具有电容输出滤波器谐振变换器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐振变换器能利用自身的谐振过程实现软开关,从而提高开关频率,使电力电子设备高频化,符合现代电力电子技术的发展趋势,目前谐振变换器在静电除尘、医疗设备等高压应用场合的使用越来越广泛。但谐振变换器通常是一个强非线性系统,其建模、电路分析和设计过程十分繁琐,因此目前对于谐振变换器的精确数学模型、快速仿真技术和优化技术的研究需求越来越迫切。针对高压应用场合谐振变换器的拓扑特点,本文研究了具有电容输出滤波器的并联谐振变换器和LCC谐振变换器的建模、优化和控制技术,为其在高压场合的应用提供了研究基础。
     本文将图论理论引入到谐振变换器的谐振模态分析中。在获取了并联谐振变换器和LCC谐振变换器的所有工作通路路径的基础上,根据这两种谐振变换器的电路拓扑特点和工作原理,筛选出有效通路路径,并且根据有效通路得到这两种谐振变换器的全部谐振模态。研究过程表明,图论分析形象直观,简单易行,计算方便,是一种可用于多谐振模态下谐振变换器的分析方法。
     对并联谐振变换器和LCC谐振变换器的时域建模进行了深入研究。在时域模型的基础上进行了电路特性分析,找出了谐振元件参数选择与电路特性之间的关联,推导出了能满足设计要求的谐振元件参数的计算表达式,总结出了谐振变换器时域建模与分析的一般步骤。
     用状态平面分析法推导了LCC谐振变换器谐振槽电容电压和电感电流的稳态轨迹方程,在此基础上绘制了状态轨迹图,并用平面几何方法研究了这种拓扑结构的谐振电路物理量之间的几何关系,稳态轨迹分析使时域模型中状态变量的动态变化更直观,物理意义更明确。在稳态轨迹基础上,提出一种简单、有效的轨迹控制方法,该方法能使LCC谐振变换器在工作状态切换时在很短的时间内达到稳态,实现无振荡转换。
     在傅立叶级数分析的基础上,运用动态相量法建立了LCC谐振变换器的大信号模型和稳态模型。大信号模型避免了建立在“准稳态”假设基础上的电路模型不能仿真变化迅速暂态过程的缺陷,通过与时域模型的仿真结果对比,验证了大信号模型的精确性和仿真快速性。然后,在大信号模型的基础上,考虑占空比和开关角频率的扰动建立了小信号模型,并用它分析了系统性能。最后,通过与基于平衡点的线性化模型仿真结果对比验证了小信号模型的准确性。动态相量建模实现了变化迅速暂态过程的仿真,极大加快了仿真速度,并且有效实现了谐振变换器的动态特性分析。
     为了优化LCC谐振变换器的系统性能,对多目标优化遗传算法的应用进行了具体研究。首先,在动态相量稳态模型的基础上得到了反映其系统性能的数学表达式。然后,提出用一种基于Pareto的多目标优化遗传算法对谐振变换器的系统性能进行优化计算。该算法用包含密度信息的细粒度赋值策略通过最小化目标函数获得了一组均匀分布的最优解集,由这组最优解集可推导出相应的谐振电路元件参数,从而指导电路设计。多目标优化遗传算法在不依靠决策偏好信息的条件下对研究对象进行多目标优化,避免了人为因素对最优设计方案造成的偏差,具有很好的实际应用价值。最后,仿真和实验结果验证了这种多目标优化设计方法的正确性。
Soft-switching of resonant converter can be realized by its own resonant process, so as toimprove the switching frequency, make power and electronic equipment of high frequency bein line with the development trend of power and electronic technology. At present theapplication of resonant converters has become more and more widely, such as static dustremoval medical devices and so on. However, resonant converter is popularly a strongnonlinear system, its modeling, circuit analysis and design are very difficult, so the study ofresonant converter is more and more urgent in terms of the accurate mathematical model fastsimulation technology and optimization technique. According to the topology characteristicsof resonant converters in high-voltage applications, the modeling optimization method andcontrol method of parallel resonant converter&LCC resonant converter with capacitiveoutput filter have been studied in this paper, and the research basis is provided for itsapplication in high-voltage applications.
