基于消能观点的结构鲁棒性分析与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化进程加深,土木工程环境日趋复杂,结构持续安全面临严峻挑战,而新材料、新技术的运用更增添了结构安全中的不确定因素。另外,常规结构设计、分析假设结构是在理想或无损情况下抵抗外部作用,忽略了偶然局部损伤对结构体系安全的影响。在上述背景下,“非传统安全”问题凸显,一旦结构局部受损,发生不相称破坏的风险急剧增加。9.11事件令结构不相称破坏和鲁棒性问题受到空前关注。探究偶然局部损伤对结构安全的影响已是当务之急,有重要的理论和现实意义。
     本文重点是结构鲁棒性分析和不相称破坏风险控制,主要工作和结论如下:
     首先,从土木工程发展、典型工程安全问题、结构设计思路对比、耐久性以及风险控制和防灾减灾等角度深刻剖析了当前结构设计分析在应对“偶然局部损伤对结构体系安全的影响”问题上的滞后及不足。
     其次,通过归纳结构鲁棒性的定性要求并基于通用解释,将结构鲁棒性概括为结构体系在偶然局部损伤情况下保持整体稳定的性能。阐明了结构鲁棒性的内涵和外延:它强调结构在偶然损伤后维持体系安全、避免不相称破坏的能力,并不直接反映结构体系在其理想或无损状态下的承载力、延性、可靠度、赘余度或坚固程度;结构鲁棒性同时取决于结构自身性能及其外部环境。
     再者,提出了两种典型失效模式的能量解释,一是外界输入能量过程中,结构体系消能能力不足,二是结构构造缺陷阻碍了外界释放能量向结构消能的转化。结合损伤发展的现象学概率模型,提出鲁棒性的能量解释——在外界输入能量过程中,鲁棒结构应充分地转化或消纳能量,同时避免不相称破坏。基于消能观点并考虑结构安全的两个实现层次,提出以结构在满足实际设计能力基础上的消能量的无量纲形式衡量其鲁棒性水平。
     最后,基于消能观点,总结了改善结构体系鲁棒性需要考虑的两个方面,一是在结构响应过程中减少外界能量输入,降低结构消能压力,二是改善结构消能能力。基于此,提出了结构鲁棒性实现的五条策略,以期为结构不相称破坏风险控制提供理论依据。
     本文在结构鲁棒性内涵与外延、鲁棒性和结构失效的能量解释、量化评价以及不相称破坏风险控制方面取得了一些阶段性成果。为了应对复杂的内外环境,结构体系的系统效应、结构鲁棒性和消能能力的主要影响参数等问题还有待更进一步的研究。
As the course of modernization progresses rapidly, civil engineering and its surroundings become so complex that continuing safety of structures is confronted with severe challenges. At the same time, the adoption of novel materials and techniques causes substantial uncertainties in structural safety. Moreover, routine structural design and analysis are performed based on the conception that structures resist external actions in pristine states, and the influence of accidental localized damage on structural system safety is neglected. Under these situations, unconventional safety problems manifest themselves, and the risk of disproportionate failure increases excessively in case that accidental damage occurs. The tragic events of 9/11 have led to unprecedented concerns on the issues of disproportionate failure and structural robustness, and so it becomes imperative to study accidental damage and its effect on structural safety.
     The thesis focuses on strutcural robustness analysis and mitigation of the risk of disproportionate failure, the main work and conclusions of which are listed as follows:
     First, the drawbacks of current mothods, regarding structural design and analysis, in dealing with the influence of accidental localized damage on structural system safety are analysed profoundly from five aspects, i.e. the development of civil engineering, typical problems associated with structural safety, the differences between routine design methods and those related to robustness, structural durability, risk control and disaster mitigation.
     Secondly, the thesis summarized existing qualitative requirements of structural robustness, and argued herein that structural robustness can be interpreted as the behavior of a structure to remain stable under accidental localized damage. The thesis clarifies the core idea and extension of structural robustness further: structural robustness stresses the ability of a structure to remain system safety and avoid disproportionate failure and, hence, it doesnot necessarily reflect the load-bearing capacity, ductility, reliability, redundancy or solidness of the structure in its pristine/pre-damaged state; in addition, structural robustness relies on the behavior of structural systems and the surroundings as well.
