高强电磁脉冲源及肿瘤细胞电穿孔效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文讨论了三个方面的研究内容:为研究不同波形参数的电脉冲对肿瘤细胞的电穿孔效应,设计并研制了脉宽从ps-ns、偏压从100-101kV的高压脉冲源;为进一步探索电磁脉冲的电穿孔效应,设计了辐射瞬态电磁脉冲的超宽带聚焦天线;采用细胞均匀分层介质模型及其等效电路,结合已有实验文献的相关数据,定量分析了肿瘤细胞发生外膜、内膜电穿孔效应的波形参数条件,并对应开展了相关医学验证性实验。
     采用IGBT模块,设计并研制了脉宽300-800ns、电压0-5kV连续可调、重频1-400Hz连续可调、输出脉冲为高斯波形的电脉冲源,主要用于肿瘤细胞外膜穿孔等医学实验研究;采用MOSFET开关管,设计并研制了20ns高斯上升沿、40-200ns指数下降沿、分档可调(半峰值脉宽50-250ns分档可调)、幅值0-1kV连续可调、重复频率0-5kHz连续可调的纳秒脉冲源;采用基于Blumlein形成线的光控光电导开关(Photoconductive Semiconductor Switches, PCSS),设计并研制了脉宽1-5ns可调、电压1-10kV连续可调、重频1-1kHz连续可调的高压脉冲源;采用雪崩三极管,设计并研制了基于Marx电路的高压脉冲源,输出电脉冲宽度0.2-10ns可调、输出电压1.2kV、重频1-10kHz可调。通过上述研制的四种不同脉冲源,实现了脉冲宽度从亚纳秒到微秒量级、偏压从1-10kV的各种瞬态电脉冲输出。
     在电磁脉冲的电穿孔效应的研究方面,主要开展了基于电磁波束聚焦的电磁信号源设计工作。包括采用椭球反射面的蝶形天线及天线阵的电磁脉冲信号源设计以及用龙伯透镜聚焦抛物面天线电磁波束的电磁脉冲信号源设计。
     将肿瘤细胞的细胞膜、细胞质、细胞核膜、染色质分别看作不同电参数(r,)的均匀分层介质,各细胞组分在瞬态电脉冲作用下被看作为由不同电阻、电容构成的等效电路;依据电路理论,可定量分析不同电脉冲参数下电路元器件的端压,结合文献报道细胞膜、细胞核膜发生电穿孔的电压条件,得到细胞膜、细胞核膜发生电穿孔的电脉冲波形参数阈值条件。
     考虑到悬浮组织液中瞬态电场分布对细胞电穿孔效应的影响,采用CST电磁仿真软件,对不同形状、容量、针状电极尺寸及相对位置等不同实验条件情形开展了系统的仿真计算,为优化实验方案提供参考数据;利用所研制的瞬态脉冲信号源,开展了电脉冲诱导HeLa细胞坏死、凋亡的相关医学实验研究;并定量分析了脉宽与细胞凋亡之间的关系。
Three subjects are discussed in this dissertation. To study the electroporationeffects of electric pulses with different waveform parameters, high voltage pulsegenerators are designed and developed, which are capable of generating ps-ns width,100-101kV amplitude pulses. For further exploration of the electroporation effects of theelectromagnetic pulses, ultra-wideband, focused aperture antennas are designed, whichare capable of radiating transient electromagnetic pulses. Adopting the multilayerdielectric model and the equivalent circuit, the waveform parameters with which electricpulses will perforate the plasma membrane or nuclear envelope are quantitativelyanalyze by using some previous experiments data. And related medical experiments arecarried out.
     With IGBT module, a pulsed generator capable of producing high voltage Gaussianpulses with width300-800ns, continual adjustable amplitude0-5kV and continualadjustable repetition frequency rate1-400Hz is developed to enable research theelectroporation of plasma membrane in medical experiments. Using MOSFET, a pulsegenerator is developed, which is capable of producing high voltage pulses withGaussian rising edge20ns, step adjustable exponential falling edge40-200ns(The stepadjustable half-peak width is50-250ns), continual adjustable amplitude0-1kV, andcontinual adjustable repetition frequency rate0-5kHz. Based on Blumlein forming lineand Photoconductive Semiconductor Switches (PCSS), a high voltage pulse generator isdesigned and developed. It can produce pulses with adjustable width1-5ns, continualadjustable amplitude1-10kV and continual adjustable repetition frequency rate1-1kHz.With avalanche transistors, a pulse generator based on Marx circuit is designed anddeveloped, which can generate adjustable0.2-10ns width,1.2kV amplitude pulses of1-10kHz continual adjustable repetition frequency rate. So, transient electric pulseswith width from sub-nanosecond to microsecond, amplitude from1-10kV are obtainedby the above four pulse generators.
