新型混合转子无刷双馈电机的电磁特性分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无刷双馈电机是一种运行可靠的通用交流电机,在变速恒频恒压发电和大容量变频调速系统中具有广泛应用前景。本文以国家自然科学基金和辽宁省科技攻关项目为研究背景,以新型混合转子无刷双馈电机为研究对象,进行电机的电磁特性分析与实验研究。主要研究工作包括以下几方面内容:
     基于无刷双馈电机的转子演变历程和磁场调制机理,针对无刷双馈电机转子耦合能力弱制约电机推广应用的瓶颈问题,提出了具有强耦合能力的隔磁磁障与短路笼条相结合的新型混合转子结构。采用解析法和有限元分析法进一步揭示了新型混合转子的磁场调制机理。通过对不同类型转子结构无刷双馈电机磁场调制能力对比分析,证明了提出的混合转子在磁场调制能力方面具有突出优势。
     为使提出的新型混合转子具有最佳的磁场调制作用,首次系统地对该种转子的结构参数进行了优化。采用有限元法,计算和分析了转子极弧系数、导磁层数目、导磁层与非导磁层宽度比、有无公共笼条、短路笼条组数、短路笼条层数等结构参数对电机磁场调制能力的影响,确定了获得最佳耦合能力的电机结构参数方案,为新型混合转子的设计和研制提供了理论基础。
     为研究和分析该种新型电机的静、动态特性,对新型混合转子无刷双馈电机进行了电磁分析和动态特性仿真。对无刷双馈电机电磁设计的几个关键问题进行分析;基于能量摄动法,对混合转子无刷双馈电机的电感参数进行了计算;对电动机和发电机运行时无刷双馈电机的特性进行了动态仿真,对比分析了磁障转子和混合转子的运行性能。
     针对无刷双馈电机气隙磁场谐波可能引起的径向不平衡电磁力,进行了理论分析与仿真研究。推导了气隙磁密的解析表达式,据此分析了气隙磁场的影响因素;采用解析分析和有限元分析法,研究了极数配合对气隙谐波磁场和径向电磁力的影响,得出了极数配合的选择依据。有助于在电机设计时避免电机产生大的单边磁拉力,减少电机的振动和噪声。
     在国内外首次设计、研制了新型混合转子和磁障转子共用同一定子的两台无刷双馈电机试验样机,对两种不同转子结构电机进行了全面的对比实验研究。用电感参数的“静测法”对两种转子电机的电感参数进行了测试和分析;对磁障和混合转子无刷双馈电机分别进行了电动和发电机空载和负载的性能试验,对不同运行方式进行全面的性能测试。对比分析两种转子的实验结果,证明了提出的新型混合转子具有强的磁场调制作用和带负载运行能力,具有良好的运行性能,进一步验证了理论分析和研究方法的正确性和有效性。
The Brushless Doubly Fed Machine (BDFM) is an universal AC machine which canoperate reliably and has wide application prospects in the generation fields of variable speedand constant voltage constant frequency,and the adjustable system of large capacity motor.Supported by the China natural science fund and based on Liaoning key scientific andtechnological project, this paper conducted electromagnetic characteristics analysis andexperiments with novel hybrid rotor BDFM. The main research work includes the followingaspects:
     The paper presents a new hybrid rotor BDFM with powerful coupling capability, which isbased on principles of magnetic field modulation and rotor researching progress, and limitingthe BDFM application because of the lower coupling capability rotor. After comparing thecoupling capability of different rotors and analyzing the field modulation via finite elementmethod, it proved the proposed hybrid rotor has outstanding advantages in the magnetic fieldmodulation capability
     In order to improve further capability of magnetic field modulation, the rotor parametersare optimized in a systematical way. Using finite element method, the key parameters affectingthe coupling capability are analyzed, such as pole arc factor, amount of magnetic layer, ratioof magnetic to non-magnetic, short-circuit ring, amount of short-circuit set and short-circuitlayers. The parameters are optimized for holding the best coupling capability, which providestheoretical basis for designing and developing novel rotor.
