起落架摆振的非线性分析及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机在起飞和着陆滑跑过程中有时会遇到摆振。摆振的发生给飞机安全带来很大危害,一直以来未得到很好解决。本文以非线性动力学分岔理论为基础,应用理论分析和数值仿真相结合的方法,研究了起落架摆振建模、起落架参数的分岔分析、摆振的主动控制和半主动控制以及摆振非线性模型的分岔控制。
     针对起落架扭转运动模态和侧向运动模态,建立考虑支柱侧向柔性的非线性摆振模型。提出利用基于拟弧长延拓算法的数值方法对起落架结构参数和几何参数进行分岔分析,得到摆振极限环振幅随速度的变化情况,支柱前倾角、支柱扭转阻尼、支柱扭转刚度、支柱侧向阻尼、支柱侧向刚度、机轮稳定距对系统稳定区域、扭转摆振区域以及侧向摆振区域的影响。所得结论对于起落架防摆设计具有重要指导作用。
     建立具有库仑摩擦、线性项以及二次项的减摆器模型。研究表明非线性减摆器模型的摆振稳定性分析结果比线性减摆器模型分析结果更加准确,农林一机的算例结果很好的验证了非线性减摆器模型数值分析结果的准确性。运输一机的算例结果表明基于拟弧长延拓算法的数值分析方法能够比待定复参数方法得到更准确的稳定边界。提出根据摆振极限环振幅和频率特性对扭转和侧向运动模态进行划分,有助于深入认识摆振机理,时域分析和频谱图验证了所得结论的正确性。
     建立主动控制的非线性摆振模型,提出利用数值延拓算法分析主动控制对摆振的抑制效果,并与被动控制进行对比。研究结果发现:相对被动控制,主动控制能有效增加系统稳定区域。利用数值延拓算法的数值分析可以指导控制参数的合理选取,达到有效抑制摆振的目标。时域分析结果与数值分析结果一致,表明本方法的有效性。提出应用直接型自适应模糊控制抑制摆振,仿真结果表明能够有效抑制参数扰动而引起的摆振。
     建立应用磁流变阻尼器的起落架摆振半主动控制非线性数学模型,并设计半主动控制算法。数值分析得到半主动控制和被动控制系统稳定性分析图,研究了半主动控制对系统稳定区域、扭转摆振区域以及侧向摆振区域的影响,结果表明:基于磁流变阻尼器的半主动控制相对被动控制可以有效减小发生扭转摆振的区域。
     针对非线性摆振模型,研究平方和立方非线性状态误差反馈控制对系统稳定区域、摆振区域、极限环振幅与频率的控制效果。结果表明:平方和立方非线性状态误差反馈控制可以控制扭转摆振振幅与频率,对稳定区域、摆振区域则没有控制作用。
The unwanted oscillations called shimmy can occur on both nose and main landing gears duringaircraft’s take-off or landing. The paper has studied landing gear modeling, influence of landing gearparameters, active and semi-active control of shimmy, and bifurcation control. Numerical simulationmethod based on bifurcation theory and time domain analyses are used in the research.
     A nonlinear nose landing gear shimmy model is built. The model including strut lateral bending ofcharacterizes the motion of the system in terms of the torsional mode and lateral mode. Bifurcationanalysis based on pseudo arclength continuation method is used to study the stability of the systemabout landing gear structure and geometry parameters. The sensitivity of the system is studied tochanges of rake angle, torsional damping coefficient, torsional stiffness coefficient, lateral dampingcoefficient and lateral stiffness coefficient. The amplitude of shimmy changes with the forwardvelocity. The results have an important meaning to landing gear design.
     A nonlinear shimmy damper model is constructed including coulomb damping,linear viscousdamping and square damping. The bifurcation diagram from nonlinear shimmy damper model is moreaccurate than bifurcation diagram from linear shimmy damper model. An example shows the accuracyof the nonlinear shimmy damper model. Another example shows more accurate stability region usingpseudo arclength continuation method. The torsional mode and lateral mode are distinguished byamplitude and frequency of limit cycles. Time domain analysis and frequency analysis verify theresults.
