半滑舌鳎仔稚鱼营养生理与开口饲料的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半滑舌鳎(Cynoglossus semilaevis )属鲽形目(Pleuronectiformes)、舌鳎科(Cynoglossidae)、舌鳎属(Cynoglossus Buchanan-Hamiltou),为我国近海底层的大型名贵经济鱼类。生长速度快,肉味鲜美,深受广大消费者的喜爱,有着广阔的发展前景。但是在苗种生产过程中,从生物饵料转为配合饵料期间,仍会出现大量的死亡,转饵问题成为限制其扩大再生产的一个关键问题,微颗粒饲料的研制仍是难点所在。为了促进半滑舌鳎养殖的产业化进程,本文开展了半滑舌鳎仔稚鱼营养生理和开口饲料的开发研究,旨在为了解半滑舌鳎不同发育阶段的营养需求,及其高效开口饲料的研制提供理论依据。现将研究结果总结如下:
     (1)利用形态学和连续组织切片技术,对出膜后1~30d的半滑舌鳎消化系统胚后发育的组织形态学进行了系统观察和研究。研究表明,试验水温为20.0~22.0℃时,孵化后第3d,仔鱼开口摄食,消化道上皮细胞出现分化,肝脏和胰脏开始出现,鱼体开始由内源性营养转向外源性营养。孵化后第5d,卵黄囊完全被吸收,消化道明显分化成口咽腔、食道、胃、前肠和后肠,仔鱼消化系统具备了摄食和消化外源性食物的能力。此后随着鱼体的生长,粘膜层的褶皱增加,消化道上皮细胞进一步分化,肠道分段、盘旋,消化系统从功能和结构上逐步地完善成熟。开口摄食之后,先后发现在后肠出现嗜曙红颗粒,在前肠出现空泡,表明肠上皮细胞吸收了蛋白质和脂肪。继而糖元在肝脏中不断地储存。在出膜后第23天,出现胃腺,标志着稚鱼期的开始。
     (2)对半滑舌鳎不同发育阶段主要消化酶(酸性蛋白酶、碱性蛋白酶、淀粉酶、脂肪酶)以及与消化吸收相关的碱性磷酸酶的活性变化进行了测定。结果表明,半滑舌鳎在仔鱼发育早期即可检出酸性蛋白酶和碱性蛋白酶的活力,碱性蛋白酶的2个极低值分别出现在仔鱼开口期和仔稚鱼的转变期,酸性蛋白酶的活性从孵化后23 d左右,胃腺出现时开始明显升高。早期仔鱼体内表现出较强的淀粉酶活性,孵化后12 d其活性急剧下降,并一直保持较低的比活力状态。脂肪酶的活性在半滑舌鳎早期仔鱼体内一直较低,进入稚鱼期后开始缓慢上升。碱性磷酸酶活性在变态结束后出现大幅度的升高,这标志着肠组织结构和肠道消化功能的完善。
The tongue sole, Cynoglossus semilaevis is a Chinese inshore species with a great potential for aquaculture. In spite of great commercial interest, there is limited information about the biology, nutritional requirements or techniques for intensive rearing of larvae of this species and weaning is still identified as a bottleneck for sustainable production. The aim of this work is to supply reference for the knowing about nutritional requirements and the manufacture of artificial microdiets through studying digestive physiology in different developmental stages of tongue sole and development of prepared microdiets. The results of this study are summarized as follow.
     ExperimentⅠ.Histological changes of the digestive system and its associated glands were studied in tongue sole Cynoglossus semilaevis from the first day (first day post-hatch dph) until 30 dph. Specimens for this study were hatched from artificially spawned broodstock and maintained in the indoor cement tanks (20.0~22.0℃). At mouth opening (3 dph), lengthening of the digestive tract, mucosae differentiation and pancreas and liver appearance are the most apparent elements. The yolk is gradually resorbed and disappeared at 5 dph., while the digestive tract was differentiated in five portions: buccal-pharyngeal cavity, esophagus, stomach, anterior and posterior intestine. The larvael digestive system is morphologically ready to process external food at this time. During the following period of independent life the most noticeable events occurring are an increase in mucosal folding, cellular differentiation in the luminal epithelia, gut segmentation and looping. Thus, these digestive tract and associated glands become mature gradually and complete the morphological digestive features characteristic with increasing age and feeding
引文
[1]Boulhic M & Gabaudan J. Histological study of the organogenesis of the digestive system and swim bladder of the Dover solSeo,l ea solea (Linnaeus 1758). Aquaculture, 1992, 102:373-396.
    [2]Kjoersvik E & Reiersen A L .Histomorphology of the early yolk-sac larvae of the Atlantic halibut (Hippoglossus hippoglossus L.)—an indication of the timing of functionality. J Fish Biol., 1992, 41:1-19.
    [3]楼允东,组织胚胎学,组织胚胎学.第二版,北京:中国农业出版社,1994,95-113.
    [4]Pe?a R, Dumas S, Villalejo-Fuerte M, Orítz-Galindo J L.Ontogenetic development of the digestive tract in reared spotted sand bassP aralabrax maculatofasciatus larvae. Aquaculture, 2003, 219:633-644.
    [5]Baglole C J, Murray H M, Goff G P, Wright G M. Ontogeny of the digestive tract during larval development of yellowtail flounder: a light microscopic and mucous histochemical study. J. Fish Biol.,1997,51:120-134.
    [6]Bisbal G A, Bengtson D A. Development of the digestive tract in larval summer flounder. J. Fish Biol.,1995,47:277-291.
    [7]Sarasquete M C, Polo A, úYfera M. Histology and histochemistry of the development of the digestive of larval gilthead seabream, Sparus aurata L. Aquaculture,1995,130:79-92.
    [8]Gisbert E, Piedrahita R H, Conklin D E.Ontogenetic development of the digestive system in California halibut(Paralichthys californicus)with notes on feeding practices. Aquaculture, 2004,232: 455-470.
    [9]Calzada A, Medina A, González de Canales M L. Fine structure of the intestine development in cultured sea bream larvae. J. Fish Biol.,1998,53:340-365.
    [10]Micale V, Garaffo M, Genovese L, Spedicato M T, Muglia U.The ontogeny of thealimentary tract during larval development in common pandora Pagellus erythrinus L.Aquaculture,2006,251:354-365.
    [11]Cahu C L, Zambonino Infante J L. Substitution of live food by formulated diets in marine fish larvae. Aquaculture,2001,200:161–180.
    [12]Boulhic, M., Gabaudan, J. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea (L. 1758). Aquaculture, 1992, 102:373–396.
    [13]Ribeiro L, Sarasquete C, Dinis T. Histological and histochemical development of the digestive system o fSolea senegalensis (Kaup, 1858) larvae. Aquaculture , 1999a. 171:2293–2308.
    [14]Zambonino Infante, J. L. & Cahu, C. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology C ,2001,130, 477–487.
    [15]Ma H, Cahu C, Zambonino J, Yu H, Duan Q, Le Gall M, Mai K. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture,2005, 245: 239–248.
    [16]Pedersen B H,Nilssen E M,Hjelmeland K.Variation in the content of trypsin and trypsinogen in larval herring(Clupea harengus) digesting copepod nauplii. Mar.Biol.,1987,94:171-181.
    [17]常青, 陈四清,张秀梅,等.半滑舌鳎消化系统器官发生的组织学研究,水产学报,2005,(4):447-453.
    [18]Bolasina S, Pérez A,Yamashita Y.Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture,2006,252:503-515.
    [19]Martínez, I., Moyano, F.J., Fernández -Díaz, C., Yúfera, M. Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol. Biochem. , 1999. 21:317–323.