     The electromagnetic pulse generators based on focusing electromagnetic beam aredesigned in the research aspect of electromagnetic pulses’ electroporation effect. One is developed adopting a bow-tie antenna with an elliptical reflector or bow-tie antennaarray, and the other is desiened with a parabolic antenna using a Luneberg-lens focusingelectromagnetic wave.
     The cell membrane, cytoplasm, nuclear envelope and chromatin of tumor cells areconsidered as lateral homogenous layered medium with different electricparameters(r,), and each cell components is regarded as a equivalent circuit composedof different resistance and capacitance if transient electric pulses are applied. Based oncircuit theory, the voltages on circuit components can be quantitatively analyze whenelectric pulses with different waveform parameters applies on them. The threshold ofwaveform parameters with which electric pulses will perforate the plasma membrane ornuclear envelop are obtained, combined with voltage condition of electroporationreported in previous literature.
     Considering the influence of transient pulsed electric field distribution onelectroporation effect in suspension, the system simulation calculation is carried outunder different experiment conditions as pulse shapes, capacity, size of needleelectrodes, and relative position, which provides reference data for optimization ofexperimental plan. The apoptosis or necrosis of HeLa induced by nanosecond electricpulses is studied. The relationship between pulse duration and apoptosis isquantitatively analyzed.
引文
[1].黄俊辉,廖遇平,曹培国.临床肿瘤学教程.长沙:湖南科学技术出版社,2006,1-2
    [2].韩雪松,韩雪梅,罗前来.美国癌症发病率的种族和性别差异分析(1992-2005).中国优生优育,2008,14(S):62-71
    [3].沈镇宙.肿瘤外科手术学.南京:江苏科学技术出版社,2001,3-8
    [4].王文福.肿瘤学.北京,人民军医出版社,2000,59-60
    [5].金育忠,冯作明.新编抗肿瘤药临床应用手册.兰州:甘肃科学技术出版社,2008,18-21
    [6].李鼎九,胡自省,钟毓斌.肿瘤热疗学.郑州:郑州大学出版社,2003,63-67
    [7].宋国丽,苏海静,张小云.不同强度的静磁场对K562细胞的作用.中国康复医学杂志,2009,24(3):204-207
    [8].张卓立,李俊峡.强恒磁场对大鼠移植癌细胞凋亡的影响.中华物理医学与康复杂志,2001,23(I):61-62
    [9].张沪生,杜碧,张新晨等.磁场抑制肿瘤和影响细胞跨膜电位的探讨.武汉大学学报(自然科学版),1998,44(4):506-508
    [10].王可,张沪生,郑从义等.超低频脉冲梯度磁场治疗肿瘤及其机理的探讨.武汉大学学报(理学版),2001,47(2):222-224
    [11].张丹英,许正平,姜槐等.1800MHz射频电磁场对中国仓鼠肺成纤维细胞DNA损伤的影响.中华预防医学杂志,2006,40(3):149-152
    [12].张丹英,许正平,姜槐等.1800MHz射频电磁场对人乳腺癌细胞蛋白质表达的影响.中华预防医学杂志,2006,40(3):153-158
    [13].马艳,刘琦,李洁等.脉冲强磁场联合姜黄素对诱导膀胱肿瘤细胞BIU-87凋亡的影响.中国康复,2010,25(5):332-333
    [14].夏纪筑,丁炎,赖春冬等.高强度聚焦超声治疗H22肝癌后荷瘤鼠淋巴细胞杀伤活性的变化.中国超声医学杂志,2010,26(4):297-299
    [15].邹文兵,牛陵川,向理科等.高强度聚焦超声治疗兔乳腺移植瘤的病理变化.重庆医科大学学报,2010,35(6):829-832
    [16].李秋洋,周晓东,罗文等.高强度聚焦超声治疗及控制兔肝VX2肿瘤发展的实验研究.中国超声医学杂志,2008,24(5):395-398
    [17].陈照阳,吕军,胡卫列等.高强度聚焦超声治疗对前列腺癌患者机体免疫功能的影响.广东医学,2008,29(5):783-785
    [18].谢勋鹏,冉立峰,伍烽等.高强度聚焦超声治疗后荷瘤鼠的免疫变化及特异性抗肿瘤作用.中国免疫学杂志,2008,24(4):320-323
    [19].高远,孙静,冯军等.高强度聚焦超声治疗对胰腺癌患者外周血免疫细胞的影响.肿瘤,2009,29(5):490-492
    [20].田辉,辛朝阳,程建军等.高强度聚焦超声治疗子宫肌瘤32例.解放军医药杂志(原《华北国防医药》),2011,23(4):61
    [21].张喆.高强度聚焦超声治疗原发性肝癌术后10年门诊随访现状.检验医学与临床,2011,8(16):1971-1972
    [22].许涛,景红霞,曹凤军等.高强度聚焦超声治疗腹部浅表转移性恶性肿瘤.临床肿瘤学杂志,2011, l6(1):61-64
    [23].金成兵,冉立峰,杨炜等. HIFU联合立体定向放疗治疗肝脏恶性肿瘤的初步临床观察.中国超声医学杂志,2011,27(7):659-662
    [24].郭林,尹海燕,陈杏初.高强度聚焦超声联合辅助化疗治疗乳腺癌的疗效观察.医学临床研究,2011,28(7):1371-1372
