BRAF基因及其信号通路在甲状腺乳头状癌中的发病机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:研究BRAF基因及其信号通路RAS-BRAF-MEK-ERK与甲状腺乳头状癌发生的相关性及其部分作用机制。研究方法:收集73例散发的甲状腺乳头状癌患者及16例同期甲状腺瘤患者(对照组)的临床资料及标本。采用免疫组织化学和免疫印迹方法检测两组标本组织中的RAS,BRAF, MEK和ERK蛋白表达状况,探讨各蛋白表达和疾病的相关性;研究RAS-BRAF-MEK-ERK信号通路在甲状腺乳头状癌发生中可能的作用。
     通过PCR和测序技术,对73例散发的甲状腺乳头状癌患者BRAF基因进行了突变筛查,探讨BRAF突变与甲状腺乳头状癌发病的相关性。
     同时根据BRAF的mRNA序列选择2个靶序列并根据它们设计合成2对SiRNA干扰序列,脂质体转染干扰序列进入甲状腺癌细胞株SW579,运用RT-PCR和免疫荧光技术检测干扰的效果。对干扰成功的细胞系,进行细胞增殖,细胞周期(?)(?)RAS-BRAF-MEK-ERK信号通路相关蛋白的检测。
     研究结果:RAS, BRAF,磷酸化MEK1/2和磷酸化ERK1/2表达水平在甲状腺乳头状癌组都明显高于甲状腺瘤组(p<0.05);磷酸化ERK1/2蛋白在甲状腺乳头状癌组织中呈现了明显的细胞核分布,相比甲状腺瘤组织核内磷酸化ERK蛋白增加(p<0.05);BRAF蛋白的表达与甲状腺乳头状癌的肿块大小、淋巴结转移以及临床分期相关(p<0.05)。
     我们在73例甲状腺乳头状癌组织筛查到了42例存在V600E突变,突变率为57.5%。而在良性甲状腺瘤中未发现突变。而且,BRAF突变与甲状腺乳头状癌的淋巴转移以及临床分期相关(p<0001)。
     2种siRNA干扰核苷酸转染甲状腺癌SW579细胞系后,显著地抑制了BRAFmRNA水平及蛋白水平的表达,分析干扰了BRAF基因的SW579细胞后,发现SW579的生长增殖受到抑制,细胞周期发生改变,G1/S期增加,同时,RAS-BRAF-MEK-ERK信号通路的激活受到抑制。
     结论:
     1. RAS,BRAF,磷酸化MEK1/2及磷酸化ERK1/2在甲状腺乳头状癌中高表达,可能与甲状腺乳头状癌发生及其淋巴结转移、临床分期相关。
     2. BRAF可能通过激活MEK-ERK信号通路而发挥其生物作用。
     3.甲状腺乳头状癌BRAF基因突变率为57.5%。BRAF基因突变与甲状腺乳头状癌发生及其淋巴结转移、临床分期相关。
     4.干扰BRAF可能通过失活RAS-BRAF-MEK-ERK信号通路而抑制甲状腺癌细胞的生长和增殖。
Aims:To invstigate the association and mechanism between activity of BRAF and RAS-BARF-MAPK signal pathway in papillary thyroid cancer.
     Methods:73cases of papillary thyroid cancer and16cases of thyroid gland benign with detailed clinical data were collected. Then we detected the expression of RAS, BRAF, MEK and ERK protein in all tumor specimens and thyroid benign tissues using immunohistochemistry and Western blot. The relation between the variation of the protein expression and diseases was established. We explored the effect of RAS-BRAF-MEK-ERK signaling pathway in papillary thyroid cancer.
     To explore the correlation bewteen BARF mutation and papillary thyroid cancer, BRAF gene mutations in papillary thyroid cancer and were detected by PCR and sequencing technology. At the same time, we selected2targeting sequences and designed2pairs SiRNA interference sequences, then transfected them into SW579cell line with liposome and detected interference effect using RT-PCR and immunofluorescence. The interfered successfully cell line was detected for cell proliferation, cell cycle and the RAS-BRAF-MEK-ERK signaling pathway.
     Results:
     The expression of RAS, BRAF, MEK and ERK protein in thyroid cancer tissues is higher than the benign thyroid tissue, p<0.05,. Phosphorylated ERK protein in thyroid cancer presents a significant nuclear distribution compared to benign thyroid tissues p<0.05.