    [20]Beccaria C, Diaz J P ,Connes R. Organogenesisof the exocrine pancreasin the sea bass Dicentrarchus labrax, reared extensively and intensively. Aquaculture, 1991, 99:339~354.
    [21]Cahu C L, Zambonino Infante J L.Effect of the molecular form of dietary nitrogen supply in sea bass larvae:response of pancreatic enzymes and intestinal peptidases.Fish Biochem. Physiol.,1994,14:209-214.
    [22] Cahu C L, Zambonino Infante J L. Is the digestive capacity of marine fish larvae sufficient for compond diet feeding? Aquacult. Int.,1997,5:151-160.
    [23] Kurokawa T, Shiraishi M, Suzuki T. Qualification of exogenous protease derived from zooplankton in the intestine of Japanese sardine Sardinops melanoticus larvae. Aquaculture , 1998, 161: 491~499.
    [24]Kolkovski S,Tandler A,Kissil W G, et al.The effect of dietary exogenous digestive enzymes on ingestion,assimilation,growth and survival of gilthead seabream(Sparus aurata,Sparidae,Linnaeus)larvae.Fish Physiol.Biochem., 1993,12(3):203-209.
    [25] Lauff M , Hofer R. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture , 1984,37:335~346.
    [26]Chan C B,Hale E. Effect of somatostatin on intragastric pressure and smooth muscle contractility of the rainbow troutO ncorhynchus mykiss (Walbaum J ). J. Fish Biol.,1992,40:545~556.
    [27]Pedersen B H, Hjelmeland K. Fate of trypsin and assimilation efficiency in larval herring Clupea harengus following digestion of copepod.Mar. Biol., 1988,97:467~476.
    [28]Kolkovski S,Tandler A,Izquierdo M S.Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabaDsisc(entrarchus labrax)larvae. Aquaculture, 1997,148: 313-322.
    [29]Kolkovski S, Yackey C, Czesny S, et al.The effect of microdiet supplementation of dietary digestive enzymes and a hormone on growth and enzyme activity in yellow perch juveniles. North American Journal of Aquaculture, 2000, 62:130-134.
    [30]Kolkovski S. Digestive enzymes in fish larvae and juvenil—esi mplications and applications to formulated diets. Aquaculture, 2001, 200:181-201.
    [31] Ronnestad I , Tonheim S K , Rojas-García C R , Fyhn H J , Kamisaka Y , Koven W , Finn R N, Terjesen B F , Barr Y , Conícceao L E C. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture, 2003, 227:147–164.
    [32]Cahu C, R?nnestad I, Grangier V, et al. Expression and activities of pancreatic enzymes in developing sea bass larvae ( Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture,2004,238:295-308.
    [33]R?nnestad I , Fyhn H J. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci. , 1993,1:239-259.
    [34]Finn R N , Fyhn H J , Henderson R J , Evjen M S. Physiological energetics ofdeveloping embryos and yolk-sac larvae of Atlantic cod (Gadus morhua): I. Respiration and nitrogen metabolism. Mar.Biol. , 1995a,124:355–369.
    [35]Finn R N, R?nnestad I , Fyhn H J. Respiration, nitrogen and energy metabolism of developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol., A , 1995b,111:647– 671.
    [36]Sivaloganathan B, Walford J, Ip Y K , Lam T J. Free amino acids and energy metabolism in eggs and larvae of seabass, Lates calcarifer. Mar. Biol., 1998,131:695– 702.
    [37]Parra G, R?nnestad I , Yúfera M. Energy metabolism in developing eggs and unfed larvae of Solea senegalensis. J. Fish Biol., 1999,55:205– 214.
    [38]Ronnestad I , Thorsen A,Finn R N. Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture, 1999,177:201–216.
    [39]Péres A, Cahu C, Zambonino Infante J L, et al. Amylase and trypsin response to intake of dietary carbohydrate and protein depend on the development stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem., 1996 , 15:237-242.
    [40]Tulli F, Tibaldi E. Changes in amino acids and essential fatty acids during early larval rearing of dentex. Aquacult. Int., 1997,5:229– 236.
    [41]Finn R N, Fyhn H J, Henderson R J, Evjen M S. The sequence of catabolic substrate oxidation and enthalpy balance of developing embryos and yolk-sac larvae of turbot (Scophthalmus maximus L.). Comp.Biochem. Physiol., A , 1996,115:133–151.
    [42] Conceic?o L E C, Van der Meeren T, Verreth J A J, Evjen M S, Houlihan D F, Fyhn H J. Amino acid metabolism and protein turnover in larval turbotS c(ophthalmus maximus) fed natural zooplankton or Artemia. Mar. Biol.,1997, 129:255–265.
    [43]Arag?o C, Conceic?o L E C, Fyhn H J. Estimated amino acid requirements during early ontogeny in fish with different life styles:gilthead seabream S(parus aurata) and Senegalese sole (Solea senegalensis). Aquaculture,2004,242:589-605.
    [44]R?nnestad I, Rojas-García C R, Tonheim S , Concei?co L E C. In vivo studies of digestion and nutrient assimilation in marine fish larvae . Aquaculture, 2001b, 201: 161–175.
    [45]Conceic?o L E C, Grasdalen H, Dinis M T. A new method to estimate the relativebioavailability of individual amino acids in fish larvae using 13C-NMR spectroscopy . Comp. Biochem. Physiol. B, 2003, 134: 103-109.
    [46]Zamboninno Infante J L, Cahu C L.Development and response to a diet change of some digestive enzymes in sea bass D(icentrarchus labrax) larvae. Fish Physiol. Biochem. 1994b, 12: 399-408.
    [47]Kanazawa A, Teshima S. Microparticulated diets for fish larvae.In:Sparks A K (Eds),New and innovative Advances in Biology/Engineering with Potential Use in Aquaculture.NOAA Tech.Rep.,NMFS Circ.,1988, 70:57-62, Seattle,WA.
    [48]Zambonino Infante J L,Cahu C L,Péres A. Partial substitution of di- and tripeptides for native protein in sea bass diet improves Dicentrarchus labrax larval development. J.Nutr.1997, 127: 608-614.
    [49]Brinkmeyer R L, Holt G J. Highly unsaturated fatty acids in diets for red drum (Scianops ocellatus) larvae.Aquaculture, 1998, 162:253-268.
    [50]Cahu C L, Zambonino Infante J L. Maturation of the pancreatic and intestinal digestive functions in sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiol.Biochem., 1995, 14:431-437.
    [51]Munilla-Moran R, Stark J R. Protein digestion in early turbot larvae, Scophthalmus(L.). Aquaculture, 1989, 81: 315-327.
    [52]Miwa S, Yamano K, Inui Y. Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis. Journal of Experimental Biology , 1992, 261: 424-430.
    [53]Carvalho A P, Escaffre A M , Oliva Teles A, Bergot P. First feeding of common carp larvae on diets with high levels of protein hydrolysates. Aquaculture International , 1997, 5:361-367.
    [54]Cahu C, Zambonino lnfante J, Quazuguel M. Met al.Protein hydrolysate vs.fish meal in compo und diets for 10一day old sea bass Dicentrarchus fabrax 1arvae.Aquaculture,1999,171:109— 119
    [55]Carvalho A P, áS R, Oliva Teles A, Bergot P. Solubility and peptide profile affect the utilization of dietary protein by common carpC y(prinus carpio) during early larval stages. Aquaculture , 2004, 234: 319-333.
