张涛,庄平,章龙珍等。胭脂鱼早期生活史行为发育。2002,中国水产科学,9(3):215-219
    31.赵文学,孙玉华等。用RAPD方法对鲶及褐首鲶遗传多样性研究,武汉大学学报(理学版),2001,47(6):782-784
    32.周剑光,杨德国,吴国犀等。胭脂鱼仔幼鱼发育及苗种培育技术。华中农业大
    
    学学报,1999,18(3):263-267
    33. Avise, JC. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York, 1994.
    34. Arise and Saunders. Hybridiation and introgression among species of sunfish (lepo mis): analysis by mtDNA and allozyme markers. Genetics, 1984, 108:237-246
    35. Barber P, Palumbi S, Moosa M et al. Sharp genetic breaks among populations of Haptosquilla pulchella indicated limits to larval transport: patterns, causes, and consequences. Molecular Ecology, 2002, 11:659-674.
    36. Bentzen P, Wright J. Nucleotide sequence and evolutionary conservation of a minisatellite variable number tandem repeat cloned from Atlantic salmon, salmo salar. Genome, 1993, 36:271-277
    37. Berg LS. Classification of fishes, both recent and fossil. Trav.Acad.Sci., 1940,5:87-517,USSR.
    38. Bernatchez L, Dodson J.Mitochondrial DNA variation among anadromous populations cisco as revealed by restriction analysis. Can. J. Fish. Aquat.Sci.,1990,47:533-543
    39. Bielawski J.P and Pumo D.E. RAPD analysis of Atlantic coast stripped bass. Heredity, 1997, 78:32-40
    40. Chang Mee-man, Miao Desui, Chen Yiyu et al. Suckers from the Eocene of China account for the family's current disjunct distributions. Science in China, 2001, 44(7):577-586
    41. Cavalli L and Edwards A. Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Gene., 1967, 19: 233-257.
    42. Crooijmans R, Bierbooms V, Komen J et al. Microsatellite markers in common carp (Cyprinus carpio L.). Animal Genetics, 1997, 28:129-134
    43. Darlinton PJ. Zoogeography: the geographical distribution of animals. 1957, Wiley,New York.
    44. Dawson MN, Staton JL, Jacobs D. Phylogeography of the tidewater Goby, Eucyclogobius newberry, in costal California. Evolution, 2001, 55 (6):1167-1179
    
    
    45. Despres L, Loriot S, Gaudeul M. Geographic pattern of genetic variation in the European globeflower Trollius europaeus inferred from amplified fragment length polymorphism markers. Molecular Evolution, 2002, 11: 2337-2347
    46. Desalle R, Gatesy J, Wheeler W et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 1992,257:1933-1936
    47. Dickerson R. The structure of cytochrome C and the rates of molecular evolutions. J. Mol. Evol., 1971, 1: 26-45.
    48. Dowling TE, Minckley WL and Marsh PC. MtDNA diversity with & among Rozorback Sucker as determined by Restriction Endonuclease Analysis. Copeia.1996, (3): 542-549
    49. Dover G. Molecular drive: a cohesive mode of species evolution. 1982, Nature, 299:111-116
    50. Eck R and Dayhoff M. Atlas of protein sequence and structure. 1966, National Biomedical Research Foundation, Silver Springs, MD.
    51. Fang PW. Notes on Myxocyprinus asiaticus in Chinese freshwaters. Sinensia, 1934,4(11): 329-337
    52. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 1981, 17:368-376
    53. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39: 783-791.
    54. Felsenstein J. PHYLIP: Phylogeny inference package, ver 3.572. 1995, University of Washington, Seatle, WA.
    55. Ferris S, Whitt G. Loss of duplicate gene expression after polyploidisation. Nature, 1977b, 265:258-260
    56. Ferris S, Whitt G. Phylogeny of tetraploid catostomid fishes based on the loss of duplicate gene expression.Syst.Zool., 1978, 27:189-206
    57. Ferris S, Whitt G. Genetic variation in species with extensive gene duplication:the tetraploid catostomid fishes. The American Naturalist, 1980, 115(5): 650-666
    
