网络化随机控制系统的分析与综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术的快速发展,越来越多的控制系统通过通讯网络实现闭环控制,控制系统的各部件之间的信息交换和控制信号的传递通过网络来完成,这就是本文的研究对象——网络化控制系统。在网络化控制系统的实际工程应用中,由于通讯网络的存在必然导致一些不确定因素的产生,其中起主要干扰作用的就是网络诱发的时延,在网络化控制系统中,时延具有随机性和复杂性,通常情况下它都数倍于采样周期,具有多步性,它的存在将降低控制系统的性能,甚至会使得系统变的不稳定,这使得网络化控制系统在工程应用中难以控制,严重时甚至会导致整个控制系统的崩溃而造成巨大的经济损失。因此,研究具有多步时延的网络化随机控制系统的控制分析和综合问题具有重大的理论和应用价值。本文对多步时延的网络化随机控制系统的控制分析和综合问题进行了深入的研究,提出了一些新方法,较好地解决了多步时延的网络化随机控制系统的建模、时延的统计特性研究、最优状态估计、综合控制分析和稳定性等问题。
     本文系统全面地介绍了当前国内外网络化控制系统的研究现状,分析了其主要研究方法,阐述了研究网络化控制系统的重要理论和实际意义;概括了国内外随机控制问题的研究成果,总结了其研究方法和基本思想;在结合随机控制和网络化控制系统二者研究的理论成果的基础上,提出了本文对多步时延的网络化随机控制系统进行研究的行之有效的方法。文中提出了两种新的控制模式,在新的控制模式下,一个采样周期内到达执行器的多个控制量更为有效的作用于受控对象,提高了系统的性能。在传感器、控制器和执行器的不同驱动模式下,考虑到随机延迟的影响,建立了四种不同的随机数学模型。
     本文针对不同的网络化随机控制系统模型,讨论了时延的统计特性和界限,利用Markov链理论对时延的随机性进行讨论,对两种新的控制模式下随机数学模型给出了关于Markov状态转移矩阵的新定理,并在此基础上给出了使系统保持稳定性的最大允许延迟界限的求解新方法;考虑到时延的随机性和复杂性,对于特别复杂的无法描述其概率分布和界限的网络化随机控制系统的情况,给出了一种时延在线估计的方法。
     本文采用几种典型的控制方法对网络化随机控制系统进行控制分析,主要有LQG最优控制法、无穷确界最优控制法、有限变确界最优控制法、基于模型预测的补偿控制法和时滞补偿控制法,特别是对存在空采样以及数据拒绝的网络化随机控制系统,使用基于模型预测的补偿控制法对系统进行补偿;另外还研究了各种控制方法下系统的稳定性问题,分析了各种控制方法对系统性能的影响,对网络化随机控制系统的稳定性进行了深入分析,构建了使系统稳定的控制器。对于无法获得完全状态信息的网络化随机控制系统,本文讨论了系统的最优状态估计问题,设计了系统的最优状态估计器和控制器,并证明了系统满足分离定理。
     在综合各种控制方法的特点的基础上,本文提出了一种网络化随机控制系统的综合控制法——基于α-Credibility的转换控制方法,其基本思想是通过对系统中多步时延的概率分布研究,根据时延落入的不同置信区间来采用不同的控制方法,这种分时区控制方法对系统性能有显著提高,达到了更好的控制效果;基于α-Credibility的转换控制法对网络化控制系统的智能化程度有一定的要求,解决方法是采用在基于Intelligent Agent技术的计算机网络化控制系统平台上进行转换控制,本文提出了一种基于IA技术的计算机网络化控制系统,并讨论了系统的可靠性问题。
With the rapid development of network technology, more and more control systems adopt communication network to realize close-loop control, which means information exchange and control signal transmission among components are completed by communication network. This is the research object in this dissertation—networked control system. In engineering applications and practice, the insertion of communication network in the feedback control loop causes some indeterminate factors among which network-induce time delay mainly affects the system. In networked control system, time delay is stochastic and complex. In general, it is longer than one sampling period. Multi-step time delay can degrade the performance of control system and even destabilize the system, which gets the control of networked control system difficult in engineering application and will probably bring about enormous economic loss. Therefore, it is of great theoretical and applicable significance to research control analysis and synthetic problems. In this dissertation, these problems are deeply studied, and some new methods are presented to perfectly solve these problems, such as establishing models, the stochastic characteristics of multi-step time delay, optimal state estimate, synthetic control analysis, stability analysis, etc.