    [56]Mourente G , Vásquez R. Changes in the content of total lipid, lipid class and their fatty acids of developing eggs and unfed larvae of the Senegal solSeo,l ea seneglensis Kaup. Fish Physiol. Biochem., 1996, 15:221-235.
    [57]Pous?o-Ferreira P, Morais S, Dores E , Narciso L. Eggs of gilthead seabreamSparus aurata L. as a potential enrichment product of Brachionus sp. in the larval rearing of gilthead seabream Sparus aurata L.Aquacult.Res.1999, 30:751-758.
    [58]Sargent J R, Bell J G, McEvoy L A, Tocher D R, Estevez A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture, 1999a, 177–:1 91199.
    [59]Estévez A, McEvoy L A, Bell J G, Sargent J R. Growth, survival, lipid composition and pigmentation of turbot S(cophthalmus maximus) larvae fed live-prey enriched in Arachidonic and Eicosapentaenoic acids. Aquaculture, 1999, 180:321-343.
    [60]Rainuzzo J R, Reitan K I, Olsen Y. The significance of lipids at early stages of marine fish : a review . Aquaculture , 1997 ,155 :103~115.
    [61]刘镜恪.海鱼早期阶段必需脂肪酸和磷脂的研究现状与展望,海洋水产研究,2002,23(2):58-64.
    [62]刘镜恪,陈晓琳.海水仔稚鱼的必需脂肪酸— n一3系列高 度不饱和脂肪酸研究概况,青岛海洋大学学报,2002,32(6):897-902.
    [63]Owen J M, Adron J W, Middleton C, Cowey C B. Elongation and desaturation of dietary fatty acids in turbot Scophthalmus maximus and rainbow trout Salmo gairdneri. Lipids, 1975, 10: 528–531.
    [64]Bell M V, Henderson R J, Pirie B J S, Sargent J R. Effects of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure in the turbot S(cophtalmus maximus, Linnaeus). J. Fish Biol., 1985, 26:1–81191.
    [65]Bell M V, Henderson R J, Sargent J R. The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. B:Comp. Biochem., 1986, 83:711–719.
    [66]Sargent J R, Henderson R J, Tocher D R. The lipids. In: Fish Nutrition, second edn (Halver, J.E., ed). Academic Press, New York, 1989, pp. 153–209.
    [67]Sargent J R, McEvoy L A, Bell J G. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 1997, 155: 117–127.
    [68]Koven W M, Tandler A, Kissil G W, Sklan D, Friezlander O, Harel M. The effect of dietary (n-3) polyunsaturated fatty acids on growth, survival and swim bladder development in Sparus aurata larvae. Aquaculture, 1990, 91: 131–141.
    [69]Lie O, Lambertsen G. Fatty acid composition of glycerophospholipids in seven tissues of cod (Gadus morhua),determined by combined high-performance liquid chromatography and gas chromatography. J. Chromatogr. Biomed. Appl., 1991, 565:119–130.
    [70]Watanabe T. Importance of docosahexaenoic acid in marine larval fish. J. WorldAquacult. Soc., 1993, 24: 152–161.
    [71]Castell J D, Bell J G, Tocher D R, Sargent J R. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture, 1994, 128: 315–333.
    [72]Takeuchi T,Toyota M,Satoh S ,et al. Requirement of juvenile red sea bream Pagrus major for eicosapentaenoic and docosahexaenoic acids Nippon Suisan Gakkaishi.,1990,56:l263— 1269
    [73]Morais S, Narciso L, Dores E, Pousao-Ferreira P. Lipid enrichment for Senegalese sole (Solea senegalensis) larvae:effect on larval growth, survival and fatty acid profile. Aquac.Int. , 2004b,12: 281– 298.
    [74]Villalta M, Este′vez A, Bransden M P, Bell J G. The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture, 2005b,249:353-365.
    [75]Izquierdo M S, Arakawa T, Takeuchi T, Haroun R, Watanabe T. Effect of n-3 HUFA levels in Artemia on growth of larval Japanese flounder (Paralichthys olivaceus). Aquaculture, 1992, 105: 73– 82.
    [76]Tzoumas A P. The nutritional value of freshly hatched and enriched Artemia nauplii for sole larvae (Solea solea) , from the standpoint of their polyunsaturated fatty acid content.Master thesis, Institute of Aquaculture, University of Stirling, 1988,146 pp.
    [77]Dickey-Collas M, Geffen A J. Importance of the fatty acids 20:5n3 and 22:6n3 in the diet of plaice (Pleuronectes platessa) larvae. Mar. Biol., 1992, 113:463–468.
    [78]Copeman L A, Parrish C C, Brown J A, Harel M.. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounderL i(manda ferruginea): a live food enrichment experiment. Aquaculture, 2002, 210 :285– 304.
    [79]Zambonino Infante J L,Cahu C L.High dietary lipid levels enhance digestive tract maturation and improve Dicerttrarchus labrax larval developme.ntJ.Nutr,1999,129:1195– 1200.
    [80]Koven W, Barr Y, Lutzky S, Ben-Atia I, Weiss R, Harel M, Behrens P, Tandler A. The effect of dietary arachidonic acid (20:4n_6) on growth, survival andresistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture, 2001, 193: 107–122.
    [81]Tocher D R . Metabolism and functions of lipids and fatty acids in teleost fish . Rev. Fish. Sci., 2003 , 2: 107– 184.
    [82] Van Anholt R D, Koven W M, Lutzky S, Wendelaar Bonga S E. Dietary supplementation with arachidonic acid alters the stress response of gilthead seabream (Sparus aurata) larvae. Aquaculture, 2004, 238:369-383.
    [83] 张其永, 洪万树. 海洋养殖鱼类仔稚鱼 摄食和营养研究的 进展.台湾海峡,2001, 20 (增 刊): 1-10.
    [84]Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae.Aquaculture, 2003, 227:211-220.
    [85]Villalta M, Este′vez A, Bransden M P. Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae. Aquaculture , 2005, 245:193–209.
    [86] Bransden M P, Butterfield G M, Walden J, McEvoy L A, Bell J G. Tank colour and dietary arachidonic acid affects pigmentation, eicosanoid production and tissue fatty acid profile of larval Atlantic codG a(dus morhua), Aquaculture, 2005, 250: 328-340.
    [87]Salhi M.Hern6ndez.Cruz C M .Bessonart M.et al.Effect of difierent dietary polar lipid levels and diferent n-3 HUFA content in polar lipids on gut and liver histological structure of githead seabream S(parus aurata) larvae . Aquacultur,e1999,179:253-263.
    [88]Kanazawa A, Teshima S, Inamori S, Iwashita T, Nagao A. Effects of phospholipids on growth, survival rate and incidence of malformation in the larval Ayu. Mem. Fac. Fish Kagoshima Univ. Kagoshima Dai Suisangakubu Kiyo., 1981, 30: 3–01309.
    [89]Geurden I, Raduenz Neto J, Bergot P. Essentiality of dietary phospholipids for carp (Cyprinus carpio L.) larvae.Aquaculture, 1995,131: 303–314.
    [90]Watanabe T, Ohta M, Kitajima C, Fujita S. Improvement of the dietary value of brine shrimp Artemia salina for fish larvae by feeding them on 3 highly unsaturated fatty acids. Bull. Jpn. Soc. Sci. Fish., 1982, 48:1775-1782.
    [91]Leifson R M,. HOMME J M, J?stensen J P,et al. Phospholipids in formulated start-feeds – Effect on turbot(Scophthalmus maximus L.) larval growth and mitochondrial alteration in enterocytes. Aqua.Nutr, 2003, 9:43-54.