    
    58. Ferris S and Whitt G. Loss of duplicate gene expression after polyploidisation. Nature, 1977, 265:258-260
    59. Fowler. Some fishes collected in China. Bulletin American Museum of Natural History, 1924, 375-376
    60. Fuiman LA. Contributions of developmental characters to a phylogeny of catostomid fishes, with comments on heterochrony. Copeia, 1985:833-846
    61. Golenberg EM, Giannsi DE, Clegg MT et al Chloroplast DNA sequence from a Miocene Magnolia species. Nature, 1990, 334: 656-658.
    62. Gery J. The freshwater fishes of South America, 828-848.In:Biogeography and ecology in South American, 1969. The Hague.
    63. Gosline WA. The problem of the derivation of the South American and African freshwater fish faunas. An.Acad.Brasil.Cien., 1944, 16:211-223
    64. Grande L, Bemis E. A comprehensive study of amiid fishes based on comparative skeletal anatomy. An empirical search for interconnected patterns of history. Society of Vertebrate Paleontology Memoir, J.Vert Paleont.(supplement), 1998, 18(1):1—690
    65. Greenwood PH. Quaternary fish fossils. Explo.Parc.Nat.Albert, Inst. Parc.Nat.Congo Balge, Brussels, 1959, 4: 3-80
    66. Grewe PM and Hebert PD. MtDNA diversity among Broodstocksof the Lake Trout, Salvelinus namaycush. Can.J.Fish.Aqua.Sci, 1988, 45: 2114-2123
    67. Harris PM, Mayden R. Phylogenetic relationships of Major clades of Catostomidae as inferred from Mitochondrial SSU and LSU rDNA sequences. Molecular Phylogenetics and Evolution, 2001, 20(2): 225-237.
    68. Heath D, Pollard S, Herbinger C. Genetic structure and relationship among steelhead trout populations in British Columbia. Heredity, 2001, 86:618-627
    69. Hillis. Molecular systematics. The 2-th edition. 1996, 233-234,Sinaur Press.
    70. Hinggins DG, Sharp PM. CLUSTRAL: a package for performing multiple sequence alignments on a microcomputer. Gene, 1988, 73: 237-244.
    71. Huang T, Cottingham R et al. Genetic mapping of four dinucleotide repeat loci,
    
    DXS453, DXS458, DXS454, DXS424 on the X chromosome using multiplex polymerase chain reaction. Genomics, 1992, 13: 375-380
    72. Hubbs C. Materials for a revision of the catostomid fishes of eastern North America. Misc. Publ. Mus. Zool. Univ. Mich., 1930, p20.
    73. Hussakof L. The fossil collected by the Central Asiatic expedition, Amer.Mus.Novit.,1932, 553: 1-19.
    74. Ikeda M, Taniguchi N. Genetic variation and divergence in populations of ayu Plecoglossus altivelis, including endangeded subspecies, inferred from PCR-RFLP analysis of the mitochondrial DNA D-loop region. Fisheries Science, 2002, 68(1):18-26
    75. Jeffery A, Wilson V, and Thein S. Hyperveriable "minisatelite" regions in human DNA. Nature, London. 1985, 316:76-79
    76. Jenkins ER. "Systematics studies of the Catostomid fish tribe Moxostomatini". Ph.D dissertation, 1970, Cornell University, Ithaca, NY.
    77. Jukes TH, Cantor CR. Evolution of protein molecules. In: Mammalian protein metabolism. Academic, New York, 1969.
    78. Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res., 1968, 11:247-269
    79. Kimura M and Ohta T. Eukaryotes-prokaryotes divergence estimated by 5S rRNA sequences. Nature, 1973,243:199-200.
    80. Kluge A and Farris J. Quantitative phyletics and evolution of anurans. Syst. Zool.,1969, 18:1-32
    81. Kocher TD, Thomas WK, Meyer A et al. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers.Proc.Natl.Acad.Sci., 1989, 86: 6196-6200.
    82. Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2: Molecular Evolutionary Genetics Analysis software, 2001, Arizona State University, Tempe, Arizona, USA.
    83. Lafontaine P and Dodson J. Intraspecific genetic structure of white sucker (catostomus commersoni) in northeastern North America as revealed by MtDNA
    