     The graph theory is applied to multiple resonant modes analysis of resonant converters.Firstly all operating paths of parallel resonant converter&LCC resonant converter withcapacitive output filter are found by graph theory. Then the valid paths are derived in terms ofcircuit topology characteristics and operating law of the resonant converters. Finally the validresonant modes are obtained by these valid paths. The analysis method which is based ongraphic theory is verified by the simulation and experimental process. This proposed methodcan be used for analysis of resonant states of resonant converters easily and intuitively.
     In this paper, the time-domain mathematic models of parallel resonant converter&LCCresonant converter with capacitive output filter are studied in detail. Based on thetime-domain mathematic models, the circuit characteristics are studied, the relation betweenthe resonant tank component value choices and the circuit characteristics is obtained, theanalytic expressions are deduced to meet the requirements of circuit design, and the generalsteps of time-domain modeling and analysis is summarized.
     The state track diagram of LCC resonant converter is drew, the trajectory equations ofthe inductance current&the capacitance voltage are derived in this paper, the circuit topologystructure of LCC resonant converter is simply studied by a geometric analysis method, so thedynamic variation process of the state variables is more intuitive, more definite physicalmeaning. Based on the steady state trajectory, a simple and effective trajectory control methodis given, the trajectory control system has excellent transient performance and can achieve thenew steady state in minimum time by this method.
     Based on Fourier series, a large-signal model and a steady mathematic model of the LCCresonant circuit are established using dynamic phasor. This modeling method of large-signalmodel avoids the limitation that the circuit model which is established by the quasi-stationaryassumption can’t simulate the vertiginous transient process, the excellent tracking behaviorand fast simulation speed of the large-signal model are verified by comparison withtime-domain model. Then, based on the large-signal model, a small-signal model is set upconsidering perturbation of the duty cycle and switching angular frequency, the systemperformance can be analyzed by this small-signal model. Finally, the small-signal model isverified by comparison with the perturbation simulation results of the linear model. Dynamicphasor modeling can simulate the vertiginous transient process, speed up the simulation speedgreatly, and realize the dynamic characteristics analysis of the resonant converters.
     In order to improve the system characteristics of LCC resonant converter with capacitiveoutput filter, the applications of multi-objective genetic algorithm are studied in detail. Firstly,the calculation expressions of the circuit characteristics are obtained based on the steadymathematic model. Then, a Pareto multi-objective optimization with genetic algorithm isapplied to improve the system characteristics of LCC resonant converter. With fine-grainedfitness assignment strategy and density estimation, the algorithm can achieve massive andwell-distributed optimal solutions by the minimization of objective functions, these optimalsolutions can be used to direct design of the circuit. In the condition of not relying on decisionpreference information, multi-objective optimization of the research objects can be completedby multi-objective genetic algorithm, so design deviation of the optimal scheme caused byman-made factors can be avoided. This proposed multi-objective genetic algorithm has goodapplicable value. Finally, it is verified by the results of simulation and experiment.
引文
[1]林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002.
    [2]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2005.
    [3]蔡宣三,龚邵文.高频功率电子学[M].北京:中国水利水电出版社,2009.
    [4]鄂志君.基于动态相量理论的电力系统建模与仿真[D].博士学位论文,天津大学:2008.
    [5]谢小杰.一种串联谐振高频高压电源设计[J].电力电子技术,2007,41(9):79-81.
    [6]Liu Jun, Sheng Licheng, Shi Jianjiang, et al. LCC resonant converter operating under discontinuous resonant current mode in high voltage, high power and high frequency applications[C]. Annual IEEE Applied Power Electronics Conference and Exposition (APEC2009), Washington DC, USA,2009:1482-1486.
    [7]齐虹,陈冲,颜玉崇,等.静电除尘用高频高压功率变换器[J].福州大学学报:自然科学版,2006,34(2):216-219.
    [8]Fu Dianbo. A novel high-power-density three-level LCC resonant converter with constant-power-factor-control for charging applications[J]. IEEE Transactions on Power Electonics,2008,23(5):2411-2420.
    [9]Fu Dianbo, Qiu Yang, Lu Bing, et al. An improved three-level LCC converter with a novel control strategy for high-frequency high-power-density capacitor-charging power supplies[C]. Annual IEEE Applied Power Electronics Conference and Exposition(APEC2006), Dallas, USA,2006:1401-1407.
    [10]Rentzsch M, Gleisberg F, Guldner H, el al. Closed analytical model of a20kV output voltage,800W output power series-parallel-resonant converter with Walton cockroft multiplier[C]. Power Electronics Specialists Conference(PESC2008), Rhodes, Greece,2008:1923-1929.