    [92]Lie O, Hemre G I , Lambertsen G. Influence of dietary fatty acids on theglycerophospholipid composition in organs of cod G(adus morhua). Lipids, 1992, 27: 770–775.
    [93]Tocher D R. Elongation predominates over desaturation in the metabolism of 18:3n-3 and 20:5n-3 in turbot (Scophthalmus maximus) brain astroglial cells in primary culture. Lipids, 1993,28: 267–272.
    [94]Woodward B. Dietary vitamin requirements of cultured young fish, with emphasis on quantitative estimates for salmonids. Aquaculture, 1994, 124:133–168.
    [95]Harel M, Tandler A, Kissil G W, Appelbaum S W. The kinetics of nutrient incorporation into body tissues of gilthead seabreamS p(arus aurata)females and the subsequent effects on egg composition and egg quality. British Journal of Nutrition ,1994, 72: 45–58.
    [96]Soliman A K, Jauncey K, Roberts R J. The effect of dietary ascorbic acid supplementation on hatchability, survival rate and fry performance in Oreochromis mossambicus. Aquaculture, 1986, 59:197–208.
    [97]Dabrowski K. Ascorbate concentration in fish ontogeny. Journal of Fish Biology, 1992, 40: 273–279.
    [98]Merchie G, Lavens P, Dhert Ph., Pector R, Mai Soni A F, Abbes M, Nelis H, Ollevier F, De Leenheer A, Sorgeloos P. Live food mediated vitamin C transfer to Dicentrarchus labrax and Clarias gariepinus. Journal of Applied Ichthyology, 1995b, 11:336–341.
    [99]Merchie G, Lavens P, Verreth J, Ollevier F, Nelis H, De Leenheer A, Storch V, Sorgeloos P. The effect of supplemental ascorbic acid in enriched live food for Clarias gariepinus larvae at startfeeding. Aquaculture,1997a,151:245-258.
    [100]Merchie G, Lavens P, Dhert Ph., et al. Dietary ascorbic acid requirements during the hatchery production of turbot larvae. J Fish Bio.,1996b, 49:573-583.
    [101]Merchie G,Lavens P,Sorgeloos P.Optimi zation of dietary vitamin C in fish and crustacean larvae:a review.Aquaculture,1997b,155:165 - 181.
    [102]Haga Y,Takeuchi T,Seikai T. Influence of all-trans retinoic acid on pigmentation and skeletal formation in larval Japanese flounder. Fisheries Science, 2002, 68:560-570.
    [103]Walford J, Lim T M, Lam T J.Replacing live foods with microencapsulated diets in the rearing of sea bass L(ates calcarifer) larvae: do they ingest and digest protein-membrane microcapsules? Aquaculture,1991, 92: 225-235.
    [105]殷名称.鱼类仔鱼期的摄食和生长.水产学报,1995,19(4):335-342.
    [106]Glamuzina B.Jug-Dujakovie J,Katavic L.Preliminary studies on reproduction and larval rearing of common Dentex dentex(Linnacus 1758.)Aquaculture,1989,77:75— 84.
    [104]Dabrowski K,Bardega. Mouth-size and recommendation of feed size preferences in three cyprinid fish. Aquaculture, 1984, 40:27-40.
    [107]Fernandez-Diaz C, Pascual E, Yufera M. Feeding behavior and prey size selection of gilthead seabream,Sparus aurata, larvae fed on inert and live food. Mar. Biol., 1994,118:323-328.
    [108]Lopez-Alvarado J, Langdon C J,Teshima S I,Kanazawa A.Effects of coating and encapsulation of crystalline amino acids on leaching in larval feeds. Aquaculture, 1994, 122: 335-346.
    [109]Marchetti M, Tossani N, Marchetti S, Bauce G. Leaching of crystalline and coated vitamins in pelleted and extruded feeds. Aquaculture, 1999, 171: 83– 91.
    [110]Baskerville-Bridges B, Kling L J. Development of microparticulate diets for early weaning of Atlantic cod Gadus morhua larvae. Aquacult. Nutr., 2000,6:171– 182.
    [111]Yúfera M, Kolkovski S, Feránndez-Díaz C, Dabrowski K. Free amino acid leaching from a protein-walled microencapsulated diet for fish larvae. Aquaculture,2002,214: 273–287.
    [112]?nal U, Langdon C. Lipid spray beads for delivery of riboflavin to first-feeding fish larvae. Aquaculture,2004,233:477–493.
    [113]Person Le Ruyet J, Alexandre J C, Thébaud L, Mugnier C. Marine fish larvae feeding: formulated diets or live preys? J.World Aqucult.Soc., 1993, 24:211-224.
    [114]Guthrie K M, Rust M B, Langdon C J, Barrow F T. Acceptability of various microparticulate diets to first feeding walleyeS t(izostedion vitreum) larvae. Aquac.Nutr., 2000, 6:153-158.
    [115]Partridge G J, Southgate P C. The effect of binder composition on ingestion and assimilation of microbound diets (MBD) by barramun dLiates calcarifer Bloch larvae. Aquac. Res., 1999, 30: 879– 886.
    [116]王素芬,王安利,孙翠慈,胡俊荣. 鱼虾贝幼体微胶囊饲料的研究进展.海洋科学,2003,27(3):21-26.
    [117]Langdon C. Microparticle types for delivering nutrients to marine fish larvae.Aquaculture, 2003, 227: 259-275.
    [118]Yúfera M, Fernández-Díaz C,Pascual E. Food microparticles for larval fish prepared by internal gelation. Aquaculture, 2005, 248:253-262.
    [119]Fernandez-Diaz C.Yufera M .Capacity of githead seabream Sparus aurata L.,larvae to break down dietary microcapsule.sAquaculture,1995.134:269— 278
    [120]Yúfera M, Pascual E, Polo A , et al . Effect of starvation on the feeding ability of gilthead seabream( Sparus aurata) larvae at first feeding. J Exp Mar Biol Ecol , 1993, 169 :252-272.
    [121]Sarasquete M C,Polo A , Yúfera M. Histology and histochemistry of the development of the digestive system of larval gilthead seabream S(parus aurata L). Aquaculture, 1995, 130: 79-92.
    [122]Yúfera M, Pascual E, Fernández-Díaz C. A highly efficient microencapsulated food for rearing early larvae of marine fish.Aquaculture,1999,177:249-256.
    [123]Hardy R W.Fish hydrolysates:production and use in aquaculture feeds. Proceedings of the Aquaculture Feed Processing and Nutrition Workshop,Thail,and1991,109-115.
    [124]薛敏,解绶启,崔奕波,钱雪桥.鱼类促摄食物质研究进展.水生生物学报,2003, 27(6): 639-643.
    [125]Kolkovski S,Arieli A ,Tandler A. Visual and chemical cues stimulate microdiet ingestion in gilthead seabreamS parus aurata larvae .Aquaculture International, 1997a,5:527-536.
    [126]Kolkovski S. Marine fish larvae diets. International Aquafeed, 2004,7(4):8-12.
    [127]Métailler R,Cadena-Roa M & Person-Le Ruyet J. Attractive chemical substances for the weaning of Dover sole ( Solea vulgaris):Qualitative and quantitative approach. J World Maricul.Soc.,1983,14: 679-684.
    [128]Dendrinos P, Dewan S, Thorpe J P. Improvement in the feeding efficiency of larval, post larval and juvenile Dover sole (Solea solea L.) by the use of staining to improve the visibility of Artemia used as food. Aquaculture,1984, 38:137-144
    [129]Tamazouzt L, Chatain B,Fontaine P. Tank wall colour and light level affect growth and survival of Eurasian perchlarvae(Perca fluvistilis L.). Aquaculture,2000, 182:85-90.