    [25].孙冬丽,陈爱华.直流电疗法用于恶性肿瘤(综述).中国康复,2001,16(4):239-240
    [26]. B. Nordenstr m. Preliminary clinical trials of electrophoretic ionization in the treatment ofmalignant tumors. IRCS. Med. Sci.,1978,6:537-540
    [27]. B. Nordenstr m. Biologically closed electric circuits. Stockholm: Nordic medicalpublications.1983,26
    [28]. L. Samuelsson, I. L. Lamm, C. E. Mercke, et al. Electrolytic tissue destruction and externalbeam irraidation of the lung: an experimental and clinical investigation. Acta. Radiol.Diagn(Stockh).,1985,28(5):521-524
    [29].辛育龄,权宽宏,宋允卿等.电化学治疗恶性肿瘤的临床效果.中华肿瘤杂志,1991,13(6):467-469
    [30].宋之乙,辛育龄,李开华等.直流电治疗恶性肿瘤的研究.中华实验外科杂志,1991,8(2):63-64
    [31].李朝晖,王佩,赵连珠等.直流电针治疗大鼠实验性恶性肿瘤的疗效观察.针刺研究,1998,23(2):149-152
    [32].田锋,辛育龄.直流电导向阿霉素治疗Lewis肺癌疗效观察.中华实验外科杂志,1996,13(6):340-341
    [33].寿延宁,辛育龄,赵天德等.直流电联合温热杀伤肺癌培养细胞的实验研究.白求恩医科大学学报,1998,24(5):466-468
    [34]. L. F. Glass, M. L. Pepine, N. A. Fenske, et al. Bleomycin-mediated electrochemotherapy ofbasal cell carcinoma. J. Am. Acad. Dermatd.,1996,34(1):82-86
    [35]. L. F. Glass, M. L. Pepine, N. A. Fenske, et al. Bleomycin-mediated electrochemotherapy ofmetastatic melanoma. Arch. Dermatol.,1996,132(11):1353-1357
    [36]. L. M. Mir. Bases and rationale of the electrochemotherapy. Eur. J. Cancer. Suppl.,2006,4(11):38-44
    [37]. G. Ser a, M. ema ar, D. Miklav i. Antitumor effectiveness of electrochemotherapy withcis-diamminedichloroplatinum(II) in mice. Cancer. Res.,1995,55:3450-3455
    [38]. R. Stimpfli. Reversible electrical breakdown of the excitable membrane of a Ranvier node. An.Acad. Brasil. Ciens.,1958,30:57-63
    [39]. E. Neumann, K. Rosenbeck. Permeability changes induced by electric impulses in vesicularmembranes. J. Membrane. Biol.,1972,10:279-290
    [40]. K. Kinosita. Jr, T. Y. Tsong. Formation and resealing of pores of controlled sizes in humanerytbrocyte membrane. Nature,1977,268:438-441
    [41]. K. Kinosita. Jr, T. Y. Tsong. Survival of sucrose-loaded erythrocytes in circulation. Nature,1978,272:258-260
    [42]. K. Kinosita. Jr, T. Y. Tsong. Voltage induced conductance in human erythrocyte membranes.Biochim. Biophys. Acta.,1979,554(2):479-497
    [43]. R. Benz, F. Beckers, U. Zimmermann. Reversible electrical breakdown of lipid bilayermembranes: A charge-pulse relaxation study. J. Membrane. Biol.,1979,48:181-204
    [44]. R. Benz, U. Zimmermann. The resealing process of lipid bilayers after reversible electricalbreakdown. Biochim. Biophys. Acta.,1981,640:169-178
    [45]. E. Neumann, A. E. Sowers, C. A. Jordan. Electroporation and electrofusion in cell biology.New York: Plenum Press,1989:111-127
    [46]. T. Y. Tsong. Electroporation of cell membranes. Biophys. J.,1991,60:297-306
    [47]. J. C. Weaver. Electroporation: A general phenomenon for manipulating cells and tissue. J. Cell.Biochem.,1993,51(4):426-435
    [48]. J. C. Weaver. Electroporation in cells and tissues: A biophysical phenomenon due toelectromagnetic fields. Radio. Sci.,1995,30(1):205-221
    [49]. J. C. Weaver, Y. A. Chizmadzhev. Theory of electroporation: A review. Bioelectrochemistry andBioenergetics,1996,41(2):135-160