     In order to study and analyze the static and dynamic characteristics, Electromagneticanalysis and dynamic simulation are analyzed for hybrid rotor of BDFM, Several keyelectromagnetic aspects are analyzed for BDFM, such as using the Energy perturbationmethod to calculate the inductance parameters, conducting Dynamic simulation in generatorand motor modes and comparison of performances for magnetic barrier rotor and hybrid rotor
     Regarding the complex magnetic fields harmonious of the BDFM, analytical expressionsof air-gap magnetic flux are derived, and the effect of parameters on magnetic flux is analyzed.Poles combination affects the air-gap magnetic field which leads to more complicatedmagnetic flux. Effect of poles combination and Salient poles number on radicalelectromagnetic force is researched, the Selection basis for pole combination is given, which avoids to produce unilateral magnetic force, and it could reduce the vibration and noise.
     The BDFMs of new hybrid rotor and magnetic barrier rotor share same stator aredesigned and developed at home and abroad for the first time and comprehensive experimentsare carried out.The inductance parameters of two types of rotors are tested and analyzed usingstatic method for inductance. Noload and load tests of motor and generator are done. Resultsof comprehensive experiments for the two rotors prove that the hybrid rotor has strongercoupling capability, excellent load capacity and good performances. And it further proves thatthe analysis scheme for hybrid rotor BDFM is reasonable and correct.
引文
[1]解仑,孙一康,王志良等.自级联式感应电动机控制系统的研制[J],北京科技大学学报,2002(24):672-674.
    [2]马小亮,王春杰.大功率风机和泵的调速传动[J].自动化博览,2005(5):1-4.
    [3]崔力,徐甫荣.无刷双馈变频调速电机的原理及应用前景[J].电工技术,2002:9(1):34-35.
    [4]黄守道,胡必武,欧阳红林等.双馈电机的工业应用展望[J].湖南大学学报(自然科学版),1999,26(4):67-70.
    [5] Michael S.Boger, Alan K. Wallance, René Spée, et al. General pole number model of the brushlessdoubly-fed machine[J]. IEEE Transactions on Industry Application,1995,31(5):1022-1028.
    [6] Qi Wang, Xiaohu Chen and Yanchao Ji. Control for maximal wind energy tracing in brushlessdoubly-fed wind power generation system based on double synchronous coordinates[C]. InternationalConference on Power System Technology. Piscataway: IEEE,2006:1-6.
    [7]黄守道,王耀南,王毅等.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报,2005,25(4):87-93.
    [8]杨元侃,惠晶.无刷双馈风力发电机的控制策略与实现[J].电机与控制学报,2007,11(4):364-368.
    [9] F. Rüncos, R. Carlson, A.M. Oliveira, et al. Analysis of a brushless doubly fed cage inductiongenerator[C]. Nordic Wind Power Conference.2004:1-8.
    [10] C.P. Steinmetz. Operating alternating motors:US,5873401897[P].1893.
    [11] L.J. Hunt, A new type of induction motor[J]. IEE,1907(39):648-667.
    [12] L.J. Hunt, The cascade induction motor[J]. IEE,1914(52):406-426.
    [13] A.R.W. Broadway and L. Burbridge. Self-cascade machine, a low-speed motor or high-frequencybrushless alternator[C]. Proc. IEE,1970,117(7):1277-1290.
    [14] A. R. W. Broadway. Brushless cascade alternator[C]. Proc. IEE,1974,12(1):1529-1534.
    [15] C.J.Heyne, A.M. El-Antably. Reluctance and doubly-excited reluctance motors. ORNL/Sub/81-95013/1, November,1984.
    [16] Ahmed El-Antably, et al. The design and steady-state performance of a high-efficiency reluctancemotor[C]. IEEE.1985:1-6.