    [130]Rotllant J, Tort L, Montero D, Pavlidis M, Martinez M,Wendelaar Bonga S E, Balm P H M. Background colour influence on the stress response in cultured red porgy Pagrus pagrus. Aquaculture,2003, 223:129-139.
    [1]李思忠,王惠民.中国动物志 硬骨鱼纲 鲽形目.北京:科学出版社,1995.
    [2]姜言伟,万瑞景.渤海半滑舌鳎早期形态及发育特征的研究. 海洋水产研究,1988,9:193-201.
    [3]万瑞景,姜言伟,庄志猛.半滑舌鳎早期形态及发育特征. 动物学报,2004,50(1):91-102.
    [4]Balon E K. Terminology of intervals in fish development. J. Fish. Res. Board Can., 1975, 32:1663-1670.
    [5]Tanaka M. Studies on the structure and function of the digestive system of teleost larvaee. PhD Thesis, Department of Fisheries, Faculty of Agriculture, Kyoto University.1973,136.
    [6]Watanabe Y. Ingestion of horseradish peroxidase by intestinal cells in larvaee or juveniles of some teleosts. Bull Jap Soc Sci Fish,1981,47:1299-1307.
    [7]Watanabe Y. Morphological and functional changes in rectal epithelium cells of pond smelt during postembryonic development. Bull Jap Soc Sci Fish,1984,50:805-814.
    [8]Iwai T.The comparative study of the digestive tract of teleost larvaee —Ⅴ.Fat absorption in the gut epithelium of goldfish larvae.Bulletin of the Japanese Society of Scientific Fisheries,1968,34:973-978.
    [9]Boulhic M, Gabaudan J. Histology study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea(Linnaeus 1758).Aquac,1992,102:373-396.
    [10]Ribeiro L, Sarasquete C, Dinis M T. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup,1858)larvae.Aquac,1999,171:293-308.
    [11]Pe?a R, Dumas S, Villalejo-Fuerte M, Ort íz-Galindo J L. Ontogenetic development of the digestive tract in reared spotted sand bass Paralabrax maculatofasciatus larvae.Aquaculture, 2003,219:633-644.
    [12]Baglole C J, Murray H M, Goff G P, Wright G M. Ontogeny of the digestive tract during larval development of yellowtail flounder:a light microscopic and mucous histochemical study. J Fish Biol.,1997,51:120-134.
    [13]Murray H M, Wright G M, Goff G P. A study of the posterior esophagus in the winter flounder, Pleuronects americanus , and the yellowtail flounder, Pleuronects ferruginea : a morphological evidence of pregastric digestion? Can.J.Zool, 1994, 72:1191-1198.
    [14]Bisbal G A, Bengtson D A. Development of the digestive tract in larval summer flounder. J Fish Biol, 1995, 47:277-291.
    [15]Walford J, Lam T J. Development of digestive tract proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquac, 1993, 109:187-205.
    [16]Burkitt H G, Young B, Heath J W. Wheather ’s Functional Histology,3rd ed. Churchill Livingstone, Edinburgh,1993.
    [17]Grau A, Crespo S, Sarasquete M C, et al. The digestive tract of the amberjack, Seriola dumerili Risso: a light and scanning microscope study. Mar Biol, 1992,41: 287-303.
    [18]Sarasquete M C, Polo A, Yufera M. Histology and histochemistry of the development of the digestive system of larvael gilthead seabream Sparus aurata L.. Aquac, 1995, 130:79-92. 参考文献
    [1]Darowski K. The feeding of fish larvae: present state of art and perspectives. Reprod Nutr Develop, 1984, 24: 807-833.
    [2] Lauff M, Hofer R. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture, 1984, 37: 335-346.
    [3]北京师范大学生化系.基础生化实验.北京:高等教育出版社,1995.99-101.
    [4]Cousin J C B, Baudin-Laurencin F, Gabaudan J. Ontogeny of enzymatic activities in fed and fasting turbot Scophthalmus maximus L. J.Fish Biol.,1987,30:15-33.
    [5] Zambonino Infante J L, Cahu C L. Development and response to a diet of some digestive enzymes in sea bassD(icentrarchus labrax) larvae. Fish Physiology and Biochemistry, 1994,12: 399-408.
    [6]Martinez I, Moyano F J, Fernandez-Diaz C, et al. Digestive enzymes activity during larval development of the Senegal sole(Solea senegalensis). Fish Physiology and Biochemistry.1999, 21: 317-323.
    [7] Curier-Peres A, Kestemont P. Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis . Fish Physiology and Biochemistry , 2002,24: 279-285.
    [8]Ribeiro L, Zambonino-Infante J L, Cahu C, et al. Development of digestive enzymes in larval of Solea senegalensis,Kaup 1858.Aquaculture,1999,179:465-473.
    [9]Pedersen B H.Growth and mortality in young larval herring ( Clupea harengus): effects of repetitive changes in food availability .Mar.Biol.,1993,117: 547-550.
    [10]Cahu C L, Zambonino Infante J L. Early weaning of sea bDaiscse n(trarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp.Biochem.Physiol.A, 1994,109: 213-222.
    [11]Moyano F J, Diaz M, Alarcon F J, et al. Characterization of digestive enzyme activity during larval development of gilthead seabream. Fish Physiology and Biochemistry, 1996,15: 121-130.
    [12]常青,陈四清,张秀梅等.半滑舌鳎消化系统器官发生的组织学.水产学报,2005,29(4):447-453.
    [13]Tanaka M, Kawai S, Seikai T, et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement. Mar. Fresh. Behav. Physiol,1996, 28:19-31.
    [14]Segner H, Rosch R,Verreth J, et al. Larval nutritional physiology:studies wi thClarias gariepinus ,Coreggonus lavaretus and Scophthalmus maximus . J World Aquacult, 1993, 24:121-134.
    [15]Kim B G, Divakaran S, Brown C L, et al. Comparative digestive enzyme ontogeny in two marine larval fishes:Pacific threadfiPno(lydactylus sexfilis) and bluefin trevally(Caranx melampygus). Fish Physiology and Biochemistr,y2001, 24:225-241.
    [16]Cahu C L,Zambonino Infante J L. Early weaning of sea basDsi centrarchus labrax larvae with a compound diet: effect on digestive enzymeCso.mp.Biochem.Physiol., 1994,109A:213-222.
    [17]Oozeki Y and Bailey K M. Ontogenetic development of digestive enzyme activities in larval walleye pollock Theragra chalcogramma. Mar Biol.,1995,122:177-186.
    [1]李思忠,王惠民.中国动物志.硬骨鱼纲、鲽形目.北京:科学出版社,1995,68,334.
    [2]常青, 陈四清, 张秀梅,等.半滑舌鳎消化系统器官发生的组织学研究,水产学报,2005,(4):447-453
    [3]常青,张秀梅,陈四清等。半滑舌鳎仔稚鱼消化酶活性的变化,海洋科学进展,2005,(4)
    [4]马爱军,柳学周,徐永江等.半滑舌鳎(Cynoglossus semilaevis)早期发育阶段的摄食特性及生长研究.海洋与湖沼,2005,36(2):130-138.
    [5]万瑞景,姜言伟,庄志猛.半滑舌鳎早期形态及发育特征.动物学报,2004,50(1):91-102.
    [6]McGurk M. D. Effects of delayed feeding and temperature on the age of irreversible starvation and on the rates of growth and mortality of Pacific herring larvae.Marine Biology, 1984, 84: 13-26.