     The numerical continuation method is proposed to analyze the effect of active shimmy control. Theresults show that active control can increase stable area in bifurcation diagram comparing withpassive control. The numerical continuation method can be used to determine the control law. Thetime domain analyses verify the effectiveness of the method. Direct fuzzy adaptive control isproposed to suppress shimmy. Simulation results show direct fuzzy adaptive control can removeshimmy vibrations caused by parameter perturbations.
     Nose Landing gear with magnetorheological shimmy damper is modeled and a semi-active controllaw is designed. The bifurcation diagrams are studied about the stable area, torsional shimmy area andlateral shimmy area. The results from semi-active control are compared with passive control and showthat semi-active control of shimmy can effectively decrease torsional shimmy region.
     Square and cubic nonlinear state feedback controllers are used on nonlinear shimmy model toinvestigate the controllability of shimmy amplitude, shimmy frequency, stable area and shimmy area.The results show that the controllers can control both shimmy amplitude and frequency, but have noeffects on either stable area or shimmy area.
引文
[1] Norman S. Currey. Aircraft landing gear design: principles and practices [M]. Washington, D.C.:American Institute of Aeronautics and Astronautics,1988.
    [2] Editorial Staff. Landing gear topped list of aircraft systems involved in accidents during35-yearperiod [J].1994,
    [3] Hpy Hitch. Aircraft ground dynamics [J]. Vehicle System Dynamics,1981,10(4):319-332.
    [4] I.J.M. Besselink. Shimmy of Aircraft Main Landing Gears,[博士学位论文][D]. Deflt: DelftUniversity of Technology,2000.
    [5] Phanikrishna Thota, Bernd Krauskopf, Mark Lowenberg. Bifurcation analysis of nose landing gearshimmy with lateral and longitudinal bending [J]. Journal of Aircraft2009,47(1):87-95.
    [6]诸德培.摆振理论及防摆措施[M].北京:国防工业出版社,1983.
    [7]顾宏斌.飞机地面运行的综合仿真研究,[博士学位论文][D].南京:南京航空航天大学,1999.
    [8] E. Hoffman, Experiences in fight operations [R]. Berlin: NACA,1954.
    [9] Max Gamon, Tom Mahone, Active Shimmy Control System [R]. California: Lockheed-CaliforniaCompany,1975.
    [10] John Glaser, George Hrycko, Landing gear shimmy-De Havilland's experience [R]. Banff: AGARD,1995.
    [11] Shun Hong Long. Active control of shimmy oscillation in aircraft landing gear,[硕士学位论文][D].Concordia: Concordia University,2007.
    [12] Thai Hoang Huynh, Gaétan Pouly, Jean Philippe Lauffenburger, et al. Active shimmy damping usingdirect adaptive fuzzy control [M]. The International Federation of Automatic Control. Seoul, Korea.2008.
    [13] Gaetan Pouly, Thai Hoang Huynh, Jean Philippe Lauffenburger, et al. Indirect fuzzy adaptive controlfor active shimmy damping; proceedings of the The International Federation of Automatic Control,Seoul,2008[C].
    [14] Arthur Kantrowitz, Stability of castering wheels for aircraft landing gears [R]. Langley: LangleyResearch Center,1937.
    [15] H.Fromm, Brief report on the history of the theory of wheel shimmy [R]. Stuttgart: NACA,1941.
    [16] B. Von Schlippe, R. Dietrich, Shimmying of a Pneumatic Wheel [R]. Washington: NACA,1954.
    [17] W.J. Moreland. The story of shimmy [J]. Journal of the Aeronautical Sciences,1954,21(12):793–808.
    [18] R.F. Smiley. Evaluation and extension of linearized theories for tire motion and wheel shimmy,[硕士学位论文][D]. Virginia: University of Virginia,1955.
    [19] Robert F. Smiley, Correlation, evaluation, and extension of linearized theories for tire motion andwheel shimmy [R]. Virginia: Langley Research Center,1956.