     Thirdly, two typical failure mechanisms of strucures are proposed from the viewpoint of energy: first, a structure fails when it cannot absorb the input of energy; second, a structure fails since the energy transform between the structure and its environment is arrested as a result of drawbacks of structural form. Structural robustness is explained in the light of phenomenological probabilistic models, i.e. a robust structure is capable of absorbing energy input arising from external actions, while keeping the resultant failure somewhat proportional to the original cause. Following these conceptions, a new method to robustness appraisal is developed, where a dimensionless form of the amount of energy the structure absorbs serves as a robustness index, on condition that the structure satisfies its design capacity requirement.
     Finally, based on the viewpoint of energy absorption, the thesis proposed two basic ways to improve the robustness of a structure, i.e. by mitigating the energy input during the course of structural response and thus reducing the energy absorption demand on the structure, or by improving the energy absorbing capability of the structure. Then five strategies for realizing structural robustness are proposed which aim to provide theoretical basis for mitigating the risk of disproportionate failure.
     The present thesis draws several conclusions in the subjects of the core idea and extension of structural robustness, the interpretation of robustness and structural failures based on energy principles, robustness apparaisal, and risk mitigation of disproportionate failure. In the face of the increasingly complex surroundings, considerably more work is needed to investigate system effect of structural systems, and to define key factors which influence robustness and energy-absorbing capability of structures.
引文
[1] Hadipriono F C. Analysis of events in recent structural failures. Journal of Structural Engineering, ASCE, 1985, 111(7): 1468-1481
    [2] Wardhana K, Hadipriono F C. Study of recent building failures in the United States. Journal of Performance of Constructed Facilities, ASCE, 2003,17(3): 151-158
    [3]钱七虎.反爆炸恐怖安全对策.北京:科学出版社, 2005
    [4]任保平.以利益冲突向利益和谐的转化统领和谐社会的构建.兰州大学学报(社会科学版), 2006,34(5): 6-9
    [5]刘涛.利益和谐与和谐社会.齐鲁学刊, 2007(2):131-133
    [6] Meteorological Service of Canada. The worst ice storm in Canadian history. http://www.msc.ec.gc.ca/media/icestorm98/, 2002-12-18.
    [7] Leyendecker E V, George F. Investigation of the Skyline Plaza collapse in Fairfax County, Virginia, BSS 94. Washington, DC: National Bureau of Standards, 1977
    [8] Schafer B W, Bajpai P. Stability degradation and redundancy in damaged structures. Engineering Structures, 2005, 27:1642-1651
    [9]方召欣,李惠强.结构鲁棒性与风险防控.工程力学, 2007,24(增刊Ⅰ):79-82
    [10] Leyendecker E V, Burnett E. The incidence of abnormal loading in residential buildings, BSS 89. Washington, DC: National Bureau of Standards, 1976
    [11] Corley W G, Sozen M A, Thornton C H, et al. The Oklahoma City bombing: improving building performance through multi-hazard mitigation, FEMA 277. Washington, DC: FEMA, 1996
    [12] Federal Emergency Management Agency (FEMA). World Trade Center building performance study: data collection, preliminary observations, and recommendations, FEMA 403. Washington, DC: FEMA, 2002
    [13]邸小坛,史毅,周燕.衡州大厦坍塌原因分析.工程质量,2004(3):36-38
    [14] Corley W G, Mlakar Sr P F, Sozen M A, et al. The Oklahoma City bombing: summaryand recommendations for multihazard mitigation. Journal of Performance of Constructed Facilities, ASCE, 1998, 12(3):100-112
    [15] Fang Zhaoxin, Li Huiqiang. Energy-based approach to structural robustness. Journal of Southwest Jiaotong University (English Edition), 2007,17(4):319-323
    [16] Starossek U. Typology of progressive collapse. Engineering Structures, 2007,29: 2302-2307