     In this dissertation, the present research situation of networked control system is extensively introduced. The internal and international research results, thoughts and methods of stochastic control and analysis are summarized. Then both theoretical results are combined, and suitable research approaches for stochastic networked control system with multi-step time delay are obtained. Two kinds of new control mode are presented, under which the system can make full use of control information. With the different driven modes of sensor, controller and actuator, four different mathematical models are established.
     According to different models, based on Markov chain theory, the stochastic characteristics and upper bound of time delay are discussed. New results of Markov transition matrix of two new control modes are presented. A new method to obtain maximum allowable delay bound is developed for stochastic networked control system with multi-step delay. An online evaluation method for networked control system with unknown probability distribution and bound is also introduced.
     Several typical approaches are adopted to realize the control analysis of stochastic networked control system with multi-step delay, including LQG optimal control method, infinite horizon optimal control method, finite moving horizon optimal control method, model predictive control method and time-varying delay compensation method. The model predictive control method is especially introduced to deal with vacant sampling and data rejection in networked control system. The stability analysis of control approaches above is also discussed. For networked control system with partial state information, the optimal state estimate is investigated. The optimal state estimator and controller are designed, which is presented in separation theorem.
     On the basis of various control analysis approaches above, a novel switching control method based onα-Credibility is provided. The controller of networked control system switches different control law to control the system according to time delay in different credibility intervals. The switching approach can improve the performance of networked control system. Computer networked control system based on intelligent agent technology to realize switching control method based onα-Credibility is presented, and the reliability of the system is discussed.
引文
[1] Zhang W. Stability analysis of networked control systems. Ph. D. dissertation, the Electrical Engineering and Computer Science Department, Case Western Reserve University, 2001
    [2] Astrom J K, Wittenmark B. Computer controlled systems: theory and design. Prentice Hall, Upper Saddle River, NJ, Third Edition, 1997
    [3] Nilsson J. Real-time control systems with delays. Ph. D. dissertation, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1998
    [4] Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(1): 84-99
    [5] Halevi Y, Ray A. Integrated communication and control systems: part I - Analysis. Journal of Dynamic Systems, Measurement and Control, 1988, 110: 367-373
    [6] Halevi Y, Ray A. Integrated communication and control systems: part II - design consideration. Journal of Dynamic Systems, Measurement and Control, 1988, 110: 374-381
    [7] Liou L W, Ray A. A stochastic regulator for integrated communication and control systems: part I – formulation of control law. Journal of Dynamic Systems, Measurement and Control, 1991, 113: 604-611
    [8] Liou L W, Ray A. A stochastic regulator for integrated communication and control systems: part II – numerical analysis and simulation. Journal of Dynamic Systems, Measurement and Control, 1991, 113: 612-617