    [7]Yúfera M, Paascual E, Polo A & Sarasquete M C. Effect of starvation on the feeding ability of gilthead seabream (Sparus aurata L.) larvae at first feeding. Journal of Experimental Marine Biology and Ecology, 1993,169:259-272.
    [8]鲍宝龙,苏锦祥,殷名称。延迟投饵对真鲷、牙鲆仔鱼早期阶段摄食、存活及生长的影响。水产学报,1998,22(1):33-38。
    [9]崔奕波.鱼类生物能量学的理论与方法. 水生生物学报,1989,13:369-383.
    [10]黄良敏,谢仰杰,邓书品等。延迟投饵对花尾胡椒鲷仔鱼摄食、生长和存活的影响。集美大学学报,2003,8(2):130-133。
    [11]Rogers B A & Westin D T. Laboratory studies on effects of temperature and delayed initial feeding on development of striped bass larvae. Transactions of the American Fisheries Society, 1981, 110: 100-110.
    [12]Peňa R & Dumas S. Effect of delayed first feeding on development and feeding ability of Paralabrax maculatofasciatus larvae. J Fish Biol,2005, 67: 640-651.
    [13]殷名称,Craik J C A. 鲱、鲽卵和卵黄囊仔鱼发育阶段生化成分的变化。海洋与湖沼,1993,24(2):157-165。
    [14]Yin M C, Harvey S M, Craik J C A.Biochemical changes during development of eggs and yolk-sac larvae of flounder, Platichthys flesus L.Acta Zool Sin,1993,39(3):272-279.
    [15]Love R M, Rebertson I, Strachar I.Studies on the North Sea cod.VI.Effects of starvation 4.Sodium and Potassium. J Sci Food Agr, 1968,19:415-422.
    [16]殷名称。鱼类仔鱼期的摄食和生长。水产学报,1995,19(4):335-342.
    [17] Yin M. C. & Blaxter J.H.S. Feeding ability and survival during starvation of marine larvae reared in the laboratory. Journal of Experimental Marine Biology and Ecology, 1987, 105: 73-83.
    [1]殷名称.鱼类仔鱼期的摄食和生长.水产学报,1995,19(4):335-342.
    [2]鲍宝龙,苏锦祥. 海洋饥饿仔鱼营养状况的研究.上海水产大学学报,1998,7(1):51-58.
    [3]Blaxter J H S,Hemple G. The influence of eggs size on herring larvae ( Clupea harengus L.) J Cons Cons Int Explor Mer, 1963, 28:211-240.
    [4]殷民称.鱼类早期生活史研究与其进展.水产学报,1991,15(4):348-358.
    [5]王吉桥,毛连菊,姜静颖等. 鲤、鲢、鳙、草鱼苗和鱼种饥饿致死时间的研究. 大连水产学报,1993,8:59-65.
    [6]宋绍彬,何学福.饥饿对南方鲇仔稚鱼消化系统的形态和组织学研究. 水生生物学报,2000,24(2):155-160.
    [7]宋兵,陈立侨,高露姣等. 饥饿对杂交鲟仔鱼摄食、生长和体成分的影响. 水生生物学报,2004,28(3):333-336.
    [8]万瑞景,李显森,庄志猛等. 鳀鱼仔鱼饥饿试验及不可逆点的确定. 水产学报,2004,28(1): 79-83.
    [9]夏连军,施兆鸿,陆建学. 黄鲷仔鱼饥饿试验及不可逆点的确定. 海洋渔业,2004,26(4): 286-290.
    [10]Dou S, Masuda R, Tanaka M,Tsukamoto K. Feeding resumption, morphological changes and mortality during starvation in Japanese flounder larvae. Journal of Fish Biology, 2002,60:1363~1380.
    [11]Mookerji N, Ramakrishna R T. Prey capture success, feeding frequency and daily food intakes rates in rohu, Labeo rohita (Ham.) and singhi, Heteropneustes fossilis (Bloch) larvae. Journal of Applied Ichthyology, 1995, 11 :37-49.
    [12]Parra G & Yúfera M. Feeding, physiology and growth responses in first-feeding gilthead seabream (Sparus aurata L.) larvae in relation to prey density. Journal of Experimental Marine Biology and Ecology 2000, 243:1-15.
    [13]Lasker R, Feder H M, Theilacker, G H & May R C. Feeding, growth, and survival of Engraulis mordax larvae reared in the laboratory. Marine Biology, 1970, 5:345-353.
    [14]Rogers B A & Westin D T. Laboratory studies on effects of temperature and delayed initial feeding on development of striped bass larvae. Transactions of the American Fisheries Society, 1981, 110:100-110.
    [15]McGurk M D. Effects of delayed feeding and temperature on the age of irreversible starvation and on the rates of growth and mortality of Pacific herring larvae. Marine Biology, 1984, 84:13-26.
    [16]Pepin P. Effects of temperature and size on the development , mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 1991, 48: 503-518.
    [17]Yin M C, Blaxter J H S. Feeding ability and survival during starvation of marine larvae reared in the laboratory. Journal of Experimental Marine Biology and Ecology, 1987, 105: 73-83.
    [1]Mourente G, Vázquez R. Changes in the content of total lipid, lipid classes and their fatty acids of developing eggs and unfed larvae of the Senegal sole, Solea senegalensis Kaup. Fish Physiol.Biochem. 1996, 15:221-235.
    [2]Sargent J R, Henderson R J, Tocher D R. The lipids. In: Halver J E (Ed.), Fish Nutrition. Academic Press, New York, 1989, pp.153-218.
    [3]Fyhn H J, Serigstad B. Free amino acids as energy substrates in developing eggs and larvae of the cod (Gadus morhua ). Mar. Biol., 1987, 96:335-341.
    [4]Fyhn H J. First feeding of marine larvae: are free amino acids the source of energy? Aquaculture, 1989, 80:111-120.
    [5]Fraser A J, Gamble J C, Sargent J R.Changes in lipid content, lipid class and fatty acid composition of developing eggs and unfed larvae cod ( Gadus morhua ). Mar.Biol., 1988, 99:307-313.
    [6]Ostrowski A C, Divakaran S. Energy substrates for eggs and prefeeding larvae of the dolphin Coryhaena hippurus. Mar.Biol., 1991, 109:149-155.
    [7]Sargent J, McEvoy L, Estevez A, Bell G, Bell M, Henderson J. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 1999,179: 217-229.
    [8]Tulli F, Tibaldi E. Changes in amino acids and essential fatty acids during early larval rearing of dentex. Aquac. Int., 1997,5:229-236.
    [9]Gunasekera R , DeSilva S S , Ingram B A. The amino acid profiles in developing eggs and larvae of the freshwater Percichthyid fishes, trout cod, Maccullochella macquariensis and Murry cod, Maccullochella peelii. Aquat. Living Resour., 1999, 12: 255-261.
    [10]Vázquez R, González S, Rodríguez A , Mourente G. Biochemical composition and fatty acid content of fertilized eggs, yolk sac stage larvae and first-feeding larvae of the Senegal sole (Solea senegalensis Kaup). Aquaculture, 1994, 119: 273-286.
    [11]Anger K. Growth and elemental composition (C, N, H ) in Inachus dorsettensis (Decapoda:Majidae) larvae reared in the laboratory. Mar. Biol., 1988,99:255-260.
    [12]Vetter R D, Hodson R E, Arnold C. Energy metabolism in a rapidly developing marine fish egg, the red drum ( Sciaenops ocellata). Can. J. Fish. Aquat. Sci., 1983, 40:627-634.
    [13]Parra G , R?nnestad I, Y úfera M. Energy metabolism in eggs and larvae of the Senegal sole. Journal of Fish Biology, 1999, 55: 205-214.