    [17] Department of Buildings. New York City Building Code. New York: Department of Buildings, 1998
    [18]陈肇元.混凝土结构的安全性与规范的可靠度设计方法.建筑技术,2001,32(10): 682-687
    [19] The Standing Committee on Structural Safety (SCOSS). 10TH Report of SCOSS. London: SETO Ltd, 1994
    [20] National Research Council of Canada (NBCC). National building code of Canada. Ottawa: National Research Council of Canada,1990
    [21] American Society of Civil Engineers (ASCE). SEI/ASCE 7-05 Minimum design loads for buildings and other structures. Reston, VA: ASCE, 2005
    [22] McGuire W. Prevention of progressive collapse. in: Proceedings of the Regional Conference on Tall Buildings. Bangkok: Asian Institute of Technology, 1974
    [23] Burnett E F P. The avoidance of progressive collapse: regulatory approaches to the problem. Washington, DC: National Bureau of Standards,1975
    [24] Breen J E, Siess C P. Progressive collapse-symposium summary. ACI Journal, 1979,76(9): 997-1004
    [25] Ellingwood B R, Leyendecker E V. Approaches for design against progressive collapse. Journal of the Structural Division, ASCE, 1978,104(ST3): 413-423
    [26] Yokel F Y, Wright R N, Stone W C. Progressive collapse February, 1989: U.S. Office Building in Moscow. J. Perf. Constr. Fac., ASCE, 1989, 3(1): 57-75
    [27]朱幼麟.大板结构连续倒坍问题的初步分析.建筑结构学报,1991,12(5):47-54
    [28]朱明程,刘西拉.多层砖混建筑的连续倒塌分析.四川建筑科学研究,1994(2):1-5
    [29] The Standing Committee on Structural Safety (SCOSS). Structural Safety 1994-96: Review and recommendations 11TH Report of SCOSS. London: SETO Ltd, 1997
    [30] The Standing Committee on Structural Safety (SCOSS). Structural Safety 1997-99: Review and recommendations 12TH Report of SCOSS. London: SETO Ltd, 1999
    [31] The Standing Committee on Structural Safety (SCOSS). 16TH Biennial Report from SCOSS. London: SETO Ltd, 2007
    [32] Longinow A, Mniszewski K R. Protecting buildings against vehicle bomb attacks. Practice Periodical on Structural Design and Construction, 1996,1 (1): 51-54
    [33] Carino N, Lew H S, eds. Summary of NIST/GSA Workshop on Application of seismic rehabilitation technologies to mitigate blast-induced progressive collapse. Gaithersburg, MD: National Institute of Standards and Technology, 2001
    [34]胡庆昌.有关防止房屋结构连续倒塌的若干问题.见:第九届高层建筑抗震技术交流会论文集.北京:中国建筑学会, 2003
    [35] Federal Emergency Management Agency (FEMA). Reference manual to mitigate potential terrorist attacks against buildings, FEMA 426. Washington, DC: FEMA, 2003
    [36] Federal Emergency Management Agency (FEMA). Primer for design of commercial buildings to mitigate terrorist attacks, FEMA 427. Washington, DC: FEMA, 2003
    [37] Ellingwood B R, Smilowitz R, Dusenberry D O, et al. Best Practices for Reducing the Potential for Progressive Collapse in Buildings, NISTIR 7396. Gaithersburg, MD: National Institute of Standards and Technology, 2007
    [38] Astaneh-Asl A, Madsen E A, Noble C, et al. Use of catenary cables to prevent progressive collapse of buildings, UCB/CEE-STEEL-2001/02. Berkeley, CA: University of California at Berkeley, 2002
    [39]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究.建筑结构学报,2007,28(5):104-109
    [40] Mendis P, Ngo T. Vulnerability assessment of concrete tall buildings subjected to extreme loading conditions. in: Proceedings of the CIB-CTBUH International Conference on Tall Buildings. Malaysia, 2003
    [41] Ettouney M, Smilowitz R, Tang M, et al. Global system considerations for progressive collapse with extensions to other natural and man-made hazards. Journal of Performance of Constructed Facilities, ASCE, 2006, 20(4):403-417
    [42] Izzuddin B A, Vlassis A G, Elghazouli A Y, et al. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering Structures, 2008,30(5):1308-1318
    [43] Portland Cement Association (PCA). An engineer’s guide to: concrete buildings and progressive collapse resistance, IS545. Skokie, IL: Portland Cement Association, 2005