    [20] Robert F. Smiley, Some considerations of hysteresis effects on tire motion and wheel shimmy [R].Virginia: Langley Research Center,1957.
    [21] R.F. Smiley, Walter B. Horne, Mechanical Properties of Pneumatic Tires with Special Reference toModern Aircraft Tires [R]. Virginia: Langley Research Center,1960.
    [22] Christian Bourcier De Carbon, Analytical Study Of Shimmy Of Airplane Wheels [R]. Washington:NACA,1952.
    [23] R.J. Black, An Experimental and Theoretical Study of the Effects of Service Variables on the DynamicStability of Airplane Nose Landing Gear Shimmy [R]. Indiana: Bendix Products Aerospace Division,1962.
    [24] R.L. Collins, R.J. Black. Tire parameters for landing gear shimmy studies [J]. Journal of Aircraft,1969,6(3):252-258.
    [25] R. J. Black. Comments on "Synthesis of Tire Equations for Use in Shimmy and Other DynamicStudies"[J]. Journal of Aircraft,1971,9(4):318-319.
    [26] R.J. Black, Realistic evaluation of landing gear shimmy stabilization by test and analysis [R]: SAE,1976.
    [27] R.J. Black. Application of tire dynamics to aircraft landing gear design analysis [J].1982,
    [28] R; Dietz Harling, O, Experiments on a tail-wheel shimmy [R]: NASA (non Center Specific),1940.
    [29] Walter B. Howard, A full-scale investigation of the effect of several factors on the shimmy ofcantering wheels [R]. Washington: Langley Research Center,1940.
    [30] Boeckh, Determination of the elastic constants of airplane tires [R]. Washington: NASA1954.
    [31]Jocelyn I. Pritchard, An Overview Of Landing Gear Dynamics [R]. Virginia: Langley Research Center,1999.
    [32] Denis J. Feld, An Analytical Investigation of Damping of Landing gear shimmy [R]. California: SAE,1990.
    [33] N.P.Plakhtienko and B.M. Shifrin. Critical shimmy speed of nonswiveling landing gear wheels subjectto lateral loading [J]. International Applied Mechanics,2006,
    [34] P Woerner, O Noel. Influence of nonlinearity on the shimmy behaviour of landing gear [J]. AGARDR-800,1995,
    [35] E. Esmailzadeh and K.A. Farzaneh. Shimmy Vibration Analysis of Aircraft Landing Gears [J]. Journalof Vibration and Control,1999,
    [36] H B Pacejka. The wheel shimmy phenomenon [D]: Delft University of Technology,1966.
    [37] V.C.Tsien R.W.Peery. Mathematical Analysis Of Co-rotating Nose Gear Shimmy Phenomenon [J].Journal of the aeronautical sciences,1962,
    [38] G. Stépán. Chaotic Motion of Wheels [J]. Vehicle System Dynamics,1991,20(6):341-345.
    [39] G. Stepan. Delay, nonlinear oscillations and shimmying wheels [J]. Applications of Nonlinear andChaotic Dynamics in Mechanics,1998,
    [40] G Stepan D Takacs. Experiments on quasi-periodic wheel shimmy [M]. Proceedings of the ASME2007International Design Engineering Technical Conferences&Computers and Information inEngineering Conference.2007.
    [41] Goodwine Bill (1); Zefran Milos (2);. Feedback stabilization of a class of unstable nonholonomicsystems [J]. Journal of dynamic systems, measurement, and control ISSN0022-0434CODENJDSMAA2002,
    [42] M. S. Fallah, S. H. Long, W. F. Xie, et al. Robust Model Predictive Control of Shimmy Vibration inAircraft Landing Gears [J]. Journal of Aircraft,2008,45(6):1872-1880.
    [43] B. Sateesh and D. K. Maiti. Lateral stability of a typical nose landing gear using torsionalmagneto-rheological (MR) damper [J]. India Conference,2008INDICON2008Annual IEEE Volume2,11-13Dec2008Page(s):553-5582008,
    [44] Niranjan Sura, S. Suryanarayan. Lateral Stability of Aircraft Nose-Wheel Landing Gear withClosed-Loop Shimmy Damper [J]. Journal of Aircraft2009,46(2):505-509.