    [14]Srivastava K , Brown J A , Shahidi F. Changes in the amino acid pool during embryonic development of cultured and wild Atlantic salmon ( Salmo salar ), Aquaculture, 1995, 131 :115-124.
    [15]Mambrini M, Kaushik S J. Indispensable amino acid requirements of fish: correspondence between quantitative data and amino acid profiles of tissue proteins. Journal of Applied Ichthyology, 1995, 11:240-247.
    [16]Ronnestad I, Thorsen A, Finn R N. Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture, 1999, 177: 201-216.
    [17]Ronnestad I, Fyhn H J . Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci. 1993, 1: 239-259.
    [18]Brown M R, Battaglene S C, Morehead D T, Brock M. Ontogenetic changes in amino acid and vitamins during early larval stages of striped trumpeter (Latris lineate). Aquaculture, 2005, 248: 263-274.
    [19]Ronnestad I , Fyhn H J, Gravningen K. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Marine Biology,1992,114:517 – 525.
    [20]Fyhn H J, Govoni J J. Endogenous nutrient mobilisation during egg and larval development in two marine fishes, Atlantic menhaden and spot. ICES Marine Science Symposia,1995,201:64 – 69.
    [21]Ronnestad I, Koven W, Tandler A, Harel M, Fyhn H J. Energy metabolism during development of eggs and larvae of gilthead seabream (Sparus aurata). Marine Biology,1994,120:187 – 196.
    [22]Ronnestad I, Naas K E . Routine metabolism in Atlantic halibut at first feeding— a first step towards an energetic model . In: Walther, B.T., Fyhn, H.J. (Eds.), Physiology and Biochemistry of Marine Fish Larval Development. University of Bergen , Bergen , Norway, 1993, pp. 279 – 284.
    [23]Zambonino Infante J L , Cahu C L. Ontogeny of the gastrointestinal tract of marine larval fish larvae. Comp. Biochem. Physiol. 2001, 130: 477-487.
    [24]Ronnestad I , Tonheim S K, Fyhn H J, Rojas-García C R, Kamisaka Y , Koven W, Finn R N, Terjesen B F, Barr Y, Concec?o L E C. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture, 2003, 227: 147-164.
    [25]Zambonino Infante J L, Cahu C L, Peres A. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax development. J. Nutr. 1997,127:608– 614.
    [26]Rust M B, Hardy R W, Stickney R R. A new method for force-feeding larval fish.Aquaculture, 1993, 116: 341-352.
    [27]Cejas J R, Almansa E, J érez S, Bola?os A, Felipe B, Lorenzo A. Changes in lipid class and fatty acid composition during development in white seabream (Diplodus sargus) eggs and larvae. Comp. Biochem. Physiol. B, 2004, 139:209-216.
    [28]Sargent J R, Bell M V, Henderson R J,Tocher D R. Polyunsaturated fatty acids in marine and terrestrial food webs. In: Animal Nutrition and Transport Processes. 1. Nutrition in Wild and Domestic Animals (ed. J. Mellinger). Comparative Physiology,1990,5:11–23.
    [29]Bell M V, Dick J R. Molecular species composition of the major diacyl glycerol-phospholipids from muscle, liver, retina and brain of cod (Gadus morhua). Lipids, 1991, 26: 565-573.
    [31]Mourente G, Tocher D R, Sargent J R.. Specific accumulation of docosahexaenoic acid ( 22: 6n-3) in brain lipids during development of juvenile turbot Scophthalmus maximus L. Lipids, 1991, 26:871-877.
    [32]Mourente G, Tocher D R. Lipid class and fatty acid composition of brain lipids from Atlantic herring (Clupea hargenus ) at different stages of development. Mar.Biol., 1992,112:553-558.
    [31]Navarro J C, Sargent J R. Behavioral differences in starving herring Clupea harengus L. larvae correlate with body levels of essential fatty acids. J. Fish Biol., 1992, 41:509-513.
    [1]Cahu C L & Zambonino Infante J L. Early weaning of sea bass ( Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comparative Biochemical Physiology, 1994, 109A: 213-222.
    [2]Cahu C L & Zambonino Infante J L. Substitution of live food by formulated diets in marine fish larvae. Aquaculture ,2001,200:161 - 180.
    [3]Berge G M & Storebakken T. Fish protein hydrolysate in starter diets for Atlantic salmon (Salmo salar) fry. Aquaculture ,1996, 145:205-212.
    [4]Carvalho A P, Escaffre A.-M, Oliva Teles A & Bergot P. First feeding of common carp larvae on diets with high levels of protein hydrolysates. Aquaculture International , 1997, 5:361-367.
    [5]Zambonino Infante J L, Cahu C L & Peres A. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. Journal of Nutrition , 1997,127:608-614.
    [6]AOAC .Official Method of Analysis of the Association of Official Analytical Chemists, 15 th edn (Heiric, K. ed.), 1990, 868 pp, Arlington, VA, USA.
    [7]Bisbal G A & Bengtson D A. Development of the digestive tract in larval summer flounder. Journal of fish biology ,1995,47:277-291.
    [8]Miwa S, Yamano K & Inui Y. Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis. Journal of Experimental Biology , 1992, 261:424-430.
    [9]Munilla-Moran R & Stark J R. Protein digestion in early turbot larvae, Scophthalmus(L.). Aquaculture, 1989, 81:315-327.
    [10]Cahu C L, Zambonino Infante J L, Quazuguel P & Le Gall M M. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture ,1999, 171:109-119.
    [11]Kolkovski S & Tandler A. The use of squid protein by hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae. Aquaculture Nutrition, 2000, 6: 11-15.
    [12]Cahu C L & Zambonino Infante J L. Effect of the molecular form of dietary nitrogen supply in sea bass larvae: response of pancreatic enzymes and intestinal peptidases. Fish Physiology Biochemistry , 1995a,14:209-214.
    [13]Day O J, Howell B R & Jones D A. The effect of dietary hydrolysed fish protein concentrate on the survival and growth of juvenile Dove sole, Sole solea (L.), during and after weaning. Aquaculture Research ,1997, 28:911-921.
    [14]Macedo-Viegas E M, Portella M C & Carneiro D J. Utilization of fish protein hydrolysate in prepared diets for pacu, Piaracutus mesopotamicus, larvae. Journal of Applied Aquaculture ,2003, 14(3/4):101-112.
    [15]Carvalho A. P , S á R , Oliva Teles A & Bergot P. Solubility and peptide profile affect the utilization of dietary protein by common carp( Cyprinus carpio) during early larval stages. Aquaculture ,2004, 234:319-333.
    [16]常青,陈四清,张秀梅等. 半滑舌鳎消化系统器官发生的组织学研究.水产学报,2005,(4):447-453.
    [1]Lauff M ,Hofer R. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture , 1984,37:335-346.
    [2]Dabrowski K. & Glogowski J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia, 1977, 54: 129-134.
    [3]Kurokawa T, Shiraishi M, Suzuki T. Qualification of exogenous protease derived from zooplankton in the intestine of Japanese saridine Sardinops melanoticus larvae.Aquaculture, 1998,161:491-499.
    [4]Pedersen B H,Hjelmeland K. Fate of trypsin and assimilation efficiency in larval herring Clupea harengus following digestion of copepods. Mar Biol., 1988,97:467-476.
    [5]王重刚,陈品健,顾勇等.不同饵料对真鲷稚鱼消化酶活性的影响.海洋学报,1998,20(4):103-106.