    [9] 吴爱国, 王冬青, 梁瑾. 基于神经网络误差修正的广义预测控制在网络控制系统中的应用. 第五届全球智能控制与自动化大会, 2004 年六月, 中国杭州: 1386-1390
    [10] Ray A, Liou L W, Shen J H. State estimation using randomly delayed measurements. Journal of Dynamic Systems, Measurement and Control, 1993, 115: 19-26
    [11] Chan H, Ozguner U. Closed-loop control of systems over a communications network with queues. Int. Journal of Control, 1995, 62(3): 493-510
    [12] Beldiman O, Walsh G, Bushnell L. Predictors for networked control systems. Proceedings of American Control Conference, 2000: 2347-2351
    [13] Nilsson J, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays. Automatica, 1998, 34(1): 57-64
    [14] Hu S S, Zhu Q X. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 2003, 39: 1877-1884
    [15] Krtolica R, Ozguner U, Chan H, et al. Stability of linear feedback systems with random communication delays. International Journal of Control, 1994, 59(4): 925-953
    [16] Lian F L, Moyne J, Tilbury D. Networked design consideration for distributed control systems. IEEE Transactions of Control Systems Technology, 2002,10: 297-307
    [17] Walsh G C, Hong Ye. Performance evaluation of control networks. IEEE control Systems Magazine, 2001, 21: 57-65
    [18] Walsh G C, Hong Ye, Bushnell L. Stability analysis of networked control systems. Proceedings of American Control Conference, San Diego, USA, 1999: 2876-2880
    [19] Kim D S, Lee Y S, Kwon W H, et al. Maximum allowable delay bounds of networked control systems. Control Engineering Practice, 2003, 11: 1301-1313
    [20] Yu Z X, Chen H T, Wang Y J. Survey on research of closed loop network control system. Information and Control, 2001, 30(7): 689-695
    [21] Luck R, Ray A. An observer-based compensator for distributed delays. Automatica, 1990, 26(5): 903-908
    [22] Ray A. Output feedback control under randomly varying distributed delays. Journal of Guidance, Control and Dynamics, 1994, 17(4): 701-711
    [23] Zhang L Q, Shi Y, Chen T W, et al. A new method for stabilization of networked control systems with random delays. IEEE Transactions on automatic control, 2005, 50(8): 1177-1181
    [24] Yu Z X, Chen H T, Wang Y J. Research on control network system with Markov delay characteristic. Proceedings of the 3rd World Congress on Intelligent Control and Automation, Hefei, P.R. China. June, 2000: 3636-3640
    [25] 于之训, 陈辉堂, 王月娟. 基于 Markov 延迟特性的闭环网络控制系统研究. 控制理论与应用, 2002, 19(2): 263-267
    [26] Yang Y Q, Xu D, Tan M. Hybrid and stochastic stabilization analysis and H ∞control for networked control systems. Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, December, 2004: 502-506
    [27] Yu J Y, Mei Y M, Yu S M. MPC-based methods dealing with vacant sampling and data rejection in networked control systems. Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, August, 2004: 574-578
    [28] Goktas F. Kistributed control of systems over communication networks. Ph. D. dissertation, University of Pennsylvania, 2000
    [29] Li B Y, Xiao Y S. Research on improving performance of networked control systems based on IA method. Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai P. R. China, June, 2002: 2778-2781
    [30] Almutairi N B, Chow M Y, Tipsuwan Y. Network-based controlled DC motor withfuzzy compensation. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 3: 1844-1849
    [31] Tarn T J, Xi N. Planning and control of Internet-based teleoperation. Proceedings of SPIE: Telemanipulator and telepresence technologies V, 1998: 1189-1193
    [32] Engin Y. Control of randomly varying systems with prescribed degree of stability. IEEE Transactions on Automatic Control, 1988, 33(4): 407-410