    [45] R.D. Cavanaugh C.E. Crede. Feasibility study of an active vibration isolator for a helicopter rotor [J].WADC58-186,1958,
    [46] A.R. Dewispelare, R.P. Stager. Investigation of landing gear alternatives for high performance aircraft;proceedings of the AIAA Aircraft Systems and Technology Conference, Ohio,1981[C].
    [47]贾玉红,何庆芝,杨国柱.主动控制起落架滑行性能分析[J].航空学报1999,20(006):545-548.
    [48]刘晖,顾宏斌,吴东苏.半主动控制起落架缓冲性能初步研究[J].航空学报,2006,27(5):864-868.
    [49] G.X.Li. Modelling And Analysis Of A Dual-Wheel Nosegear:Shimmy Instability And Impact Motions[J].1993,
    [50] Thai-Hoang Huynh Ga′Etan Pouly, Jean-Philippe Lauffenburger,Michel Basset. Indirect fuzzyadaptive control for active shimmy damping [M]. The International Federation of Automatic Control.2008.
    [51] Huynh Thai-Hoang, Gaétan Pouly, Jean-Philippe Lauffenburger, Michel Basset. Active shimmydamping using direct adaptive fuzzy control [M]. The International Federation of Automatic Control.Seoul, Korea.2008.
    [52] Somieski Gerhard. Shimmy analysis of a simple aircraft nose landing gear model using differentmathematical methods [J].1997,
    [53] Gordon.J. Perturbation analysis of nonlinear wheel shimmy [J]. J of Aircraft,2002,
    [54]J X Zhou, L Zhang. Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f.non-linear wheel shimmy system with combined Coulomb and quadratic damping [J]. Journal ofSound and Vibration,2005,
    [55] Bernd Krauskopf and Mark Lowenberg Phanikrishna Thota. Interaction of torsion and lateralbending in aircraft nose landing gear shimmy [J]. Nonlinear Dynamics2008,
    [56] Dénes Takács, Gábor Stépán, S. John Hogan. Isolated large amplitude periodic motions of towed rigidwheels [J]. Nonlinear Dynamics,2008,52(1):27-34.
    [57]张伟,杨绍普,叶敏, et al.非线性系统的周期振动和分岔[M].科学出版社,2002.
    [58]刘延柱,陈立群.非线性振动[M].高等教育出版社,2001.
    [59]黄润生,黄浩.混沌及其应用[M].武汉:武汉大学出版社,2005.
    [60]王学军.飞机前轮摆振稳定性分析,[博士学位论文][D].南京:南京航空航天大学,1991.
    [61]顾宏斌.飞机机轮摆振的数字仿真[J].航空学报,2001,22(4):
    [62] R. L. Collins. Frequency Response of Tires Using the Point Contact Theory [J]. J of Aircraft,1971,
    [63] R L Collins. Theories on the Mechanics of Tires and Their Applications to Shimmy Analysis [J].Journal of Aircraft,1971,8(4):271-277.
    [64] J.L. Lai F.H. Ho. Parametric shimmy of a nosegear [J]. Journal of Aircraft,1970,
    [65] J.T.Gordon. An asymptotic method for predicting amplitudes of nonlinear wheel shimmy(数据)[M].AIAA.1977.
    [66] W.A. Podgorski, A.I. Krauter. The wheel shimmy problem: Its relationship to wheel and roadirregularities [J]. Vehicle System Dynamics,1975,4(1975):9-41.
    [67] D T Grossman. F15nose landing gear shimmy, taxi test and correlative analysis [M]. Proceedings ofthe Aerospace Congress and Exposition. SAE Technical Paper Series801239.1980.
    [68] Bernd Krauskopf Phanikrishna Thota, Mark Lowenberg. Nonlinear analysis of the influence of tireinflation pressure on nose landing gear shimmy [M]. AIAA Modeling and Simulation TechnologiesConference. Chicago, Illinois.2009.