    [44] Portland Cement Association (PCA). Structural integrity requirements for concrete buildings, IS184. Skokie, IL: Portland Cement Association, 2006
    [45]傅学怡,吴兵,张自忠.卡塔尔外交部大楼抗连续倒塌设计研究.见:第十九届全国高层建筑结构学术交流会论文集,长春,2006:247-253
    [46] Yagust V I, Yankelevsky D Z. On potential progressive failure of large-panel buildings. Journal of Structural Engineering, ASCE, 2007, 133(11): 1591-1603
    [47] Houghton D, Karns J. Effective mitigation of progressive collapse in steel frame buildings using ductile high-capacity girder-to-column moment connections exhibiting discrete structural continuity across a failed column. in: Proceedings of the SAME National Symposium on Comprehensive Force Protection, Charleston, South Carolina, 2001
    [48] Krauthammer T. AISC research on structural steel to resist blast and progressive collapse. http://www.aisc.org, 2005-11-15
    [49] Hamburger R, Whittaker A. Design of steel structures for blast-related progressive collapse resistance. in: Blast and Progressive Collapse Resistance. Chicago, IL:American Institute of Steel Construction, 2004
    [50] Marchand K, Alfawakhiri F. Facts for steel buildings: blast and progressive collapse. Chicago, IL: American Institute of Steel Construction, 2005
    [51] Foley C M, Martin K, Schneeman C. Robustness in structural steel framing systems, MU-CEEN-SE-07-01. Chicago, IL: American Institute of Steel Construction,2007
    [52] Ellingwood B. Strategies for mitigating risk of progressive collapse. in: Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium. Reston VA: ASCE/SEI, 2005
    [53] Baldridge S M, Humay F K. Multi hazard approach to progressive collapse mitigation. in: Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium. Reston VA: ASCE/SEI, 2005
    [54] Dusenberry D O, Hamburger R O. Practical means for energy-based analyses of disproportionate collapse potential. J. Perf. Constr. Fac., ASCE, 2006, 20(4):336-348
    [55]方召欣,李惠强,潘维强等.结构连续坍塌防控的几点新思路.四川建筑科学研究, 2008, 34(2):97-100
    [56]叶列平,陆新征,冯鹏等.简论结构抗震的鲁棒性.见:第十届高层建筑抗震技术交流会论文集.广州,2005:37-43
    [57] Ellingwood B R, Dusenberry D O. Building design for abnormal loads and progressive collapse. Computer-Aided Civil and Infrastructure Engineering, 2005, 20:194-205
    [58]陈俊岭.建筑结构二次防御能力评估方法研究:[博士学位论文].上海:同济大学, 2004
    [59]陈俊岭,马人乐,何敏娟.偶然事件下框架结构抗连续倒塌分析.四川建筑科学研究,2007,33(1):65-68
    [60] Agarwal J, Blockley D, Woodman N. Vulnerability of structural systems. Structural Safety, 2003,25: 263-286
    [61]邱德锋.结构体系的易损性研究:[硕士学位论文].上海:上海交通大学,2003
    [62] Zhou Q, Yu T. Use of high-efficiency energy absorbing device to arrest progressive collapse of tall building. J Eng. Mech., ASCE, 2004, 130(10): 1177-1187
    [63] Mlakar P F, Dusenberry D O, Harris J R. Conclusions and recommendations from the Pentagon crash. J. Perf. Constr. Fac., ASCE, 2005,19(3): 220-221
    [64]胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述.建筑结构,2006,36(增刊): 79-83
    [65]金丰年,贾金刚,徐迎等.恐怖爆炸下建筑物连续性倒塌研究进展.工业建筑, 2007,37(12):113-118
    [66] Knoll F, Vogel T. Design for robustness. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [67] Starossek U, Wolff M. Design of collapse-resistant structures. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [68] Carpenter, J. A risk managed framework for ensuring robustness. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [69] The Standing Committee on Structural Safety (SCOSS). 15TH Biennial Report from SCOSS. London: SETO Ltd, 2005
    [70] Beeby A W. Safety of structures, and a new approach to robustness. The Structural Engineer, IStructE, 1999, 77(4):16-21
    [71] Kraezig W B, Petryna Y S. Structural damage and quantification of robustness. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [72] Maes M A, Fritzsons K E, Glowienka S. Structural robustness in the light of risk and consequence analysis. Structural Engineering International, IABSE, 2006,16(2):101- 107