     We screened42cases BARF V600D mutations in73cases of thyroid cancer. The mutation rate is57.5%. However, no mutation was found in benign thyroid.
     To investigate effect of BRAF in tumor development, we use2siRNA interference oligonucleotides to transfect into SW579cell line. Suggesting BRAF mRNA level and protein expression are significantly inhibited. Through analyzing the SW579cell line after successfully interfere, the results show that the growth of SW579proliferation is inhibited, cell cycle changes, G1/S phase increase, at the same time, RAS-BRAF-MEK-ERK signaling pathway is inhibited.
     Conclusions:
     1. The expression of RAS, BRAF and phosphorylated MEK, in papillary thyroid cancer is higher than benign tissues.
     2. The expression of phosphorylated ERK in nuclear was increased and the RAS-BRAF-MEK-ERK signaling pathway may be activated in papillary thyroid cancer
     3. The expression and mutation of BRAF was associated with lymph node metastasis and clinical stage of papillary thyroid cancer.
     4. Thyroid cancer cell growth and proliferation are inhibited through BRAF interference to inactivated RAS-BRAF-MEK-ERK signal pathway.
引文
1. Hegedus L,Clinical practice:the thyroid nodule. N Engl J Med,2004,351(17): 1764-1771.
    2. Davies L,Welch HGIncreaseing incidence of thyroid cancer in the United states,1973-2002.JAMA,2006,295(18):2164-2167.
    3.钱碧云,陈可欣,何敏,等.天津市区甲状腺流行状况调查.中国肿瘤临床,2005,32(4):218-221.
    4. Ain KB:Papillary thyroid carcinoma. Etiology, assessment, and therapy. Endocrinol Metab Clin North Am,1995,24(4):711-760.
    5. Lam KY, Lo CY, Leung PS:High prevalence of RET proto-oncogene activation (RET/PTC) in papillary thyroid carcinomas. Eur J Endocrinol,2002,147(6): 741-745.
    6. Vecchio G, Santoro M:Oncogenes and thyroid cancer. Clin Chem Lab Med,2000, 38(2):113-116.
    7. Kim SK, Song KH, Lim SD et al: Clinical and pathological features and the BRAF(V600E) mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid,2009,19(2):137-141.
    8. Kondo T, Ezzat S, Asa SL:Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer,2006,6(4):292-306.
    9. Mebratu Y, Tesfaigzi Y:How ERK1/2 activation controls cell proliferation and cell death:Is subcellular localization the answer? Cell Cycle,2009,8(8): 1168-1175.
    10. Frasca F, Nucera C, Pellegriti G et al: BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer,2008,15(1):191-205.
    11. Knauf J A, Ma X, Smith EP et al: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res,2005,65(10):4238-4245.
    12. DeLuca AM, Srinivas A, Alani RM:BRAF kinase in melanoma development and progression. Expert Rev Mol Med,2008,10:e6.
    13. Nikiforova MN, Kimura ET, Gandhi M et al: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab,2003, 88(11):5399-5404.
    14. Shinohara M, Chung YJ, Saji M et al: AKT in thyroid tumorigenesis and progression. Endocrinology,2007,148(3):942-947.
    15. Ito T, Seyama T, Hayashi Y et al: [Unique association of p53 mutations with undifferentiated carcinoma of the thyroid]. Nippon Rinsho,1994,52(4): 1069-1074.
    16. Ito T, Seyama T, Mizuno T et al: Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res,1992,52(5):1369-1371.
    17. Rocha AS, Soares P, Fonseca E et al: E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology,2003,42(6):580-587.
    18. Zhu XD, Zhang JB, Zhuang PY et al: High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol,2008, 26(16):2707-2716.
    19. Towbin H, Staehelin T, Gordon J:Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications. 1979. Biotechnology 1992,24:145-149.
    20. Norman KL, Hirasawa K, Yang AD et al: Reovirus oncolysis:the Ras/RalGEF/ p38 pathway dictates host cell permissiveness to reovirus infection. Proc Nat1 Acad Sci U S A,2004,101 (30):11099-11104.
    21. McCubrey JA, Steelman LS, Chappell WH et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta,2007,1773(8):1263-1284.