    [50]. B. C. Bryan, C. J. Andrews, R. A. Hurley, et al. Electrical injury, part I: mechanisms. J.Neuropsych. Clin. N.,2009,21(3):241-244
    [51]. G. Ser a, D. Miklav i, M. ema ar, et al. Electrochemotherapy in treatment of tumours. Eur. J.Surg. Oncol.,2008,34(2):232-240
    [52]. G. Ser a, M. ema ar, C. S. Parkins, et al. Tumour blood flow changes induced by applicationof electric pulses. Eur. J. Cancer.,1999,35(4):672-677
    [53]. G. Ser a, M. ema ar, D. Miklav i, et al. Tumor blood flow modifying effect ofelectrochemotherapy with bleomycin. Anticancer. Res.,1999,19:4017-4022
    [54]. L. M. Mir, P. Devauchelle, F. Quintin-Colonna, et al. First clinical trial of cat soft tissuesarcomas treatment by electrochemotherapy. Br. J. Cancer.,1997,76(12):1617-1622
    [55]. N. Tozon, G. Ser a, M. ema ar. Electrochemotherapy: potentiation of local antitumoureffectiveness of cisplatin in dogs and cats. Anticancer. Res.,2001,21(4A):2483-2486
    [56]. M. P. Rols, Y. Tamzali, J. Teissie. Electrochemotherapy of horses: a preliminary clinical report.Bioelectrochemistry,2002,55(1-2):101-105
    [57]. L. M. Mir, M. Belehradek, C. Domenge, et al. Electrochemotherapy, a new antitumor treatment:first clinical trial. C. R. Acad. Sci. III,1991,313(13):613-618
    [58]. G. Ser a. The state-of-the-art of electrochemotherapy before the ESOPE study; advantages andclinical uses. Eur. J. Cancer.,2006,4(11):52-59
    [59]. M. Marty, G. Ser a, J. R. Garbay, et al. Electrochemotherapy-an easy, highly effective and safetreatment of cutaneous and subcutaneous metastases: results of ESOPE (European StandardOperating Procedures of Electrochemotherapy) study. EJC. Suppl.,2006,4(11):3-13
    [60]. P. Quaglino, C. Mortera, S. Osella-Abate, et al. Electrochemotherapy with intravenousbleomycin in the local treatment of skin melanoma metastases. Ann. Surg. Oncol.,2008,15(8):2215-2222
    [61]. L. M. Mir, J. Gehl, G. Ser a, et al. Standard operating procedures of the electrochemotherapy:instructions for the use of bleomycin or cisplatin administered either systemically or locallyand electric pulses delivered by the Cliniporator by means of invasive or non-invasiveelectrodes. EJC. Suppl.,2006,4(11):14-25
    [62]. V. Todorovic, G. Ser a, K. Flisar, et al. Enhanced cytotoxicity of bleomycin and cisplatin afterelectroporation in murine colorectal carcinoma cells. Radiol. Oncol.,2009,43(3):264-273
    [63]. D. Miklav i, M. Snoj, A. Zupanic, et al. Towards treatment planning and treatment ofdeep-seated solid tumors by electrochemotherapy. Biomed. Eng. Online.,2010,9(10):1-12
    [64]. I. Edhemovic, E. M. Gadzijev, E. Brecelj, et al. Electrochemotherapy: a new technologicalapproach in treatment of metastases in the liver. Technol. Cancer. Res. T.,2011,10(5):475-485
    [65]. C. Bertacchini, P. M. Margotti, E. Bergamini, et al. Design of an irreversible electroporationsystem for clinical use. Technol. Cancer. Res. T.,2007,6(4):313-320
    [66]. B. Mali, T. Jarm, S. Corovic, et al. The effect of electroporation pulses on functioning of theheart. Med. Biol. Eng. Comput.,2008,46(8):745-757
    [67]. M. R. Prausnitz, V. G. Bose, R. Langer, et al. Electroporation of mammalian skin: a mechanismto enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA.,1993,90:10504-10508