    [11]Mollov S V, Forsyth A J. Analysis, design, and resonant current control for al-MHz high-power-factor rectifier[J]. IEEE Transactions on Industrial Electonics,1999,46(3):620-627.
    [12]Soeiro T, Biela J, Miihlethaler J, et al. Optimal design of resonant converter for electrostatic precipitators[C]. International Power Electronics Conference (IPEC2010), Sapporo, Japan,2010:2294-2301.
    [13]马皓,俞宏霞,严颖怡.电流源型LCL谐振式变换器的研究[J].中国电机工程学报,2009,29(9):28-34.
    [14]Huang Daocheng, Lee F C, Fu Dianbo. Classification and selection methodology for multi-element resonant converters[C]. Annual IEEE Applied Power Electronics Conference and Exposition (APEC2011), Virginia, Blacksburg, USA,2011:558-565.
    [15]Ivensky G, Bronshtein S, Abramovitz A. Approximate analysis of resonant LLC DC-DC converter[J]. IEEE Transactions on Power Electonics,2011,26(11):3274-3284.
    [16]俞浦,李华峰,黄卫清.超声电机LLCC谐振电路研究[J].中国电机工程学报,2011,31(24):105-110.
    [17]Sevens R P. Topologies for three-element resonant converters[J]. IEEE Transactions on Power Electronics,1992,7(1):89-98.
    [18]Demetriades G D, Ranstad P, Sadarangari C. Three elements resonant converter:the LCC topology by using Matlab[C]. IEEE Power Electronics Specialists Conference, Galway, Ireland,2000:1077-1083.
    [19]Kwon J M, Choi W Y, Kwon B H. Single-switch quasi-resonant converter[J]. IEEE Transactions on Industrial electronics,2009,56(4):1158-1163.
    [20]陈坚.电力电子学一电力电子变换和控制技术[M].北京:高等教育出版社,2002.
    [21]孙向东.组合式软开关高频链逆变器的研究[D].博士学位论文,西安理工大学:2003.
    [22]钟和清,徐至新,邹云屏,等.寄生电容对串联谐振电容器充电电源特性的影响[J].中国电机工程学报,2005,25(10):40-44.
    [23]Forsyth A J, Ward G A, Mollov S V. Extended fundamental frequency analysis of the LCC resonant converter[J]. IEEE Transactions on Power Electronics,2003,18(6):1286-1291.
    [24]Batarseh I, Lie R, Lie C Q, el al. Theoretical and experimental studies of the LCC type parallel resonant converter[J]. IEEE Transactions on Power Electronics,1990,5(2):140-150.
    [25]Bhat A K S. Analysis and design of series-parallel resonant power supply[J]. IEEE Transactions on Aerospace and Electronic system,1992,28(1):249-258.
    [26] Chew L Sng E K K A novel robustcontrol method for the series-parallel resonantconverter[J] IEEE Transactions on Power Electronics200924(8)1896-1904
    [27] Cheng Chinhsing Lee Yaochou DC power supply based on half bridge LCC resonantconverter[C] The8thInterational Conference on Power Electronics and DriveSystem(PEDS2009) Taiwan20091102-1106
    [28]Gilbert A J Bingham C M Stone D A et al Self-oscillating control methods for theLCC current-output resonant converter[J] IEEE Transactions on Power Electonics200823(4)1973-1986
    [29] Ivensky G Kats A Ben-Yaakov S An RC load model of parallel and series-parallelresonant DC-DC converters with capacitive output filter[J] IEEE Transactions on PowerElectronics199914(3)515-521
    [30] Bucher A Duerbaum T Kuebrich D Comparison of methods for the analysis of theparallel resonant converter with capacitive output filter[C]12thEuropean conference onpower electronics and applications Aalborg Denmark20071-10
    [31] Sabate J A Jovanovic M M Lee F C el alAnalysis and design-optimization of LCCresonant inverter for high-frequency AC distributed power system[J] IEEE Transactionson Industrial Electronics199542(1)63-71
    [32] Diaz J Saiz P J V Martin-Ramos J A el al A high-voltage AC/DC resonant converterbased on PRC with single capacitor as an output filter[J] IEEE Transactions onIndustrial Applications201046(6)2134-2142
    [33] Youssef M Z Pinheiro H Jain P K Self-sustained phase-shift modulated resonantconverters modeling design and performance[J] IEEE Transactions on PowerElectronics200621(2)401-414
    [34]Kazimierczuk M K State-plane analysis of zero-current-switching resonant DC/DCpower converters[J] IEEE Transactions on Power Electonics19894(2)265-271
    [35] Siri K Batarseh I et al Frequency response for the conventional parallel resonantconverter based on the state-plane diagram[J] IEEE Transactions on Circuits andSystem199340(1)33-42
    [36] Oruganti R Lee F C Resonant power processors Part I-state planeanalysis[C] IEEE-IAS Annual Meeting1984860-867
    [37]孙向东,段龙,钟彦儒,等.高压直流LCC谐振变换器的分析与设计[J].电工技术学报,2002,17(5):60-64.