    22. Frederick L. Greene, David L. Page, Irvin D. Fleming, April Fritz, Charles M. Balch, Daniel G Haller (Author), Monica Morrow AJCC Cancer Staging Manual (6th Edition).
    23. Palona I, Namba H, Mitsutake N et al:BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology, 2006,147(12):5699-5707.
    24. Davies H, Bignell GR, Cox C et al:Mutations of the BRAF gene in human cancer. Nature,2002,417(6892):949-954.
    25. Xing M:BRAF mutation in thyroid cancer. Endocr Relat Cancer,2005,12(2): 245-262.
    26. Witek MA, Llopis SD, Wheatley A, McCarley RL, Soper SA:Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips. Nucleic Acids Res 2006,34:74-80.
    27. Garcia-Rostan G, Zhao H, Camp RL et al:ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol,2003,21(17):3226-3235.
    28. Balmanno K, Cook SJ:Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ,2009,16(3):368-377.
    29. Kubbutat MH, Jones SN, Vousden KH:Regulation of p53 stability by Mdm2. Nature,1997,387(6630):299-303.
    30. Frisk T, Foukakis T, Dwight T et al:Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer,2002,35(1): 74-80.
    31. Smallridge RC, Marlow LA, Copland JA:Anaplastic thyroid cancer:molecular pathogenesis and emerging therapies. Endocr Relat Cancer,2009,16(1):17-44.
    32. Cakir M, Grossman AB:Medullary thyroid cancer:molecular biology and novel molecular therapies. Neuroendocrinology,2009,90(4):323-348.
    33. Severskaia NV, Saenko VA, Il'in AA et al:[RET and GFRA1 germline polymorphisms in medullary thyroid cancer patients], Mol Biol (Mosk),2006, 40(3):425-435.
    34. Goh AM, Coffill CR, Lane DP:The role of mutant p53 in human cancer. J Pathol,2011,223(2):116-126.
    35. Fusco A, Grieco M, Santoro M et al: A new oncogene in human thyroidpapillary carcinomas and their lymph-nodal metastases. Nature,1987,328(6126):170-172.
    36. Fagin JA, Mitsiades N:Molecular pathology of thyroid cancer:diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab,2008,22(6):955-969.
    37. Collins BJ, Chiappetta G, Schneider AB et al: RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab,2002,87(8):3941-3946.
    38. Rocha AS, Soares P, Fonseca E et al: E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology,2003,42(6):580-587.
    39. Lantsov D, Meirmanov S, Nakashima M et al:Cyclin D1 overexpression in thyroid papillary microcarcinoma:its association with tumour size and aberrant beta-catenin expression. Histopathology,2005,47(3):248-256.
    40. Kebebew E, Weng J, Bauer J et al:The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg,2007,246(3):466-470; discussion 470-461.
    41. Lee JH, Lee ES, Kim YS:Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid:a meta-analysis. Cancer,2007, 110(1):38-46.
    42. Xing M, Westra WH, Tufano RP et al:BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab,2005,90(12): 6373-6379.
    43. Soares P, Sobrinho-Simoes M:Is BRAF mutation screening useful for preoperative risk stratification in papillary thyroid cancer? Future Oncol,2009, 5(8):1225-1229.
    44. Xing M:The T1799A BRAF mutation is not a germline mutation in familial nonmedullary thyroid cancer Clin Endocrinol (Oxf),2005,63(3):263-266.
    45. Namba H, Nakashima M, Hayashi T et al: Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab,2003, 88(9):4393-4397.
    46. Costa AM, Herrero A, Fresno MF et al: BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma, Clin Endocrinol (Oxf),2008,68(4):618-634.
    47. Garcia-Rostan G, Costa AM, Pereira-Castro Ⅰ et al: Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res,2005,65(22):10199-10207.
    48. Sieben NL, Macropoulos P, Roemen GM et al: In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol,2004, 202(3):336-340.
    49. Fugazzola L, Mannavola D, Cirello Ⅴ et al: BRAF mutations in an Italian cohort of thyroid cancers. Clin Endocrinol (Oxf),2004,61(2):239-243.
    50. Fugazzola L, Puxeddu E, Avenia N et al: Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma:data from a multicentric Italian study and review of the literature. Endocr Relat Cancer,2006,13(2):455-464.