    [33] Pan Z G, Basar T. Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. Proceedings of the American Control Conference, Albuquerque, New Mexico, June 1997: 1278-1282
    [34] Guo L. On the critical case for global stability of adaptive nonlinear stochastic control. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, Dec. 1996: 354-359
    [35] Chen H F, Guo L. Consistent estimation of the order of stochastic control systems. IEEE Transactions on Automatic Control, June, 1987, 32(6): 531-535
    [36] Early R H, Early B N. Performance of the a priori stochastic-optimal feedback control law. IEEE Transactions on Automatic Control, June, 1973: 316-317
    [37] Gregory J N. Stability and stabilization of linear differential delay systems. IEEE Transactions on Automatic Control, June, 1973: 317-320
    [38] Miyamoto Y, Chang K S. Sensitivity analysis of process variables for linear quadratic stochastic control systems. IEEE Transactions on Automatic Control, Aug., 1979, 24(4): 660-661
    [39] Altman E, Gaitsgory V A. Asymptotic optimization of a linear differential system controlled by a Markov decision process. Proceedings of the 31st conference on Decision and Control, Tucson, Artzone, Dec. 1992: 2175-2176
    [40] 郭尚来. 随机控制. 北京: 清华大学出版社, 2000
    [41] Bellman R. Dynamic programming. New Jersey: Princeton University Press, 1957
    [42] Kalman R E. A new approach to linear filtering and prediction problems. Tans ASME J Basic Eng, 1960, 82: 34-45
    [43] Kalman R E, Bucy R S. New results in linear filtering and predictiontheory. Tans ASME J Basic Eng, 1961, 83: 95-108
    [44] Wu W M, Liu G, Zhu G X, et al. New stochastic control scheme for multi-services call admission in mobile wireless networks. IEEE 6th CAS Symp. On Emerging Technologies: Mobile and Wireless Comm. Shanghai, China, June, 2004: 545-548
    [45] George Y, Xu C Z, Wang L Y. Optimal remapping in dynamic bulk synchronous computions via a stochastic control approach. IEEE Transactions on Parallel and Distributed Systems, 2003, 14(1): 51-62
    [46] Igor A, Andrus P, Ennu R. Simulation of two-rate adaptive neural nework and fuzzylogic hybrid control for stochastic model of an experimental aircraft. CCECE 2004-CCGEI 2004, Niagara Falls, May, 2004: 0125-0128
    [47] Duncan T E, Maslowski B, Pasik-Duncan B. Some results on the adaptive control of stochastic semilinear systems. Proceedings of the 37th IEEE Conference on Decision & Control Tampa, Florida USA, December, 1998: 4028-4032
    [48] Campu L, Bar-Shalom Y. Control of discrete-time hybrid stochastic systems. IEEE Transactions on Automatic Control, 1992, 37(10): 1522-1527
    [49] 王常虹, 王玉峰. 用时变时滞补偿方法设计网络化控制系统. 第五届全球智能控制与自动化大会, 2004 年六月, 中国杭州: 1371-1375
    [50] Raji R. Smart network for control. IEEE Spectrum, 1994, 31: 49-55
    [51] Brockett R. Stabilization of motor networks. Proceedings of IEEE Conference on Decision and Control, New Orleans, USA, 1995: 1484-1488
    [52] Lian F L, Moyne J, Tilbury D. Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet. IEEE Control System Magazine, 2001, 21(1): 66-83
    [53] Dong Y, Han Q L, Chen P. State feedback controller design of networked control systems. IEEE Transaction on Circuits and Systems-II: Express Briefs, 2004, 51(11): 640-644
    [54] 梁应融, 张贤达, 李衍达, 张沛武. 非高斯相关噪声信号中高斯信号的时延估计. 电子学报, 1997, 19(5): 606-612
    [55] Etter D M, Stearns S D. Adaptive estimation of time delays in sampled data systems. IEEE Trans. Acoustics. Speech and Signal Processing, 1981, 29(3): 582-587
    [56] Hanuasz C, Keviczky L. Recursive time delay estimation method. Int. J. Systems Sci., 1994, 23(11): 1857-1865
    [57] Ho K C. Adaptive time-delay dstimation in nonstationary signal and/or noise power environments. IEEE Trans. on Signal Processing, 1993, 41(7): 2289-2299