    [68]. M. R Prausnitz. A practical assessment of transdermal drug delivery by skin electroporation.Adv. Drug. Deliver. Rev.,1999,35(1):61-76
    [69]. J. Gehl. Electroporation: theory and methods, perspectives for drug delivery, gene therapy andresearch. Acta. Physiol. Scand.,2003,177:437–447
    [70]. T. Niidome, L. Huang. Gene therapy progress and prospects: nonviral vectors. Gene Therapy,2002,9(24):1647-52
    [71]. D. J. Wells. Gene therapy progress and prospects: electroporation and other physical methods.Gene Therapy,2004,11:1363–1369
    [72]. A. Ghazala, K. H. Schoenbach. Biofouling prevention with pulsed electric fields. IEEE T.Plasma. Sci.,2000,28(1):115-121
    [73]. K. H. Schoenbach, S. J. Beebe, E. S. Buescher. Intracellular effect of ultrashort electrical pulses.Bioelectromagnetics,2001,22(6):440-448
    [74]. A. J. H. Sale, A. Hamilton. Effects of high electric fields on microorganisms-I: Killing ofbacteria and yeasts. Biochem. Biophys. Acta.,1967,148(3):781-788
    [75]. W. A. Hamilton, A. J. H. Sale. Effects of high electric fields onmicroorganisms-II: Killing ofbacteria and yeasts. Biochem. Biophys. Acta.,1967,148(3):789-800
    [76]. A. J. H. Sale, W. A. Hamilton. Effects of high electric fields on microorganisms-III: Lysis oferythrocytes and protoplasts. Biochem. Biophys. Acta.,1968,163(1):37-43
    [77]. P. C.Wouters, J. P. P. M. Smelt. Inactivation of microorganizms with pulsed electric fields:potential for food preservation. Food. Biotechnol.,1997,11(3):193-229
    [78]. S. H. Jayaram. Sterilization of liquid foods by pulsed electric fields. IEEE. Electr. Insul. M.,2000,16(6):17-25
    [79]. R. V. Davalos, L. M. Mir, B. Rubinsky. Tissue ablation with irreversible electroporation. Ann.Biomed. En.,2005,33(2):223-231
    [80]. L. Miller, J. Leor, B. Rubinsky. Cancer cells ablation with irreversible electroporation. Technol.Cancer. Res. T.,2005,4(6):699-706
    [81]. J. F. Edd, L. Horowitz, R. F. Davalos, et al. In-vivo results of a new focal tissue ablationtechnique: irreversible electroporation. IEEE. T. Bio-Med. Eng.,2006,53(5):1409-1415
    [82]. B. Rubinsky, G. Onik, P. Mikus. Irreversible electroporation: a new ablation modality-clinicalimplications. Technol. Cancer. Res. T.,2007,6(1):37-48
    [83]. E. W. Lee, C. T. Loh, S. T. Kee. Imaging guided percutaneous irreversible electroporation:ultrasound and immunohistological correlation. Technol. Cancer. Res. T.,2007,6(4):287-293
    [84]. G. Onik, P. Mikus, B. Rubinsky. Irreversible electroporation: implications for prostate ablation.Technol. Cancer. Res. T.,2007,6(4):295-300
    [85]. R. E. Neal II, R. Singh, H. C. Hatcher, et al. Treatment of breast cancer through the applicationof irreversible electroporation using a novel minimally invasive single needle electrode. Breast.Cancer. Res. Tr.,2010,123(1):295-301
    [86]. M. Pech, A. Janitzky, J. J. Wendler, et al. Irreversible electroporation of renal cell carcinoma: afirst-in-man phase I clinical study. Cardiovasc. Inter. Rad.,2011,34(1):132-138
    [87]. E. Maor, A. Ivorra, J. Leor, et al. The effect of irreversible electroporation on blood vessels.Technol. Cancer. Res. T.,2007,6(4):1-6