    [17] Zhang Fengge, Wang Zheng, Wang Fengxiang. Open-Loop dynamic characteristic comparison ofdoubly-fed brushless machine with ALA and cage rotor[C].Proceedings of ICEM’01. Shenyang:IEEE,2001:1053-1056.
    [18] E.M Schulz, R.E.Betz. Optimal rotor design for brushless doubly fed reluctance machines[C].Industry Applications Conference,38th IAS Annual Meeting. Salt Lake:IEEE,2003:256-261.
    [19] Zhang Fengge, Wang Fengxiang, et al. Design and comparison of doubly-fed brushless machine withALA reductance and cage rotor[C]. Proceedings of CICEM’99. Xi’an,1999:375-378.
    [20] Wang Fengxiang, Zhang Fengge, Xu Longya. Parameter and performance comparison of doubly fedbrushless machine with cage and reluctance rotors[J]. IEEE Transactions on Industry Applications,2002,38(5):1237-1243.
    [21] Zhang Fengge, Wang Fengxiang, Wang Zheng. Comparative experiment study on the performance ofdoubly-fed brushless machine with different rotor structures[J]. Zhongguo Dianji Gongcheng Xuebao.2002,22(4):52-55.
    [22]韩力,高强,罗辞勇等.不同转子结构无刷双馈电机的运行特性对比[J].电机与控制学报,2010,14(3):6-11.
    [23] Fernando Valenciaga, Puleston, Paul F. Variable structure control of a wind energy conversionsystem based on a brushless doubly fed reluctance generator[J]. IEEE Transactions on EnergyConversion,2007,22(2):499-506.
    [24] K. Wallace, R. Spee, H. K. Lauw. The potential of brushless doubly-fed machines for adjustablespeed[C]. IEEE Industry Application Society, Pulp and Paper Industries Annual Conference.Seattle:IEEE,1990:44-50.
    [25] Tavner P J, Jagiela M, and Ingleton.C. A larger motor converter combination for High efficieneydrives[C]. Proc.4th Int. Conf. Energ Efficiency in Motor Driven Systems(EEMODS).Heidelberg(Germany):2005:1-4.
    [26]张经伟.绕线转子无刷双馈电机及其在独立电源系统中的应用研究[D].武汉:华中科技大学,2010.
    [27] Wang X, Roberts P C, McMahon R A. Optimisation of BDFM stator design using an equivalentcircuit model and a search method[C].3rd IET International Conference on Power Electronics,Machines and Drives (PEMD2006). Stevenage(UK): Inst. of Eng. Technol,2006:606-610.
    [28] Chaohao Kan, Xuefan Wang, Fei Xiong, et al. Design optimization of tooth-harmonic brushlessdoubly-fed machine[C]. International Conference on Electrical Machines and Systems2008(ICEMS2008). Wuhan:IEEE,2008:4272-4276.
    [29]刘宪栩,章玮.笼型无刷双馈电机转子的优化设计与有限元分析[J].微电机,2007,40(1):20-22.
    [30]韩力,高强,罗辞勇等.无刷双馈电机笼型转子结构对磁场调制的影响[J].电机与控制学报,2009,13(2):161-167.
    [31]邓先明,方荣惠,王抗等.等距笼型转子无刷双馈电机的有限元分析[J].电机与控制学报,2009,13(4):507-510.
    [32] Paul C. Roberts. A study of brushless doubly-fed (induction) machines[D]. London: Cambridge,2005.
    [33] Jingwei Zhang, Xuefan Wang, Tao Wu, et al. The principle and harmonic analysis of a new BDFMwith tooth harmonic wound rotor using as a generator[C]. ICEMS2009. Tokyo:IEEE,2009:1-4.
    [34]王雪帆.一种转子绕组采用变极法设计的新型无刷双馈电机[J].中国电机工程学报,2003,23(6):108-110.
    [35]熊飞,王雪帆,阚超豪等.绕线转子无刷双馈电机的工作原理及绕组设计[J].湖北工业大学学报,2010,25(1):102-106.