    [69] C.E. Crede, Feasibility Study of an Active Vibration Isolator for a Helicopter Rotor [R]: WADC,1958.
    [70]汪小华.磁流变液阻尼器的建模和控制方法研究,[硕士学位论文][D]:中国科学技术大学,1999.
    [71] Andrzej Milecki. Investigation and Control of Magnetorheological Fluid Dampers [J]. InternationalJournal of Machine Tools and Manufacture,2001,41(3):
    [72] S.J. Dyke, B.F. Spencer Jr. A Comparison of Semi-Active Control Strategies for the MR Damper;proceedings of the Proceedings of the IASTED International Conference, The Bahamas,1997[C].
    [73]欧进萍.结构振动控制—主动,半主动和智能控制[M].北京:科学出版社,2003.
    [74] John P. Medzorian. An investigation of landing gear shimmy: Tire models, Tire test methodologies,analysis and parameter studies [J]. SAE,1999,
    [75]李胜.分岔理论在汽车转向轮摆振机理及其控制策略研究中的应用,[博士学位论文][D].长春:吉林大学,2005.
    [76] L.X. Wang. Stable adaptive control of nonlinear systems [J]. IEEE Transactions on Fuzzy Systems,1993,1(2):146-155.
    [77] L.X. Wang. Stable adaptive fuzzy controllers with application to invertedpendulum tracking [J]. IEEETransactions on Systems, Man and Cybernetics, Part B,1996,26(5):677-691.
    [78] L.X. Wang. Adaptive fuzzy systems and control: design and stability analysis [M]. NJ, USA:Prentice-Hall,1994.
    [79] L.X. Wang. A course in fuzzy systems and control [M]. NJ, USA: Prentice-Hall,1996.
    [80] W.E. Krabacher, A review of aircraft landing gear dynamics [R]. Ohio: Wright Laboratory,1995.
    [81]何亚东,黄金枝,何玉敖.智能磁流变MR阻尼器半主动控制的研究[J].振动工程学报,2003,16(2):198-202.
    [82] Sameer Marathe, Farhan Gandhi, K W Wang. Helicopter blade response and aeromechanical stabilitywith a magnetorheological fluid-based lag damper [J]. J of Intell Mat Systems Structures,1998,9(4):272-282.
    [83]夏品奇,岳海龙.磁流变阻尼器性能及振动控制[J].航空动力学报,2004,19(3):305-309.
    [84] S Nagarajaiah Bf Spencer Jr. State of the Art of Structural Control [J]. Journal of StructuralEngineering,2003, Volume129, Issue7, pp.845-856(
    [85] L.M. Jansen, S.J. Dyke. Semiactive control strategies for MR dampers: comparative study [J]. Journalof Engineering Mechanics,2000,126(8):795-803.
    [86]张志勇,韩旭,钟志华.磁流变阻尼器冲击载荷下动态响应峰值建模与分析[J].中国机械工程,2008,19(23):2807-2811.
    [87] Hp Gavin Nh Mcclamroch. closed loop structural control using electrorheological dampers [M].American Control Conference. Seattle, WA, USA.1995.
    [88]闫云聚,姜节胜,任礼行.智能材料结构及在振动控制中的应用研究评述和展望[J].西北工业大学学报,2000,18(1):1-6.
    [89] Eyad H. Abed, Jyun-Horng Fu. Local feedback stabilization and bifurcation control, I. Hopfbifurcation [J]. Systems&Control Letters,1986,7(1):11-17.
    [90] Eyad H Abed, Jyun-Horng Fu. Local feedback stabilization and bifurcation control, II. Stationarybifurcation [J]. Systems&Control Letters,1987,8(5):467-473.
    [91] E.H. Abed, H.O. Wang, R.C. Chen. Stabilization of period doubling bifurcations and implications forcontrol of chaos [J]. Physica D: Nonlinear Phenomena,1994,70(1):154-164.