    [88]. A. T. Esser, K. C. Smith, T. R.Gowrishankar, et al. Towards solid tumor treatment byirreversible electroporation: intrinsic redistribution of fields and curents in tissue. Technol.Cancer. Res. T.,2007,6(4):261-274
    [89]. J. F. Edd, R. V. Davalos. Mathematical modeling of irreversible electroporation for treatmentplanning. Technol. Cancer. Res. T.,2007,6(4):275-286
    [90]. G. Narayanan. Irreversible electroporation for treatment of liver cancer. Gastroenterol Hepatol.,2011,7(5):313-316
    [91]. J. F. R. Kerr, A. H. Wyllie, A. R. Currie. Apoptosis: a basic biological phenomenon withwide-ranging implications in tissue kinetics. Br. J. Cancer.,1972,26:239-257
    [92]. S. Kumar. Caspase function in programmed cell death. Cell. Death. Differ.,2007,14(1):32-43
    [93]. M. Lamkanfi, N. Festjens, W. Declercq, et al. Caspases in cell survival, proliferation anddifferentiation. Cell. Death. Differ.,2007,14(1):44-55
    [94]. K. F. Ferri, G. Kroemer. Organelle-specific initiation of cell death pathways. Nat. Cell. Biol.,2001,3(11): E255-E263
    [95]. G. Kroemer, L. Galluzzi, P. Vandenabeele, et al. Classification of cell death: recommendationsof the nomenclature committee on cell death. Cell. Death. Differ.,2009,16(1):3-11
    [96]. W. Ren, S. J. Beebe. An apoptosis targeted stimulus with nanosecond pulsed electric fields(nsPEFs) in E4squamous cell carcinoma. Apoptosis,2011,16(4):382-393
    [97]. S. J. Beebe, P. M. Fox, L. J. Rec, et al. Nanosecond, high-intensity pulsed electric fields induceapoptosis in human cells. FASEB. J.,2003,17:1493-1495
    [98]. W. E. Ford, W. Ren, P. F. Blackmore, et al. Nanosecond pulsed electric fields stimulateapoptosis without release of pro-apoptotic factors from mitochondria in B16f10melanoma.Arch. Biochem. Biophys.,2010,497(1-2):82-89
    [99]. E. H. Hall, K. H. Schoenbach, S. J. Beebe. Nanosecond pulsed electric fields induce apoptosisin p53-wildtype and p53-null HCT116colon carcinoma cells. Apoptosis,200712(9):1721-1731
    [100]. S. J. Beebe, P. Fox, L. Rec, et al. Nanosecond pulsed electric field (nsPEF) effects on cellsand tissues: apoptosis induction and tumor growth inhibition. IEEE. T. Plasma. Sci.,30(1):286-292
    [101]. S. J. Beebe, J. White, P. F. Blackmore, et al. Diverse effects of nanosecond pulsed electricfields on cells and tissues. DNA. Cell. Biol.,2003,22(12):785-796
    [102]. R. Nuccitellia, U. Pliquetta, X. Chen, et al. Nanosecond pulsed electric fields causemelanomas to selfdestruct. Biochem. Biophys. Res. Commun.,2006,343(2):351-360
    [103]. X. Chen, J. F. Kolb, R. J. Swanson, et al. Apoptosis initiation and angiogenesis inhibition:melanoma targets for nanosecond pulsed electric fields. Pigment. Cell. Melanoma. Res.,2010,23(4):554-556
    [104]. T. R. Gowrishankar, A. T. Esser, Z. Vasilkoski, et al. Microdosimetry for conventional andsupra-electroporation in cells with organelles. Biochem. Biophys. Res. Commun.,2006,341(4):1266-1276
    [105]. R. P. Joshi, Q. Hu, K.H. Schoenbach, et al. Modeling studies of cell response to ultrashort,high-intensity electric fields implications for intracellular manipulation. IEEE. T. Plasma. Sci.,2004,32(4):1677-1686