    [6]蔡克瑕,陈品健,王重刚等.饵料对花尾胡椒鲷仔鱼消化酶的影响.海洋学报,2000,22(2):142-145.
    [7]苏时萍,赵兴文.不同饵料对史氏鲟仔鱼消化酶活性的影响.生物学杂志,2005,22(1):27-29.
    [8] 北京师范大学生化系.基础生化实验.北京:高等教育出版社,1995.99
    [9]Kolkovski S,Tandler A,Kissil W G, et al.The effect of dietary exogenous digestive enzymes on ingestion,assimilation,growth and survival of gilthead seabreaSmp(arus aurata,Sparidae,Linnaeus)larvae.Fish Physiol.Biochem.,1993,12(3):203-209.
    [10] Kolkovski S,Tandler A,Izquierdo M S.Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabaDsisc(entrarchus labrax)larvae. Aquaculture, 1997,148:313-322.
    [11]Kolkovski S, Yackey C, Czesny S, et al. The effect of microdiet supplementation of dietary digestive enzymes and a hormone on growth and enzyme activity in yellow perch juveniles. North American Journal of Aquaculture, 2000,62:130-134.
    [12]Maugle P D, Deshimaru O, Katayama T, et al. Effect of microencapsulated amylase and bovine trypsin dietary supplements on growth and metabolism of shrimp. Bull. Jap.Soc.Sci.Fish.1983, 49:1421-1427.
    [13]Riberio L, Sarasquete C,Dinis M T. Development of digestive enzymes in larvae of Solea senegalensis,Kaup.Aquaculture,1999,171:293-308.
    [14]Cahu C L,Zambonino Infante J L. Early weaning of seabass ( Dicentrarchus labrax)larvae with a compound diet: effect on digestive enzymes.Comparative Biochemistry and Physiology,1994,109:213-222.
    [15]Nagase G.Contribution to the physiology of digestion in Tilapia mossambica digestive enzymes and the effects of diets on their activity.Z Vergl Physiol.,1964,49:270-284.
    [16]邓景耀,孟田湘,任胜民.渤海鱼类的食物关系。海洋水产研究,1988,9:151-171
    [17]Fraisse M, Woo N Y S, Noaillac-Depeyre J, et al.Distribution pattern of digestive enzyme activities in the intestine of the catfish (Ameiurus nebulosus L.) and of the carp(Cyprinus carpio L.). Comp.Biochem.Physiol.,1981,70A:443-446.
    [18]常青,陈四清,张秀梅等. 半滑舌鳎消化系统胚后发育的组织学研究.水产学报,2005,4:447-453.
    [1]柳学周,徐永江,马爱军,姜言伟,翟介明. 温度、盐度、光照对半滑舌鳎胚胎发育的影响及孵化条件调控技术研究。海洋水产研究,2004,25(6): 1-6.
    [2]万瑞景,姜言伟,庄志猛. 半滑舌鳎早期形态及发育特征。动物学报,2004,50(1):91-102.
    [3]陈四清,张岩,张鑫磊,于东祥. 鲽鳎鱼类养殖技术. 北京,金盾出版社,2004, 169-209.
    [4]Holt G J. Feeding larval red drum on microparticulate diets in a closed recirculating water system. J.World Aquacult.Soc.,1993,24: 225-230.
    [5]Person Le Ruyet J, Alexandre J C , Thebaud L , Mugnier C. Marine fish larvae feeding:Formulated diets or live prey?. J.World Aquacult.Soc., 1993, 24:211-224.
    [6]Lavens P & Sorgeloos P. The history, present status and prospects of Artemia cysts for aquaculture. Aquaculture , 2000,181:397-403.
    [7]Cahu C. & Zambonino Infante J. Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 1999, 200:161-180.
    [8]Kolkovski S, Tandler A , Kissil G & Gertler A. The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream (Sparus aurata Sparidae.Linnaeus) larvae. Fish.Physiol.Biochem., 1993,12: 203-209.
    [9]Kolkovski S, Koven W & Tandler A. The mode of action of Artemia in enhancing utilization of microdiet by gilthead seabream Sparus aurata larvae. Aquaculture, 1997a, 155:193-205.
    [10]Kolkovski S, Tandler A & Izquierdo M S. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass(Dicentrarchus labrax) larvae. Aquaculture , 1997b, 148:313-322.
    [11]Rosenlund G, Stoss J & Talbot C. Co-feeding marine fish larvae with inert and live diets. Aquaculture, 1997, 155:183-191
    [12]Fernández-Díaz C, Pascual E & Y úfera M. Feeding behavior and prey size selection of gilthead seabream, Sparus aurata L., larvae fed on inert and live food. Mar.Biol. , 1994, 118:323-328.
    [13]Dutton P. Effects of experience on feeding success by larval white seabass Atractoscion nobilis. J.Fish Biol. , 1992, 41:765-773.
    [14]Bromley P J & Howell B R. Factors influencing the survival and growth of turbot larvae, Scophthalmus maximum L., during the change from live to compound feeds. Aquaculture ,1983 31:31-40.
    [15]Kanazawa A , Koshio S & Teshima S. Growth and survival of larval red seabream Pagrus major and Japanese flounder Paralichthys olivaceus fed microbound diets. J. World Aquacult. Soc., 1989, 20:31-37.
    [16]Champigneuille A. A first experiment in mass-rearing coregonid larvae in tanks with a dry food. Aquaculture, 1988, 74: 249-261.
    [17]Walford J, Lim T M. & Lam T J. Replacing live foods with microencapsulated diets in the rearing of sea bass ( Lates calcarifer ) larvae: do they ingest and digest protein-membrane microcapsules? Aquaculture ,1991, 92:225-235.
    [18]Qin J, Fast A W, Anda D & Weidenbach R P. Growth and survival of larval snakehead(Channa striatus) fed different diets. Aquaculture ,1997,148:105-113.
    [19]Borlongan I G, Marte C L & Nocillado J N. Development of larval diets for milkfish (Chanos chanos). J. Appl. Ichthyol. , 2000,16:68-72.
    [20]Pedersen B H, Hjelmeland K. Fate of trypsin and assimilation efficiency in larval herring Clupea harengus following digestion of copepods. Mar. Biol., 1988, 97:467-476.
    [21] Watanabe, T. & Kiron, Y. Prospects in larval fish dietetics.Aquaculture, 1994,124: 216–223.
    [22]Caňavate J P & Fernández-Díaz C. Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture, 1999, 174:255-263.
    [23]Hart P R, Purser G J. Weaning of hatchery-reared greenback flounder ( Rhombosolea tapirina Gunther) from live to artificial diets: Effects of age and duration of the changeover period. Aquaculture, 1996, 145: 171-181.
    [24]Segner H, Rosch R, Verreth J, Witt U. Larval nutritional physiology: Studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus . J. World Aquaculture , 1993, 24:121-134.
    [25]Barnabe G, Guissi A. Adaptation of the feeding behavior of larvae of the sea bass Dicentrarchus labrax (L.) to an alternating live food/compound-food feeding regime. Aquacult. Fish Manage., 1994,25:537-546.
    [26]Howell B R. A re-appraisal of the potential of the sole, Sole solea (L.),for commercial cultivation. Aquaculture ,1997, 155:355-365.
    [27]Appelbaum S. Rearing of the Dover sole, Solea solea (L.), through its larval stages using artificial diets. Aquaculture , 1985,49:209-221.
    [28]Fernández-Díaz C , Yúfera M , Caňavate J P , Moyano F J , Alarcon F J & Díaz M. Growth and physiological changes during metamorphosis of Senegal sole reared in the laboratory. J. Fish. Bio., 2001, 58: 1086-1097.