    [58] Boudreau D, Kabal P. Joint time-delay estimation and adaptive recursive least squares filtering. IEEE Trans on Signal Processing, 1993, 41(2): 592-601
    [59] 周东华. 时变时延的在线自适应估计. 电子学报, 1999, 27(12): 61-63
    [60] 杨珺, 王向东. 一类非线性网络控制系统的稳定性分析. 第五届全球智能控制与自动化大会, 2004 年六月, 中国杭州: 1401-1405
    [61] Zhen W, Li C H, Xie J Y. Improved control scheme with online delay evaluation for networked control systems. Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P. R. China, June 10-14, 2002: 1319-1323
    [62] 王飞跃, 王成红. 基于网络控制的若干基本问题的思考和分析. 自动化学报, 2002, 28 (Suppl): 171-176
    [63] Simani S, Fantuzzi C, Beghelli S. Identification and fault diagnosis of nonlineardynamic process using hybrid models. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000: 2621-2626
    [64] Bamieh B A, Pearson J B. A general framework for linear periodic systems with applications to H ∞sampled-data control. IEEE Transactions on Automatic Control, 1992, 37(4): 418-434
    [65] Lian F L, Moyne J, Tibury D. Analysis and modeling of networked control system: MIMO case with multiple time delays. Proceeding of American Control Conference, Arlington, USA, 2001: 4306-4312
    [66] 朱其新, 胡寿松, 侯霞. 长时滞网络化控制系统的随机稳定性研究. 东南大学学报, 2003, 33 (3): 368-371
    [67] 朱其新, 胡寿松. 网络化控制系统的分析和建模. 信息与控制, 2003, 32 (1): 5-8
    [68] Mahmoud M S, Ismail A. Role of delays in networked control systems. ICECS-2003: 40-43
    [69] Mahmoud M S. Robust control and filtering for time-delay systems. Dekker, New York, 2000
    [70] Kim J H, Oh D C, Park H B. Guaranteed cost and H ∞filtering for time delay systems. Proceedings of American Control Conference, Arlington, USA, 2001: 4014-4019
    [71] Kim J H, Park H B. H ∞state feedback control for generalized continuous/discrete time-delay system. Automatica, 1999, 35: 1443-1451
    [72] Kim J H, Jeung E T, Park H B. Robust H ∞control for parameter uncertain system with time-varying delayed states: output feedback case. Proceedings of American Control Conference, Albuquerque, USA, 1997: 3679-3683
    [73] 郑英, 方华京. 不确定离散时滞系统的完整性设计. 系统工程与电子技术, 2003, 25(8): 101-106
    [74] 郑英, 方华京. 具有随机时延的网络化控制系统基于等价空间的故障诊断. 信息与控制, 2003, 32(2): 155-159
    [75] Yu M, Wang L, Chu T, Hao F. An LMI approach to networked control systems with data packet dropout and transmission delays. International Journal of Hybrid Systems, 2003, 3: 291-303
    [76] Yu M, Xie G M, Wang L. Stabilization of networked control systems with transmission delays. 2004 IEEE International Conference on systems, Man and Cybernetics, 2004: 1764-1769
    [77] Yoo H J, Ryu H S, Yoo K S, et al. Compensation of networked control systems using LMI-based delay-dependent optimization method. SICE 2002, Osaka, Aug. 5-7, 2002: 364-369
    [78] Lee Y S, Moon Y S, Kwon W H. Delay-dependent robust H ∞control for uncertain systems with time-varying state-delay. Proceedings of the 40th IEEE CDC, Dec. 2001: 3208-3213
    [79] Moon Y S, Park P G, Kwon W H, et al. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001, 74: 1447-1455
    [80] Boyd S, Chaoui L E, E Feron, et al. Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM, 1994
    [81] Hale J K, Lunel S M V. Introduction to functional differential equations. New York: Springer, 1993
    [82] Ghaoui L E, Oustry F, Rami M A. A cone complementaritity linearization algorithm for static output-feedback and related problems. IEEE Transaction Automatic Control, 1997, 42(8): 1171-1176
    [83] Tindell K, Burns A, Wellings A J. Calculating controller area network (CAN) message response times. Control Engineering Practice, 1995, 3(8): 1163-1169
    [84] Robert B, Gmb H. CAN Specification Version 2.0, 1991
    [85] Open DeviceNet Vendors Association. DeviceNet Specifications, 1997