    [73] Stempfle H, Vogel T. A concept to evaluate the robustness of bridges. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [74] Baker J, Schubert M, Faber M H. On the assessment of robustness. Structural Safety,2008,30(3):253-267
    [75] Smith J W. Structural robustness analysis and the fast fracture analogy. Structural Engineering International, IABSE,2006,16(2):118-123
    [76]方召欣,李惠强.结构鲁棒性与突发损伤后的风险控制.见:崔京浩.第15届全国结构工程学术会议论文集(第3卷).北京:《工程力学》杂志社,2006:300-303
    [77] British Standards Institute. BS 6399-1:1996 Loading for buildings, Part 1: Code of practice for dead and imposed loads. London: British Standards Institute,1996
    [78] Department for Transport, Local government and the Regions (DTLR). Guidance on Robustness and Provision Against Accidental Actions - The Current Application of Requirements A3 of the Building Regulations 1991. http://www.odpm.gov.uk, 2006-07-16
    [79] Boverket. BFS 1999:46 Design Regulations BKR—Mandatory Provisions and General Recommendations. Karlskrona: Swedish Board of Housing, Building and Planning, 1999
    [80] ComitéEuropéen de Normalisation (CEN). prEN 1990—Eurocode: Basis of structural design (Stage 34). Brussels: CEN, 2001
    [81] Gulvanessian H. EN 1990 Eurocode—Basis of structural design. Civil Engineering, 2001, 114(6): 8-13
    [82] ComitéEuropéen de Normalisation (CEN). Draft prEN 1992-1-1—Eurocode 2: Design of concrete structures. Brussels: CEN, 2002
    [83] National Research Council of Canada (NRCC). National building code of Canada. Ottawa: NRCC, 1995
    [84] American Concrete Institute (ACI). ACI318-05 Building code requirements for structural concrete. Farmington Hills, Mich.: American Concrete Institute, 2005
    [85] PCI Committee on Precast Concrete Bearing Wall Buildings. Considerations for the design of precast concrete bearing wall buildings to withstand abnormal loads. PCI Journal, 1976,21(2):18-51
    [86] Department of Defense (DoD). UFC 4-023-03 Design of buildings to resist progressive collapse. Washington, DC: Department of Defense, 2005
    [87] General Services Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization project. Washington, DC: General Services Administration, 2003
    [88] Interagency Security Committee (ISC). ISC security criteria for new federal office buildings and major modernization projects. Washington, DC: ISC, 2001
    [89]中国建筑科学研究院.GBJ 68-84建筑结构设计统一标准.北京:中国建筑工业出版社, 1984
    [90]中华人民共和国原城乡建设环境保护部.GB 50153-92工程结构可靠度设计统一标准.北京:中国计划出版社,1992
    [91]中华人民共和国建设部.GB 50068-2001建筑结构可靠度设计统一标准.北京:中国建筑工业出版社,2001
    [92]中华人民共和国建设部. GB 50010-2002混凝土结构设计规范.北京:中国建筑工业出版社, 2002
    [93] International Organization for Standardization (ISO). ISO 2394:1998 General principles on reliability for structures (3rd Ed.). Geneva: ISO, 1998
    [94] England J, Agarwal J, Blockley D. The vulnerability of structures to unforeseen events. Computers and Structures, 2008,86(10):1042-1051
    [95] Vrouwenvelder T. Stochastic modeling of extreme action events in structural engineering. Probabilistic Engineering Mechanics, 2000(15):109-117
    [96] Sebastian W M. Collapse considerations and electrical analogies for statically indeterminate structures. J. Struct. Eng., ASCE, 2004, 130(10):1445-1453
    [97]蒲德群.建筑结构安全水平的合理设置方法及策略研究:[博士学位论文].北京:清华大学,2004
    [98]程懋堃.关于提高建筑结构设计安全度的意见.建筑科学,1999,15(5):14-15
    [99]徐有邻,王晓锋,刘刚等.混凝土结构理论发展及规范修订的建议.建筑结构学报,2007,28(1):1-6
    [100]崔京浩.灾害的严重性及土木工程在防灾减灾中的重要性.工程力学,2006,23 (增刊Ⅱ):49-77
    [101] Health and Safety Executive (HSE). Development of the concept of structural toughness, OTO 2000/065. Merseyside: Health and Safety Executive, 2001
    [102] Santa Fe Institute. Working definitions of robustness (RS-2001-009). http://discuss. santafe.edu/robustness,2006-03-12
    [103]刘西拉.结构工程学科的进展与前景.北京:中国建筑工业出版社,2007
    [104]胡庆昌,孙金墀,郑琪.建筑结构抗震减震与连续倒塌控制.北京:中国建筑工业出版社,2007