    [36]熊飞,苏学荣,何凌云.绕线式无刷双馈电机转子绕组设计[J].微电机,2009,42(6):1-4.
    [37]吴涛,王雪帆.新型绕线式转子结构无刷双馈电机的磁场调制机理分析[J].电气传动自动化,2008,30(6):38-40.
    [38]熊飞,王雪帆,张经纬等.绕线转子无刷双馈电机的链型等效电路模型[J].电工技术学报,2010,25(2):15-21.
    [39]程源,王雪帆,熊飞等.考虑饱和影响的绕线转子无刷双馈电机性能[J].电工技术学报,2012,27(5):164-171.
    [40]阚超豪,王雪帆.齿谐波法设计的无刷双馈发电机运行范围[J].中国电机工程学报,2011,31(24):124-130.
    [41]熊飞,王雪帆,程源.不等匝线圈转子结构的无刷双馈电机研究[J].中国电机工程学报,2012,32(36):82-88.
    [42] L. Xu, F. Liang, T.A. Lipo. Transient model of a doubly excited reluctance motor[J]. IEEETransaction on Energy Conversion,1991,6(1):126-133.
    [43] F. Liang, L. Xu, and T. Lipo. Analysis of a new variable speed doubly excited reluctance motor[J].Electric Machines and Power System,1991,19(2):125-138.
    [44] L. Xu. Analysis of a doubly-excited brushless reluctance machine by finite element method[C].IEEE/IAS Annual Meeting. Houston:IEEE,1992:171-177.
    [45] Longya Xu, Fengxiang Wang. Comparative study of magnetic coupling for a doubly fed brushlessmachine with reluctance and cage rotors[C]. Industry Application Conference. New Orleans(USA):IEEE,1997(1):326-336.
    [46] Liu Huijuan, Xu Longya. Performance analysis of doubly excited brushless reluctance machine usedin wind power generation system[C].2009Asia-Pacific Power and Energy Engineering Conference.Wuhan:IEEE,2009:1-4.
    [47] Liu Huijuan, Xu Longya. Analysis of doubly excited brushless machine with radially laminatedmagnetic barrier rotor[C].2nd International Symposium on Power Electronics for DistributedGeneration Systems, PEDG2010. Hefei:IEEE,2010:607-610.
    [48] Longya Xu, Yu Liu, Xuhui Wen. Comparison study of singly-fed electric machine with doubly-fedmachine for EV/HEV applications[C].2011International Conference on Electrical Machines andSystems. Piscataway(USA):IEEE,2011:1-5.
    [49] F. Wang, F. Zhang, and L. Xu. Parameter and performance comparison of doubly fed brushlessmachine with cage and reluctance rotor[J]. IEEE Transactions on Industry Applications,2002,38(5):1237-1243.
    [50] Qian Zhang, Huijuan Liu. Comparative study of brushless doubly fed machine with different rotorstructures used in wind power generation system[C].2010Asia-Pacific Power and EnergyEngineering Conference (APPEEC2010). Chengdu:IEEE,2010:1-4.
    [51] Huijuan Liu, Longya Xu. Comparison study of doubly excited brushless reluctance machine withdifferent rotor pole numbers[C].2009IEEE6th International Power Electronics and Motion ControlConference. Wuhan:IEEE,2009:830-835.
    [52] Huijuan Liu, Yihuang Zhang, Longya Xu. Theoretical analysis of doubly excited brushless reluctancemachine used in wind power[C].1st International Conference on Sustainable Power Generation andSupply (SUPERGEN). Nanjing:IEEE,2009:1-4.
    [53] Robert E. Betz, Milutin G. Jovanovic. The brushless doubly fed reluctance machine and thesynchronous reluctance machine-a comparison[J]. IEEE Transactions on Industry Application,2000,36(4):1103-1110.
    [54] Schulz E M, Betz R E. Use of doubly fed reluctance machine in wind power generation[C].12thInternational Power Electronics Motion Control Conference. Portoroz(Slovenia): Institute ofElectrical and Electronics Engineers Inc.,2006:1901-1906.