    [106]. T. Kotnik, D. Miklavcic. Theoretical evaluation of voltage inducement on internal membranesof biological cells exposed to electric fields. Biophys. J.,2006,90(2):480-491
    [107]. A. G. Pakhomov, A. M. Bowman, B. L. Ibey, et al. Lipid nanopores can form a stable, ionchannel-like conduction pathway in cell membrane. Biochem. Biophys. Res. Commun.,2009,385(2):181-186
    [108]. A. M. Bowman, O. M. Nesin, O. N. Pakhomova, et al. Analysis of plasma membrane integrityby fluorescent detection of Tl(+) uptake. J. Membr. Biol.,2010,236(1):15-26
    [109]. K. H. Schoenbach, B. Hargrave, R. P. Joshi, et al. Bioelectric effects of intense nanosecondpulses. IEEE. T. Dielect. El. In.,2007,14(5):1088-1109
    [110]. E. S. Buescher, K. H. Schoenbach. Effects of submicrosecond, high intensity pulsed electricfields on living cells intracellular electromanipulation. IEEE. T. Dielect. El. In.,2003,10(5):788-794
    [111]. T. Kotnik, D. Miklav i. Second-order model of membrane electric field induced byalternating external electric fields. IEEE. T. Bio-Med. Eng.,2000,47(8):1074-1081
    [112]. E. C. Fear, M. A. Stuchly. Biological cells with gap junctions in low-frequency electric fields,IEEE. T. Bio-Med. Eng.,1998,45(7):856-866
    [113]. T. R. Gowrishankar, J. C. Weaver. An approach to electrical modeling of single and multiplecells. P. Natl. Acad. Sci. USA.,2003,100(6):3203-3208
    [114]. D. A. Stewart, Jr, T. R. Gowrishankar, J. C. Weaver. Transport lattice approach to describingcell electroporation: use of a local asymptotic model. IEEE. T. Plasma. Sci.,2004,32(4):1696-1708
    [115]. T. R. Gowrishankar, A. T. Esser, Z. Vasilkoski,et al. Microdosimetry for conventional andsupra-electroporation in cells with organelles. Biochem. Biophys. Res. Commun.,2006,341(4):1266-1276
    [116]. K. C. Smith, J. C. Weaver. Active mechanisms are needed to describe cell responses tosubmicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys. J.,2008,95(4):1547-1563
    [117]. A. T. Esser, K.C. Smith, T. R. Gowrishankar, et al. Mechanisms for the intracellularmanipulation of organelles by conventional electroporation. Biophys. J.,2010,98(11):2506-2514
    [118]. R. D. Blakely, L. J. DeFelice, H. C. Hartzell. Molecular physiology of norepinephrine andserotonin transporters. J. Exp. Biol.,1994,196:263-281
    [119]. R. M. Venable, Y. Zhang, B. J. Hardy, et al. Molecular dynamics simulations of a lipid bilayerand of hexadecane: an investigation of membrane fluidity. Science,1993,262(5131):223-226
    [120]. M. Tarek. Membrane Electroporation: A molecular dynamics simulation. Biophys. J.,2005,88(6):4045-4053
    [121]. R. A. B ckmann, B. L. de Groot, S. Kakorin, et al. Kinetics, statistics, and energetics of lipidmembrane electroporation studied by molecular dynamics simulations. Biophys. J.,2008,95(4):1837-1850
    [122]. Q. Hu, R. P. Joshi, K. H. Schoenbach. Simulations of nanopore formation andphosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashortelectric pulse. Phys. Rev. E.,2005,72(3Pt1):031902
    [123]. Q. Hu, S. Viswanadham, R. P. Joshi, et al. Simulations of transient membrane behavior incells subjected to a high-intensity ultrashort electric pulse. Phys. Rev. E.,2005,71(3Pt1):031914