    [105]陈肇元.也谈robustness的中文定名.中国科技术语,2007(1):12-13
    [106] Starossek U, Wolff M. Design of collapse-resistant structures. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [107] Stempfle H, Vogel T. A concept to evaluate the robustness of bridges. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [108] S?rensen J D, Christensen H H. Danish requirements to robustness of structures—background and implementation. in: Proceedings of the JCSS & IABSE Workshop on Robustness of Structures. Watford, UK, 2005
    [109] Lind N C. A measure of vulnerability and damage tolerance. Reliability Engineering and System Safety,1995,48:1-6
    [110] ?iha K. Redundancy and robustness of systems of events. Probabilistic Engineering Mechanics, 2000 (15):347-357
    [111] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety,1995,17:91-109
    [112] Zhao-xin Fang, Hui-qiang Li. Robustness of engineering structures and its role in risk mitigation. Civil Engineering and Environmental Systems, (In press)
    [113] Gorman M R. Structural redundancy. in: Wen Y K. Proceedings of the 4th ASCESpecialty Conference on Probabilistic Mechanics and Structural Reliability, Berkeley, CA, 1984:45-48
    [114]王连成.工程系统论.北京:中国宇航出版社,2002
    [115] Menzies J. Structural robustness. The Structural Engineer, IStructE, 2006,84(2):16-18
    [116]张栋,钟培道,陶春虎等.失效分析.北京:国防工业出版社,2004
    [117]李如生.非平衡态热力学和耗散结构.北京:清华大学出版社,1986
    [118] Timoshenko S P, Young D H.结构理论(第2版).北京:清华大学出版社,2002
    [119]龙驭球,包世华.结构力学教程.北京:高等教育出版社,1988
    [120] Tauchert H R. Energy Principles in Structural Mechanics. New York: McGraw-Hill, 1974
    [121]钟善桐.预应力钢结构的内蕴能量和可靠度.钢结构,2005,20(3):1-3
    [122] Bogdanoff J L. A new cumulative damage model (Part 1). Journal of Applied Mechanics, ASME,1978,45(2):246-250
    [123]约翰M·比格斯.结构动力学.姚玲森,程翔云译.北京:人民交通出版社, 1982
    [124] Protective Design Center. Single degree of freedom response limits for antiterrorism design, PDC-TR-06-08. Omaha, NE: U.S. Army Corps of Engineers, 2006
    [125] ACI Committee 440. Guide for the design and construction of concrete reinforced with FRP bars, ACI 440.1R-03. Detroit, Mich.: American Concrete Institute, 2003
    [126]冯鹏,叶列平,黄羽立.受弯构件的变形性与新的性能指标的研究.工程力学, 2005,22(6):28-36
    [127] Okada K, Koyanagi W, Rokugo K. Energy dissipation in flexural failure process of reinforced concrete beams. Memoirs of the Faculty of Engineering, Kyoto University, 1980, 42(pt2): 209-227
    [128]钱稼茹,罗文斌,陈肇元.高强混凝土受弯构件延性的截面宽度效应.工业建筑, 2001,31(3):45-47
    [129] Darwin D, Nmai C K. Energy dissipation in RC beams under cyclic load. Journal of Structural Engineering, ASCE,1986,112(8):1829-1846
    [130]章志光.心理学(修订版).北京:人民教育出版社,1999
    [131]王光远.工程软设计理论.北京:科学出版社,1992
    [132]王光远.论时变结构力学.土木工程学报,2000,33(6):105-108
    [133]爱德华·L·威尔逊.结构静力与动力分析(第4版).北京金土木软件技术有限公司,中国建筑标准设计研究院译.北京:中国建筑工业出版社,2006
    [134] Blockley D, Dester W. Hazard and energy in risky decisions. Civil Engineering and Environmental Systems, 1999, 16(4): 315-337
    [135]田安国.结构设计中的协同工作原则.淮海工学院学报,1999,8(3):66-68
    [136] Smith P D, Rose T A. Blast loading and building robustness. Prog. Struct. Engng Mater., 2002, 4:213-223
    [137] Al-Khaiat H, Fereig S, Al-Duaig J, et al. Impact of shelling on RC frames with and without infill walls. J. Perf. Constr. Fac., ASCE,1999,13(1):22-28
    [138]戴绍斌,余欢,黄俊.填充墙与钢框架协同工作性能非线性分析.地震工程与工程振动,2005,25(3):24-28
    [139]龚炳年,方鄂华.反复荷载下联肢剪力墙结构连系梁的性能.建筑结构学报, 1988(1):34-41
    [140] Crawford J E. Retrofit methods to mitigate progressive collapse. in: Proceedings of the 26th Workshop on Prevention of Progressive Collapse. Rosemont, IL: National Institute of Building Sciences, 2002
    [141] Miller J P, Antholz R D. Redundancy of exodiagonal building structures. in: Proceedings of the Structures Congress 2006: Structural Engineering and Public Safety. Reston VA: ASCE, 2006
    [142]刘平.一种钢筋混凝土阻尼柱.中国,中文,200520073147.X,2006:2-6