    [55] Milutin G. Jovanovic, Robert E. Betz, Jian Yu. The use of doubly fed reluctance machines for largepumps and wind turbines[J]. IEEE Transaction on Industry Application,2002,38(6):1508-1516.
    [56] Longya Xu, Bo Guan, Huijuan Liu, et al. Design and control of a high-efficiency Doubly-FedBrushless machine for wind power generator application[C].2010IEEE Energy ConversionCongress and Exposition (ECCE). Atlanta:IEEE,2010:2409-2416.
    [57]张千,刘慧娟,赵铮.径向叠片磁阻转子无刷双馈电机有限元分析[J].微特电机,2010(1):18-20.
    [58]刘慧娟,Longya Xu.一种径向叠片磁障式转子无刷双馈电机的设计与性能分析[J].电工技术学报,2012,27(7):55-62.
    [59] Dorrell D G, Knight A M, Betz R E. Improvements in brushless doubly fed reluctance generatorsusing high-flux-density steels and selection of the correct pole numbers[J]. IEEE Transactions onMagnetics,2011,47(10):4092-4095.
    [60] Dorrell D G, Knight A M, Betz R E. Issues with the design of brushless doubly-fed reluctancemachines: Unbalanced magnetic pull, skew and iron losses[C].2011IEEE International ElectricMachines Drives Conference (IEMDC). Niagara(Canada):IEEE,2011:663-668.
    [61] Dorrell D G. Design requirements for doubly-fed reluctance generators[C].7th InternationalConference on Power Electronics and Drive Systems.2007:981-988.
    [62] Dorrell D G, Betz R E, Jovanovic M. Analysis of design variations in brushless double-fed reluctancegenerators for wind turbine applications[C].14th International Power Electronics and Motion ControlConference, EPE-PEMC. Ohrid(Macedonia):IEEE,2010, S14:9-14.
    [63] Dorrell D G, Jovanovic M. On the possibilities of using a brushless doubly-fed reluctance generatorin a2MW wind turbine[C].2008IEEE Industry Applications Society Annual Meeting. Edmonton(USA):IEEE,2008:1-8.
    [64] Dorrell D G, Scian I, Schulz E M, et al. Electromagnetic considerations in the design of doubly-fedreluctance generators for use in wind turbines[C].32nd Annual Conference on IEEE IndustrialElectronics. Paris: Inst. of Elec. and Elec. Eng.,2006:4272-4277.
    [65] Knight A M, Betz R E, Dorrell D G. Design and analysis of brushless doubly fed reluctancemachines[C].2011IEEE Energy Conversion Congress and Exposition (ECCE2011).Phoenix(USA):IEEE,2011:3128-3135.
    [66] Jovanovic M G, Dorrell D G. Sensorless control of brushless doubly-fed reluctance machines usingan angular velocity observer[C].2007International Conference on Power Electronics and DriveSystems (PEDS '07). Bangkok(Thailand):Institute of Electrical and Electronics Engineers Inc.,2007:717-724.
    [67] Knight A M, Betz R E, Dorrell G D. Design principles for brushless doubly fed reluctancemachines[C].37th Annual Conference of IEEE Industrial Electronics. Melbourne(Australia):IEEE,2011:3602-3607.
    [68] Schulz E M, Betz R E. Optimal torque per amp for brushless doubly fed reluctance machines[C].Fourth Industry Applications Conference Annual Meeting. Hong Kong:Institute of Electrical andElectronics Engineers Inc.2005,3(3):1749-1753.
    [69] Erich M Schulz and Robert E Betz. Optimal rotor design for brushless doubly fed reluctancemachines[C]. IEEE Industrial Automation Society Annual Meeting Conference. Salt Lake: Instituteof Electrical and Electronics Engineers Inc.2003:256-261.
    [70]张凤阁.磁场调制式无刷双馈电机研究[D]:沈阳:沈阳工业大学,1999.