    [86] Low S H, Paganini F, Doyle J C. Internet congestion controls. IEEE Control System Magazine, 2002, 22(1): 28-43
    [87] Wang X F, Chen G R, Ko K T. A stability theorem for Internet congestion control. System and Control Letters, 2002, 45: 81-85
    [88] Massoulie L. Stability of distributed congestion control with heterogeneous feedback delays. IEEE Transactions on Automatic control, 2002, 47(6): 895-901
    [89] Kelly F P. Mathematical modeling of the Internet. 4th International Congress on Industrial and Applied Mathematics, Scotland, 1999
    [90] Steven H L, Peterson L, Wang L M. Understanding TCP vegas: A Duality Model. Journal of the Association for Computing Machinery, 2002, 49(2): 207-235
    [91] Johansson M, Xiao L, Boyd S P. Simultaneous routing and power allocation in CDMA wireless data networks. IEEE International Conference on Communications, 2003: 51-55
    [92] Mathis M, Semke J, Mahdavi J, et al. The Macroscopic Behavior of the TCP Congestion Avoidance Algorism. Computer Communications Review, 1997, 27: 217-230
    [93] Xiao L, Johansson M, Hindi H. Joint optimization of communication rates and linear systems. IEEE Transactions on Automatic Control, 2003, 48(1): 148-153
    [94] Boyd S P, Vandenberghe L. Course reader for EE364: introduction to convex optimization with engineering applications. Stanford University, 1998
    [95] Ye Y. Interior point algorithms: theory and analysis. Discrete Mathematics and Optimization, Wiley, New York, 1997
    [96] Bertsekas D P. Nonlinear programming. Athena Scientific, second edition, 1999
    [97] Li L, Goldsmith A J. Capacity and optimal resource allocation for fading broadcast channels: part I: ergodic capacity. IEEE Transactions on Information Theory, 2001, 47(3): 1103-1127
    [98] Bertsekas D P, Gallager R G. Data Networks, Prentice Hall, 1992
    [99] Tse D N C, Hanly S V. Multi-access fading channels—part I: polymatroid structure. Optimal resource allocation and throughput capacities, IEEE Transactions on Information Theory, 1998, 44(7): 2796-2815
    [100] Balakrishnan A V. Kalman filtering theory. New York: Optimal software Inc, Publication Division, 1984: 1-100
    [101] Chen H F, Kumar P R, Schuppen J H V. On Kalman filtering for conditionally Gaussian systems with random matrices. Systems & Control letters, 1989, 13(5): 397-404
    [102] Astrom K J. Introduction to stochastic control theory. New York: Academic Press, 1970
    [103] Ku R, Athans M. Further results on the uncertainty threshold principle. IEEE Transactions on Automatic Control, 1977, 22: 866-868
    [104] Dekoning W L. Infinite horizon optimal control of linear discrete time systems with stochastic parameters. Automatica, 1982, 18: 443-453
    [105] Marti P, Villa R, Fuertes J M, et al. On real time control tasks schedulability. Proceedings of the European control conference, Porto, Portugal, 2001: 2227-2232
    [106] Engin Y. Sliding horizon optimal and certainty equivalent controller for stabilizing stochastic parameter systems. Opt. Contr. Appl. Methods, 1989
    [107] 盛骤, 谢式千, 潘承毅. 概率论和数理统计. 北京: 高等教育出版社, 2002
    [108] 范金城. 概率论和数理统计. 沈阳: 辽宁大学出版社, 2003
    [109] 顾洪军, 张佐, 吴秋峰. 网络控制系统的实时特性分析及数据传输技术. 计算机工程和应用, 2001, 6: 38-43
    [110] 程正群等. 现场总线与 DCS 控制系统. 化工自动化及仪表, 1999, 26(3): 1-3
    [111] 庞彦斌等. 现场总线与 DCS 的网络集成. 测控技术, 1999, 9: 20-22
    [112] 林强, 阳宪惠等. 现场总线及其网络集成. 测控技术, 1999, 5: 11-14
    [113] 吴誉等. 现场总线技术展望及我国的发展策略. 测控技术, 1999, 11: 1-3
    [114] 白硕. 智能 Agent 战略. 计算机世界, 1998, 1: 5-9
    [115] 吴朝晖等. 多 Agent 系统在协同质量管理中的应用. 计算机世界, 1998, 1:10-14
    [116] 肖晴. 多智能体协调协作方法极其在制造企业集成中的应用研究. 同济大学博士论文, 1998
    [117] 杨鲲等. Agent: 特性与分类. 计算机科学, 1999, 9: 30-34