    [92] Chen G. Controlling Hopf bifurcations: The Continuous Case [J].1999,
    [93] Chen G. Controlling Hopf Bifurcations: The Discrete Case [J].2000,
    [94] E.H. Abed, H.O. Wang. Control of bifurcation and chaos [M]. Boca Raton: CRC Press,1995.
    [95] Dong Chen, H.O. Wang, Guanrong Chen. Anti-control of Hopf bifurcation through washout filters;proceedings of the37th IEEE Conference on Decision and Control, Tampa,1998[C].3040-3045.
    [96] Jorge L. Moiola, Guanrong Chen. Hopf bifurcation analysis: A Frequency Domain Approach [M].Singapore: World Scientific,1996.
    [97]R. Genesio, A. Tesi, H.O. Wang, et al. Control of period doubling bifurcations using harmonic balance;proceedings of the32nd IEEE Conference on Decision and Control, San Antonio,1993[C].492-497.
    [98] Daniel W. Berns, Jorgel L. Moiola, Guanrong Chen. Feedback control of limit cycle amplitudes forma frequency domain approach [J]. Automatica,1998,34(12):1567-1573.
    [99] Kang W. Bifurcation and normal form of nonlinear control systems [J].1998,
    [100]符文彬.非线性动力系统的分岔控制研究,[博士学位论文][D].长沙:湖南大学,2004.
    [101] Yu Pei, Chen Guanrong. Hopf bifurcation control using nonlinear feedback with polynomialfunctions [J]. International journal of bifurcation and chaos in applied sciences and engineering,2004,14(5):1683-1704.
    [102] F. Verduzco, J. Alvarez. Hopf bifurcation control: a new approach [J]. Systems and Control Letters,2006,55(6):437-451.
    [103] Liu Z R. Hybrid control of bifurcation in continuous nonlinear dynamical systems coupled chaoticsystems [J].2005,
    [104] Wang Hsin Hsiung, M. Krstic. Extremum seeking for limit cycle minimization [J]. AutomaticControl,2000,45(12):2432-2436.
    [105] Lee Y S. Suppression of limit cycle oscillations in the van der Pol oscillator by means of passivenon-liner energy sinks [J].2006,
    [106] Tang Jiashi, Chen Zili. Amplitude control of limit cycle in van der Pol system [J]. InternationalJournal of Bifurcation and Chaos2006,16(2):487-495.
    [107] X. F. Wang, G. R. Chen, X. H. Yu. Anti-control of continuous-time systems by time-delay feedback[J]. Chaos,2000,10(4):9.
    [108] B.E. Ydstie, M. P. Golden. Chaotic dynamics in adaptive systems; proceedings of the IFACWorkshop on Robust Adaptive Control Newcastle,1998[C]. National conference publication.
    [109] H.O. Wang, E.H. Abed. Robust control of period doubling bifurcations and implications for controlof chaos; proceedings of the33rd IEEE Conference on Decision and Control, Lake Buena Vista,1994
    [C]. IEEE,1994.
    [110] Richard H. Rand. An analytical approximation for period-doubling following a Hopf bifurcation [J].Mechanics Research Communications,1989,16(2):117-123.
    [111] A. H. Nayfeh, B. Balachandran. Motion near a Hopf bifurcation of a three dimensional system [J].Mechanics research communications,1990,17(4):191-198.
    [112] M. Belhaq, M. Houssni. Symmetry-breaking and first period-doubling following a Hopf bifurcationin a three dimensional system [J]. Mechanics research communications,1995,22(3):221-231.
    [113] M. Belhaq, M. Houssni, E. Freire, et al. Analytical prediction of the two first period-doublings in athree dimensional system [J]. International Journal of Bifurcation and Chaos,2000,10(6):1497-1508.
    [114] M. Belhaq, M. Houssni, E. Freire, et al. Asymptotics of homoclinic bifurcation in a three dimensionalsystem [J]. Nonlinear Dynamics,2000,21(2):135-155.
    [115]沈建和.非线性系振动系统的分岔、混沌及相关控制,[博士学位论文][D].广州:中山大学,2008.