    [71]王爱龙.无刷双馈电机电感参数的计算[J].中国电机工程学报,2009,2(9):93-97.
    [72]龚晟,杨向宇,纪梁洲.凸极转子无刷双馈发电机绕组电感参数计算方法[J].农业工程学报,2012,28(11):170-176.
    [73]纪梁洲.无刷双馈电机的设计及其电感参数计算[D].广州:华南理工大学,2012.
    [74]龚晟,杨向宇,纪梁洲.凸极转子无刷双馈电机的电感参数计算及转子设计[J].电机与控制学报,2013,17(2):78-83.
    [75]龚晟.基于特殊磁阻型转子的无刷双馈电机的优化设计与研究[D].广州:华南理工大学,2012.
    [76]高强,韩力,李辉等.级联式无刷双馈电机的四种数学模型[J].微特电机,2010(3):18-23.
    [77]张凤阁,王惠军,佟宁泽等.新型无刷双馈变速恒频风力发电系统的建模与数字仿真[J].太阳能学报,26(5):660-664.
    [78]王爱龙.无刷双馈电机的数学模型和有限元分析[D].太原:太原理工大学,2008.
    [79]王晓远,何早新.无刷双馈电机的转子结构及其谐波分析[J].微电机,1998,31(6):3-6.
    [80]杨向宇,杨进.无刷双馈电机谐波转矩及定子绕组环流的分析[J].华南理工大学学报(自然科学版),2005,33(5):38-42.
    [81]杨向宇,蔡晓铭.无刷双馈调速电机的谐波磁场分析[J].华南理工大学学报,2005,33(4):10-14.
    [82]熊飞,王雪帆,张经纬等.绕线转子无刷双馈电机的链型等效电路模型[J].电工技术学报,2010,25(2):15-21.
    [83]李辉,杨顺昌.考虑转子谐波电流影响后双馈电机电磁功率的分析与计算[J].中国电机工程学报,2003,23(7):123-128.
    [84] Schulz, E. M, Betz, R. E. Impact of winding and gap flux density harmonics on Brushless DoublyFed Reluctance machines[C]. Second International Conference on Power Electronics, Machines andDrives. Edinburgh:Institution of Engineering and Technology,2004:487-491.
    [85] Gorginpour, H. Jandaghi, B. Saket, et al. Magnetic field harmonic analysis in brushless doubly fedmachine[C].20113rd International Youth Conference on Energetics (IYCE2011).Leiria(Portugal):IEEE,2011:1-7.
    [86] Gorginpour, H. Jandaghi, B. Oraee, H. Time and space harmonics in brushless doubly-fedmachine[C].201119th Iranian Conference on Electrical Engineering (ICEE). Tehran(Iran):IEEE,2011:1-6.
    [87] Antonio C. Ferreira, Stephen Williamson. Iron loss and saturation in brushless doubly-fedmachines[C]. IEEE Industry Applications SocietyAnnual Meeting. New Orleans:IEEE,1997:97-103.
    [88]杨向宇,励庆孚,郭灯塔.无刷双馈电机铁心损耗计算与饱和效应的分析研究[j].电工电能新技术,2002,21(1):54-57.
    [89] Scian, I. Dorrell, D. G. Holik, et al. Assessment of losses in a brushless doubly-fed reluctancemachine[J]. IEEE Transactions on Magnetics,2006,4(10):3425-3427.
    [90] Ahmadian M, Jandaghi B, Oraee A, et al. Eddy current losses in brushless doubly-fed machines[C].3rd International Youth Conference on Energetics. Leiria(Portugal):IEEE,2011:1-5.
    [91]赵海森,罗应立,刘晓芳等.异步电机空载铁耗分布的时步有限元分析[J].中国电机工程学报,2010,30(30):99-106.
    [92]方瑞明,王榕.基于谐波分析法的高速变频电机铁耗计算方法[J].电机与控制学报,2004,8(1):25-27.