    [38]吴俊娟,孙孝峰,邬伟扬.串联谐振变换器的扩展描述函数法建模研究[J].电力电子技术,2011,45(4):22-24.
    [39]吴俊娟,孙孝峰,邬伟扬.基于描述函数法的谐振变换器自持震荡研究研究[J].电力电子技术,2011,45(2):53-55.
    [40]唐雄民,孟志强,等.串联负载谐振式DBD型臭氧发生器电源的基波分析法[J].中国电机工程学报,2007,27(21):38-42.
    [41]夏冰,阮新波,陈武.高压大功率场合LCC谐振变换器的分析与设计[J].电工技术学报,2009,24(5):60-66.
    [42]Sewell H I, Foster M P, Bingham C M, el al. Analysis of voltage output LCC resonant converters, including boost mode operation[J]. IEE Proceeding-Electric Power Applications,2003,150(6):673-679.
    [43]Foster M P, Sewell H I, Bingham C M, el al. Methodologies for the design of LCC voltage-output resonant converters[J]. IEE Proceeding-Electric Power Applications,2006,153(4):559-567.
    [44]Venkatasubramanian V. Tools for dynamic analysis of the general large power system using time-varying phasors[J]. International Journal on Electric Power and Energy System,1994,16(6):365-376.
    [45]鄂志君.基于动态相量理论的电力系统建模与仿真[D].博士学位论文,天津大学,2008.
    [46]黄胜利,周孝信.分布参数输电线路的时变动态相量模型及其研究[J].中国电机工程学报,2002,22(11):1-5.
    [47]应迪生,张明,陈家荣.三相分布参数线路动态相量法的建模与仿真[J].中国电机工程学报,2007,27(34):46-51.
    [48]Stankovic A M, Sanders S R, Aydin T. Dynamic phasor in modeling and analysis of unbalanced poly-phase AC machines[J]. IEEE Transactions on Power System,2002,17(1):107-113.
    [49]康健,邵振国,张培铭.电动机动态相量法建模及对闪变传播的影响分析[J].电力自动化设备,2010,30(10):27-32.
    [50]Allen E H, Ilic M D. Interaction of transmission network and load phasor dynamic in electric power systems[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2000,47(11):1613-1620.
    [51]党杰,刘涤尘,柏哓路,等.考虑谐波特性的简化TCSC动态相量法模型[J].中国电机工程学报,2007,27(28):74-78.
    [52]党杰,刘涤尘,廖清芬,等.计及电抗器支路电阻的TCSC动态相量法模型[J].高电压技术,2008,34(3):542-545.
    [53]刘志坚,王永治,束洪春.轻型高压直流输电HVDC-VSC动态建模与仿真[J].昆明理工大学学报,2007,32(5):82-86.
    [54]Stefanov P C, Stankovic A M. Modeling of UPFC operation under unbalanced conditions with dynamic phasors[J]. IEEE Transactions on Power System,2002,17(2):395-403.
    [55]柏哓路,刘涤尘,党杰,等.考虑谐波特性的Boost变换器动态相量模型[J].电网技术,2007,31(23):74-77.
    [56]何瑞文,蔡泽祥.基于动态相量法的电力电子变换器的模型与仿真分析[J].电工电能新技术,2004,23(3):51-53.
    [57]Srinivas N, Deb K. Multiobjective function optimization using non-dominated sorting in genetic algorithm[J]. Evolutionary Computation,1994,2(3):221-248.
    [58]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [59]Hom J, Nafpliotis N, Goldberg D E, et al. A niched Pareto genetic algorithm for multiobjective optimization[C]. The First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Piscat-away, New Jersey,1994:82-87.