    [118] 胡舜耕等. 多 Agent 系统的理论、技术及其应用. 计算机科学, 1999, 9: 20-24
    [119] 史定华. 随机模型的密度演化方法. 科学出版社, 1999: 89-98
    [120] 史定华. 两部件串联可修模型分析. 自动化学报, 1985, 1: 71-79
    [121] 史定华. 可修系统的运行特征. 数学进展, 1996, 1: 34-42
    [122] 曹晋华, 程侃. 可靠性数学引论. 科学出版社, 1986
    [123] Barlow R E, Proschan F. Statistical theory of reliability and life testing. To Begin with Silver Spring, MD, 1981
    [124] Barlow R E, Hudes E S. Asymptotic measures of system performance under alternating rules. OR Center. Univ. of California, Berkeley, 1979
    [125] Barlow R E. System reliability: foundations. Theory of Reliability Soc. Italiana, 1985: 67-85
    [126] Liu L M. Continuous review models for inventory with random ligetime. O. R. Letters, 1990, 9:161-167
    [127] Liu L M, Shi D H. A model for inventory with exponential lifetime and renewal demands. Naval Res. Logis, 1999, 46: 39-56
    [128] 钱敏平, 龚光鲁. 随机过程论. 北京大学出版社, 第二版, 1997
    [129] 徐光辉. 随机服务系统. 科学出版社, 第二版, 1988
    [130] Commault C, Chemla J P. On dual and minimal phase-type representations. Stochastic Models, 1993, 3: 421-434
    [131] Hsu G H, Yuan X M. First passage times and their applications for Markov processes. Stochatic Models, 1995, 1: 195-210
    [132] Maier B S. The algebraic construction of phase type distribgutions. Stochastic Models, 1991, 4: 573-602
    [133] Ocinniede C A. Characterization of phase-type distributions. Stochastic Models, 1990, 1: 1-57
    [134] 邓永录, 梁之舜. 随机点过程与应用. 科学出版社, 1992
    [135] 史定华. 两部件串联系统的可靠性分析. 福建师范大学学报 (自然科学版) , 1982, 2: 13-22
    [136] 史定华. 计算可修系统在 ( 0,t ]中平均故障次数的新方法. 应用数学学报, 1985, 1: 101-110
    [137] 史定华. 连续时间马氏链中的两个计数过程. 应用概率统计, 1994, 1: 84-89
    [138] 何声武. 随机过程导论. 华东师范大学出版社, 1989
    [139] 戴永隆. 马尔科夫振荡问题. 广东科技出版社, 1993
    [140] Cox D R. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables. Proc. Camb. Phil. Soc., 1955,51: 433-441
    [141] Erlang A K. Solutions of some problems in the theory of probabilities of significance in automatic telephone exchanges. The Post Office Electrical Engineer’s Journal, 1977, 10: 189-197
    [142] Shi D H. Some point processes in a Markov chain with continuous time. Proc. of the Fourth Symp. On Rel. Math, Kweilin, China, Apr. 1992: 412-416
    [143] Shi D H, Guo J L. On the point processes of state transitions in Markov Chain. Acta Math. Appl. Sinica, 1998, 4: 374-380
    [144] Shi D H. Revisiting the state transition frequency formula. Ann. O. R., 1999
    [145] Asmussen S, Bladt M. Renewal theory and queueing algorithms for matrix exponential distributions. Matrix-Analytic Methods in Stochastic Models, Marcel Dekker, New York, 1996: 313-341
    [146] Chaudhry M L, Agarwal M, Templeton J G C. Exact and approximate numerical solutions of steady-state distributions arising in the queue GI/G/1. Queueing Systems, 1992, 10: 105-152
    [147] Liu L M, Shi D H. Busy period in GI/G/infinite. J. Appl. Prob., 1996, 33: 815-829
    [148] Shi D H. Probability analysis of the repairable queueing system M/G/1. Ann. Of O. R., 1990, 24: 185-203
    [149] Shi D H. On some distributions of repairable queueing system, Proc. Of the APORS’91, Beijing Univ. Press, 1992: 229-237
    [150] Shi D H. The transient solution of the repairable queueing system M/G/1. Control Theory and Applications, 1994, 6: 681-688
    [151] Stidham S. Stochastic clearing systems. Stoch. Proc. and Appl., 1974, 2: 85-113
    [152] Yang T, Templeton J G C. A survey on retrial queues. Queueing Syst., 1987, 2: 201-233
    [153] Lucantoni D M, Meier K S, Neuts M F. A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. Appl. Prob., 1990, 3: 676-705
    [154] Li W, Shi D H, Chao X L. Reliability analysis of M/G/1 queueing system with server breakdowns and vacations. J. Appl. Prob., 1997, 34: 546-555