    [93]陈震华,方瑞明.非正弦激励时变频电机铁耗计算方法研究[J].防爆电机,2005(40):5-9.
    [94]江善林,邹继斌,徐永向等.考虑旋转磁通和趋肤效应的变系数铁耗计算模型[J].中国电机工程学报,2011,31(3):104-110.
    [95]韩力,王华,马南平等.无刷双馈电机谐波铜耗与铁耗的分析与计算[J].电机与控制学报,2012,16(3):22-29.
    [96]黄守道.无刷双馈电机的控制方法研究[D].长沙:湖南大学,2005.
    [97]王正.转差频率旋转坐标系的无刷双馈电机数学模型与矢量控制研究[D].沈阳:沈阳工业大学,2007.
    [98]陈鹏.无刷双馈风力发电机控制系统研究[D].天津:河北工业大学,2006.
    [99]王晓远,王硕,程剑飞.基于模糊神经网络的无刷双馈电机的仿真研究[J].系统仿真学报,2005,12(18):3468-3471.
    [100]蔡晓铭,杨向宇.基于模糊PID的无刷双馈电机矢量控制[J].微特电机,2005(11):30-45.
    [101]杨向宇,励庆孚.无刷双馈调速电机的混合坐标数学模型[J].电工技术学报,2001,16(1):16-20.
    [102]William R. Brassfield, Rene Spee and Thomas G. Habetler. Direct torque control for brushlessdoubly-fed machines[J]. IEEE Transactions on Industry Applications,1996,32(5):1098-1104.
    [103]Sarasola, I. Poza, J. Rodriguez, et al. Direct torque control for brushless doubly fed inductionmachines[C]. IEEE International Electric Machines and Drives Conference. Antalya(Turkey):IEEE,2007(1):496-501.
    [104]Milutin Jovanovic, Jian Yu. A direct torque controlled brushless doubly-fed reluctance machinedrive system[J]. IEEE International Symposium on Industrial Electronics,2006(2):917-922.
    [105]张凤阁,金石,张武.基于无速度传感器的无刷双馈风力发电机直接转矩控制[J].电工技术学报,2011,26(12):20-27.
    [106]张凤阁,金石.变速恒频无刷双馈风力发电机的直接转矩控制[J].太阳能学报,2012,33(3):419-424.
    [107]金石.变速恒频无刷双馈风力发电机的直接转矩控制技术研究[D].沈阳:沈阳工业大学,2011.
    [108]孙红飞.级联无刷双馈电机直接反馈控制实验研究[D].天津:天津大学,2011.
    [109]王乐英.无刷双馈电机直接反馈控制系统分析与设计方法研究[D].天津:天津大学,2011.
    [110]焦卫星.基于模糊理论的无刷双馈电机直接转矩控制系统研究[D].广州:华南理工大学,2012.
    [111]杨俊华.无刷双馈风力发电系统及其控制研究[D].广州:华南理工大学,2006.
    [112]邵宗凯.无刷双馈电机建模及智能控制策略研究[D].武汉:华中科技大学,2010.
    [113]熊飞.绕线转子无刷双馈电机建模分析和电磁设计研究[D].武汉:华中科技大学,2010.
    [114]李永鑫.无刷双开电机不同转子耦合能力研究与样机设计[D].沈阳:沈阳工业大学,2010.
    [115]潘广建.磁障式磁阻转子无刷双馈电机的设计与分析研究[D].沈阳:沈阳工业大学,2009.
    [116]杨群.磁阻短路绕组混合转子无刷双馈电机关键技术研究[D].沈阳:沈阳工业大学,2012.
    [117]刘慧娟.径向叠片磁障式转子无刷双馈电机的研究[D].北京:北京交通大学,2009.
    [118]程源.绕线转子无刷双馈电机特性研究[D].武汉:华中科技大学,2012.
    [119]王秀平.无刷双馈电机耦合能力研究与仿真软件开发[D].沈阳:沈阳工业大学,2007.