    [60]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [61]马清亮,胡昌华,杨青.一种用于多目标优化的混合遗传算法[J].系统仿真学报,2004,16(5):1038-1040.
    [62]涂春鸣,罗安,刘娟.无源滤波器的多目标优化设计[J].中国电机工程学报,2002,22(3):17-21.
    [63]李圣清,朱英浩,周有庆,等.基于交互式多目标遗传算法的无源滤波器优化设计[J].电工技术学报,2003,18(6):1-6.
    [64]文福拴,韩祯祥.基于遗传算法和模拟退火算法的电力系统的故障诊断[J].中国电机工程学报,1994,14(3):29-35.
    [65]吴锋,周昊,郑立刚,岑可法.基于非支配排序遗传算法的锅炉燃烧多目标优化[J].中国电机工程学报,2009,29(29):7-12.
    [66]夏小华,高为炳.非线性系统控制与解耦[M].北京:科学出版社,1993.
    [67]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005.
    [68]谢克明.现代控制理论基础[M].机械工业出版社,1992.
    [69]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [70]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.
    [71]邓卫华.电力电子变换器状态反馈精确线性化模型及非线性控制[D].博士学位论文,华南理工大学,2005.
    [72]邓卫华,张波,胡宗波,等.CCM Buck变换器的状态反馈精确线性化的非线性解耦研究[J].中国电机工程学报,2004,24(5):120-125.
    [73]帅定新.电力电子变换器状态反馈精确线性化非线性控制的研究[D].博士学位论文,华南理工大学,2009.
    [74]帅定新,谢运祥,王哓刚.Boost变换器非线性电流控制[J].中国电机工程学报,2009,29(15):15-21.
    [75]乐江源.基于微分几何理论电力电子变换器非线性复合控制研究研究[D].博士学位论文,华南理工大学,2011.
    [76]乐江源,谢运祥,张志,等.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报,2010,30(15):32-39.
    [77]赵洋,肖湘宁.基于微分几何方法的静止同步串联补偿器非线性控制[J].电工技术学报,2008,23(4):132-136.
    [78]龙英文.变结构控制理论问题及在有源电网调节器中的应用研究[D].博士学位论文,浙江大学,2009.
    [79]赵红茹,王小幡,陈艳峰.串联谐振变换器的无源性控制[J].华南理工大学学报:自然科学版,2009,37(10):1-4.
    [80]赵红茹,吴捷.串联谐振变换器的滑模控制[J].电机与控制学报,2003,7(2):122-125.
    [81]Oruganti R, Lee F C. Resonant power processors:part II-Methods of control[J]. IEEE Transactions on Industry Applications,1985,21(6):1461-1471.
    [82]Oruganti R, Yang J J, Lee F C. Implementation of optimal trajectory control of series resonant converter[J]. IEEE Transactions on Power Electronics.1988,3(3):318-327.
    [83]Sivakuma S, Natarajan K, Sharaf A M. Optimal trajectory control of series resonant converter using modified capacitor voltage control technique[C]. IEEE Power Electronics Specialists Conference, Cambridge, MA, USA,1991:752-759.
    [84]吴俊娟.串联谐振变换器的最优轨迹控制[J].电力电子技术,2010,44(4):33-35.
    [85]Chen H, Tseng K J. Optimal trajectory switching control for series-parallel resonant converter[C]. Industrial Electronics Conference(IEEE IECON), Roanoke, Virginia, USA,2003:1986-1991.
    [86]Chen H, SngEKK, Tseng K J. Generalized optimal trajectory control for closed loop control of series-parallel resonant converter[C]. Power Electronics Specialists Conference(PESC2004), Aachen, Germany,2004:1786-1791.
    [87]Chen H, Sng E K K, Tseng K J. Optimum trajectory switching control for series-parallel resonant converter[J]. IEEE Transactions on Industrial Electronics,2006,53(5):1555-1563.
    [88]卜月华.图论及其应用[M].南京:东南大学出版社,2002.
    [89]燕子宗,张宝琪.图论及其应用[J].重庆科技学院学报:自然科学版,2007,9(2):121-123.
    [90]丘东元,张波.谐振开关电容变换器中潜电路现象的研究[J].中国电机工程学报,2005,25(21):34-40.
    [91]涂文娟,丘东元,张波.高阶降压式谐振开关电容变换器的潜电路[J].中国电机工程学报,2008,28(36):10-16.