    polymorphism. Can.J.Fish.Aqua.Sci, 1997, 54:555-565
    84. Youchun Li, A Korol, T fahima et al. Microsatellites:genomic distribution,putative functions and mutational mechanisms:a review. Molecular Ecology, 2002, 11:2453-2465
    85. Lu GQ, Li SF, Bernatchez L. MtDNA diversity, population structure, and conservation genetics of four native carps within the Yangtze River, China. Can.J.Fish.Aqua.Sci., 1997, 54: 47-58.
    86. Lynch M. The similarity index and DNA fingerprinting. Mol Biol Evol, 1990, 7:478-486
    87. Lydeard C, Wooten M et al. Cytochrome b sequence variation and a molecular phylogeny of the live-bearing fish genus Gambusia(Cypriniformes:Poeciliidae). Can. J. Zool., 1994, 73:213-227
    88. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer research, 1967, 27: 209-220.
    89. Margoliash E. Primary structures and evolution of cytochrome c. Proceedings of National Academy of Sciences of USA, 1963, 50, 672-679
    90. Mclaughlin and Dayhoff. Eukaryotes versus Prokaryotes: An estimation of evolutionary distance. Science, 1970,168:1469-1471.
    91. Mcveigh HP, Davidson WS. A salmonid phylogeny inferred from mitochodrial cytochrome b gene sequences. J. Fish. Biol., 1991, 39(supplement): 277-282
    92. Meyer A, Kocher TD et al. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequence. Nature, 1990, 347:550-553
    93. Meyer A and Wilson A. Origin of tetrapods inferred from their mitochondrial DNA affilitation to lungfish. J. Mol. Evol., 1990, 31:359-364
    94. Miller RR. Origin and affinities of the freshwater fish fauna of western North America. In 'Zoogeography', 1959, pp. 187-222. Am. Assoc. Adv. Sci. Publ. 51, Washington, DC.
    95. Moran P, Pendas AM, Vazquez E G. MtDNA variation in wild & hatchery brown trout. Aquaculture, 1996, 141:59-68
    
    
    96. Moritz C. Application of mitochondrial DNA analysis in conservation: a critical review. Molecular Ecology, 1994, 3: 401-411.
    97. Nei M. Molecular evolutionary genetics. New York, Columbia Univ. 1987,Press.
    98. Nei M, Kumar S. Molecular Evolution and Phylogenetics. 2000, Oxford University Press. London.
    99. Nei M, Tajima F. DNA polymorphism detected by restriction endonucleases. Genetics 1981, 97: 145-163.
    100. Nelson EM. The opercular series of the Catostomidae. J. Morphol., 1949, 85:559-567.
    101. Nelson EM. The comparative morphology of Weberian apparatus of Catostomidae and its significance in systematics. J. Morph., 1948, 83:225-251
    102. Nelson EM. Some notes on the Chinese sucker. Copeia, 1975, 3: 594-595.
    103. Nelson JS. Fishes of the world (3rd edition). 1994, New York, John Wiley and Sons.
    104. Nichols JT. Some Chinese freshwaters. American museum novitiates, 1925, 177:7-9
    105. Nichols JT. Speculation on the history of the Ostariophysi. Copeia, 1930, 148-151
    106. Novacek M and Marshall L. Early biogeographic history of Ostariophysan fishes. Copeia, 1976, 1: 1-11.
    107. Ong T, Stabile J et al. Genetic divergence between Acipenser oxyrinchus and A. O. desotei as assessed by mitochondrial DNA sequencing analysis. Copeia, 1996, 2:464-469
    108. Park LK, Brainard MA, Dightman D A. Low level of intraspecific variation in the MtDNA of chum salmon (oncoryhnchus keta). Mol. Mar. Biol. Biotech., 1993, 2:362-370.
    109. Park LK, Moran P. Development in molecular genetics techniques in fisheries. Reviews in fish biology and fisheries, 1994, 4:272-299
    110. Pauling L, Zuckerkandl E. Chemical paleogenetics: molecular restoration study of extinct forms of life. Acta Chemica Scandinavica, 1963, 17:1-16
    111. Raney E and Robins C. Studies of the catostomid fishes of genus Moxostoma, with descriptions of two new species. Cornell Univ. Agri. Exp. Sta. Mem., 343: 1-56.
    
    
    112. Regan CT. 1922. Distribution of the fishes of the order Oatariophysi. 1956, Bijdragen Dierkunde, Amsterdam, 22:203-207
    113. Richard GF, Paques F.Mini- and microsatellite expansions:the recombination. EMBO reports. 2000, 1(2): 122-126
    114. Rommer AS. Vertebrate paleontology. 1966, Univ.Chicago Press.
    115. Russell D, Zhai RJ. The Paleogene of Asia: mammals and stratigraphy. Mem. Mus. Natn. Hist. Nat.(Paris), Sci Terre, 1987, 52:1-488
    116. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol., 1981, 10:1073-1095
    117. Saitoh K. Genetic variation and local differentiation in the Pacific Cod Gadus macrocephalus around Japan revealed by mtDNA and RAPD markers. Fisheries Science, 1998, 64(5): 673-685
    118. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol.Biol.Evol. 1987, 4:406-425
    119. Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: a laboratory manual(second). 1989, Cold Spring Harbor Laboratory Press. USA.
    120. Schaeffer B. Cretaceous and Tertiary actinopterygian fishes from Brazil. Bull. Amer.Mus.Nat.Hist., 1947, 89:1-39
    121. Schneider S, Roessli D, Excoffier L. Arlequin Ver. 2000: A software for population genetic data analysis. 2000, Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.
    122. Slatkin M. A measure of population subdivision based on microsatellite alleles frequencies. Genetics, 1995, 139: 457-462.
    123. Smith GR. Phylogeny and biogeography of the Catostomidae, freshwater fishes of North America and Asia. In "Systematics, Historical Ecology, and North American Freshwater Fishes" (R.L. Mayden Ed.), pp. 778-826. 1992, Stanford Univ. Press, Stanford, CA.
    124. Sokal R and Michener D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull., 1958, 28: 1409-1438.
    