    [124]. F. Khalili-Araghi, J. Gumbart, P. C. Wen, et al. Molecular dynamics simulations of membranechannels and Transporters. Curr. Opin. Struc. Biol.,2009,19(2):128–137
    [125]. S. J. Singer, G. L. Nicolson. The fluid mosaic model of the structure of cell membranes.Science,1972,175(4023):720-731
    [126].翟中和,王喜忠,丁明孝.细胞生物学(第4版).北京:高等教育出版社,2011,341-354
    [127].汤睿,朱正纲.凋亡途径与肿瘤治疗.世界华人消化杂志,2005,13(20):2469-2472
    [128].欧阳高亮,李棋福.细胞凋亡与肿瘤的发生发展和治疗.国外医学:肿瘤医学分册,2000,27(5):266-269
    [129].高超,华子春.细胞凋亡检测方法新进展.中国细胞生物学学报,2011,33(5):564-569
    [130].曾刚,杨啸林,杨宏春.一种全数字延时触发器设计.实验科学与技术,2008,6(5):4-5
    [131].查申森,郑建勇,苏麟等.基于IGBT串联运行的动态均压研究.电力自动化设备,2005,25(5):20-22
    [132].姚陈果,孙才新,米彦等.陡脉冲对恶性肿瘤细胞不可逆性电击穿的实验研究.中国生物医学工程学报,2004,23(1):92-97
    [133]. C. G. Yao, X. Q. Hu, Y. Mi, et al. Window effect of pulsed electric field on biological cells.IEEE. T. Dielect. El. In.,2009,16(5):1259-1266
    [134]. Y. Minamitani, Y. Ohe, Y. Higashiyama. Nanosecond high voltage pulse generator using watergap wwitch for compact high power pulsed microwave generator. IEEE. T. Dielect. El. In.,2007,14(4):894-899
    [135]. Y. Minamitani, T. Ueno, Y. Ohe, et al. Intensity of electric field radiating from high-powerpulsed electromagnetic wave generator for use in biological applications. IEEE. T. Dielect. El.In.,2010,17(6):1895-1900
    [136]. P. Kumar, S. Altunc, C. E. Baum, et al. A prolate-spheroidal impulse-radiating antenna systemto launch and focus100-ps pulses for melanoma treatment. Ultrawideband and UltrashortImpulse Signals,6-10September, Sevastopol, Ukraine,2010,138-140
    [137]. S. Altunc, C. E. Baum, C. Jerald Buchenauer, et al. Design of a special dielectric lens forconcentrating a subnanosecond electromagnetic pulse on a biological target. IEEE. T. Dielect.El. In.,16(5):1364-1375
    [138]. J. N. Brittingham. Focus wave modes in homogeneous Maxwell’s equations: Transverseelectric mode. J. Appl. Phys.,1983,54(3):1179-1189
    [139].杨宏春.基于光导开关的高功率微波系统研究:[博士学位论文].成都:电子科技大学,2010,39-43
    [140]. E. G. Farr, C. E. Baum. Prepulse associated with the TEM feed of an impulse radiatingantenna. Sensor and Simulation Notes,1992,337:1-36
    [141]. G. Peeler, H. Coleman. Microwave stepped-index luneberg lenses. IEEE. T. Antenn. Propag.,1958,6(2):202-207
    [142]. J. Sanford. A Luneberg-lens update. IEEE. Antenn. Propag. M.,1995,37(1):76-79
    [143]. S. Alele, P. Gaynor, M. J. Cree, et al. Modelling single cell electroporation with bipolar pulseparameters and dynamic pore radii. J. Electrostat.,2010,68(3):261-174
    [144].谈亚芳,杨宏春,徐军等.不同中心频率下双极电脉冲的生物医学效应分析.生物医学工程学杂志,已录用
    [145]. N. Y. Chen, K. H. Schoenbach, J. F. Kolb,et al. Leukemic cell intracellular responses tonanosecond electric fields. Biochem. Biophys. Res. Commun.,2004,317(2):421-427
    [146]. Y. Mi, C. G. Yao, C. X. Li, et al. Apoptosis induction effects of steep pulsed electric fields(SPEF) on human liver cancer cell SMMC-7721in vitro. IEEE. T. Dielect. El. In.,2009,16(5):1302-1310
    [147]. P. T. Vernier, Y. H. Sun, M. A. Gundersen. Nanoelectropulse-driven membrane perturbationand small molecule permeabilization. BMC. Cell. Biol.,2006,7:37