    [92]黎剑源,丘东元,张波.n阶谐振开关电容变换器潜电路图论分析法[J].中国电机工程学报,2008,28(3):53-59.
    [93]涂文娟,丘东元,张波,黎剑源.基于图论的n阶升压式谐振开关电容变换器潜电路分析技术[J].电子学报,2008,36(2):271-277.
    [94]屈莉莉,张波,丘东元,涂文娟.电力电子变换器广义连接矩阵及其潜电路判别[J].电 工技术学报,2008,23(12):70-77.
    [95]涂文娟,丘东元,张波.DC/DC皆振开关电容变换器潜电路发生的一般规律分析[J].电工技术学报,2007,22(12):98-104.
    [96]丘东元,涂文娟,张波,黎剑源.谐振开关电容变换器的潜电路特性[J].电子学报,2007,35(8):1505-1510.
    [97]涂文娟,丘东元,张波.升压式谐振开关电容变换器中潜电路的一般规则[J].电工技术学报,2009,24(4):102-107.
    [98]吕昊,付立军,叶志浩,等.几种电力网络图的连通路径拓扑算法研究[J].电力系统保护与控制,2009,37(21):82-85.
    [99]Bhat A K S. Analysis and design of a series-parallel resonant converter with capacitive output filter[J]. IEEE Transactions on Industry Applications,1991,27(3):523-530.
    [100]Sanders S R, Noworolski J M, Liu X Z, et al. Generalized averaging method for power conversion circuits[J]. IEEE Transactions on Power Electonics,1991,6(2):251-259.
    [101]Martin-Ramos J A, Diaz J, Pernia A M, et al. Large-signal modeling of the PRC-LCC resonant topology with a capacitor as output filter[C]. Annual IEEE Applied Power Electronics Conference and Exposition(APEC2002), Dallas, USA,2002:1120-1126.
    [102]Martin-Ramos J A, Diaz J, Pernia A M, et al. Dynamic and steady-state models for the PRC-LCC resonant topology with a capacitor as output filter[J]. IEEE Transactions on Power Electronics,2007,54(4):2262-2275.
    [103]Bhat A K S. Operation of high-frequency resonant converters on the utility line with improved characteristics [J]. IEEE Transactions on Power Electonics,1997,12(4):623-636.
    [104]Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem[J]. IEEE Transactions on Evolutionary Computation,2006,10(3):315-329.
    [105]Mendoza F, Bernal-Agustin J L, Dominguez-Navarro J A. NGSA and SPEA applied to multiobjective design of power distibution systems [J]. IEEE Transactions on Power Systems,2006,21(4):1938-1945.
    [106]Abido MA. Multiobjective optimal VAR dispatch using strength pareto evolutionary algorithm[C]. IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada,2006:730-736.
    [107]Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the strength pareto evolutionary algorithm[R]. Zurich, Switzerland:Swiss Federal Institute of Technology,2001.
    [108]赵亮,雎刚,吕剑虹.一种改进的遗传多目标优化算法及其应用[J].中国电机工程学报,2008,28(2):96-102.
    [109]刘军,石健将,张仲超,等.具有最小电流峰值的电容滤波高频高压并联谐振变流器[J].电工技术学报,2009,24(11):83-88.
    [110]张谷勋.串并联谐振变换器是电除尘电源的最佳选择[J].通信电源技术,2009,26(1):24-32.
    [111]Chuang Yingchun, Ke Yulung, Chuang Hungshiang, et al. Implementation and analysis of an improved series-loaded resonant DC-DC converter operating above resonance for battery chargers[J]. IEEE Transactions on Industry Applications,2009,45(3):1052-1059.
    [112]Chuang Yingchun, Ke Yulung, Chuang Hungshiang, et al. Analysis and implementation of half-bridge series-parallel resonant converter for battery chargers[J]. IEEE Transactions on Industry Applications,2011,47(1):258-270.
    [113]Hang L, Li B, Liu S, el al. Asymmetrical secondary structure of LLC series resonant DC/DC converter for multi-output applications[J]. IET Power Electronics,2011,4(9):993-1001.
    [114]Batarseh I, Megalemos C, Sznaier M. Small signal analysis of the LCC-Type parallel resonant converter[J]. IEEE Transactions on Aerospace and Electronic System,1996,32(2):702-712.
    [115]Vorperian V. Approximate small-signal analysis of the series and the parallel resonant converters[J]. IEEE Transactions on Power Electronics,1989,4(1):15-24.