    
    125. Stabile J, Waldman JR et al. Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotei) based on restriction fragment length polymorphism and sequence analysis of mitochondrial DNA. Genetics, 1995, 144:767-775
    126. Stepien CA, Rosenblatt RH, Bargrneyer B. Phylogeography of the spotted sand bass, Paralabrax maculatofasciatus: divergence of gulf of Califomia and pacific coast populations. 2001, 55(9): 1852-1862.
    127. Sugaya T, Ikeda M, Taniguchi N. Relatedness structure estimated by microsatellites DNA and mitochondrial DNA polymerse chain reaction-restriction fragment length polymorphisms analysis in the wild population of kuruma prawn Penaeus iaponicus. Fisheries Science, 2002, 68: 793-802.
    128. Swofford DL, Begle DP. PAUP: Phylogenetic analysis using parsimony, ver.3.1 user's manual. 1993, Illinois Natural History Survey, Champaign, IL.
    129. Sytchevskaya EK. Palaeogene freshwater fish fauna of the USSR and Mongolia. Moscow:"Nauka", 1986, 1-157(in Russia).
    130. Taylor EB. Species pairs of North temperate freshwater fishes: Evolution, taxonomy, and conservation. Reviews in Fish Biology and Fisheries, 1999, 9:299-324
    131. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res., 1989, 17:6463-6471
    132. Teske P, Cherry M, Matthee C. Population genetics of the endangered seahorse, Hippocampus capensis. Molecular Ecology, 2003, 12:1703-1715
    133. Thomas WK et al. Mitochondrial DNA analysis of Pacific salmonid evolution. Can J.Zoo., 1986, 64:1058-1064
    134. Tranah GJ, Agresti J, May B. New microsatellite loci for suckers (Catostomidae): Primer homology in Catostomus, Chasmistes, and Deltistes. Molecular Ecology Notes, 2001, 1:55-60
    135. Triantefyllidis A, Abatzopoulos TJ, Economidis PS. Genetic differentiation & phylogenetic relationships among Greek silurus glanis and silurus aristotelis populations, assessed by PCR_RFLP analysis of mtDNA segments. Heredity,
    
    1999b, 82:503-513
    136. Uyeno T and Smith GR. Tetraploid origin of the karyotype of Catostomid fishes. Science, 1972, 175: 644-646
    137. Vos P., Hogers R., Bleer M. et al. AFLP: a new technique for DNA fingerprinting. Nucleid Acids Research, 1995, 23(21): 4407-4414
    138. Waldman JR, Grossfield J, and Wirgin I. Review of stock discrimination techniques for striped bass. N.Am.J.Fish.Manag., 1988, 8:410-425.
    139. Ward RD and Grewe PM. Appraisal of molecular genetic techniques in fishies. Reviews in fish biology and fisheries, 1994, vol. 4:300-320
    140. Weir BS, Cockerman CC. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370.
    141. Williams JG, Kubelik AR, Livak KJ. DNA polymorphism amplified by arbitary primers are useful as genetic marker. Nucleic Acids Research, 1990, 18:6531-6535
    142. Wilson GM, Thomas WK, Beckenbach AT. Intra-and inter-specific mitochondrial DNA sequences divergence in salmo: rainbow, steelhead, and cutthroat trouts. Can J. Zool., 1985, 63:2088-2094
    143. Wirgin I, Oppermann T, Stabile J. Genetic divergence of Robust Redhorse Moxostoma robustum (Cypriniformes Catostomidae) from the Oconee River and the Savannah River based on MtDNA control region sequences. Copeia, 2001, 2:526-530.
    144. Wright S. Isolation by distance. Genetics, 1943, 28: 114-138.
    145. Wu xianwen. Fishes of Foochow. Contr. Bio. Lab. Sci.Soc., 1931, China.