    51. Kim TY, Kim WB, Song JY et al: The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol (Oxf),2005,63(5):588-593.
    52. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N: Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985,230:1350-1354.
    53. Mosmann T:Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65:55-63.
    54. Pellicciari C, Manfredi AA, Bottone MG, Schaack V, Barni S:A single-step staining procedure for the detection and sorting of unfixed apoptotic thymocytes. Eur JHistochem 1993,37:381-390.
    55. Voinnet O, Baulcombe DC:Systemic signalling in gene silencing. Nature,1997, 389(6651):553.
    56. Hamilton AJ, Baulcombe DC:A species of small antisense RNA in posttranscriptional gene silencing in plants. Science,1999,286(5441):950-952.
    57. Hammond SM, Bernstein E, Beach D et al: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000, 404(6775):293-296.
    58. Zamore PD, Tuschl T, Sharp PA et al: RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000, 101(1):25-33.
    59. Dhomen N, Reis-Filho JS, da Rocha Dias S et al: Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell,2009,15(4): 294-303.
    60. Dankort D, Curley DP, Cartlidge RA et al: Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet,2009,41(5):544-552.
    61. Ikenoue T, Hikiba Y, Kanai F et al: Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res,2003, 63(23):8132-8137.
    1. Shibata Y, Yamashita S, Masyakin VB et al:15 years after Chernobyl:new evidence of thyroid cancer. Lancet,2001,358(9297):1965-1966.
    2. Kalicke T, Grunwald F, Bender H et al:Clinical Indications for the Use of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography in Thyroid Cancer. Clin Positron Imaging,1998,1(3):193-199.
    3. Lundgren CI, Hall P, Ekbom A et al: Incidence and survival of Swedish patients with differentiated thyroid cancer. Int J Cancer,2003,106(4):569-573.
    4. Liska J, Altanerova V, Galbavy S et al:Thyroid tumors:histological classification and genetic factors involved in the development of thyroid cancer. Endocr Regul,2005,39(3):73-83.
    5. Vecchio G, Santoro M:Oncogenes and thyroid cancer. Clin Chem Lab Med,2000,38(2):113-116.
    6. Kroll TG:Molecular events in follicular thyroid tumors. Cancer Treat Res,2004,122:85-105.
    7. van Dieen JH, van der Burg P, Raaijmakers TA et al:Effects of repetitive lifting on kinematics:inadequate anticipatory control or adaptive changes? J Mot Behav,1998,30(1):20-32.
    8. Aschebrook-Kilfoy B, Ward MH, Sabra MM et al:Thyroid cancer incidence patterns in the United States by histologic type,1992-2006. Thyroid,2011, 21(2):125-134.
    9. Pakdaman MN, Rochon L, Gologan O et al:Incidence and histopathological behavior of papillary microcarcinomas:study of 429 cases. Otolaryngol Head Neck Surg,2008,139(5):718-722.
    10. Abubaker J, Jehan Z, Bavi P et al:Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab,2008,93(2):611-618.
    11. Moalem J, Choi DX, Khanafshar E et al:Metastatic Papillary Thyroid Cancer Misdiagnosed as Small Cell Lung Cancer. Thyroid,2011.
    12. Al-Humadi H, Zarros A, Al-Saigh R et al: Genetic basis and gene therapy trials for thyroid cancer. Cancer Genomics Proteomics,2010,7(1):31-49.
    13. Hua SC, Chen SY, Lu CH et al: The effects of growth inhibitory peptide on follicular thyroid cancer cell growth, migration, and invasion. Tumori,2010, 96(3):448-451.
    14. Allen SM, Bodenner D, Suen JY et al: Diagnostic and surgical dilemmas in hereditary medullary thyroid carcinoma. Laryngoscope,2009,119(7):1303-1311.
    15. Verbeek HH, de Groot JW, Plukker JT et al: [Medullary thyroid cancer, a tumour with many appearances]. Ned Tijdschr Geneeskd,2010,154:A1818.
    16. Chong GC, Beahrs OH, Sizemore GW et al: Medullary carcinoma of the thyroid gland. Cancer,1975,35(3):695-704.
    17. Elisei R, Romei C, Cosci B et al: RET genetic screening in patients with medullary thyroid cancer and their relatives:experience with 807 individuals at one center. J Clin Endocrinol Metab,2007,92(12):4725-4729.
    18. Neff RL, Farrar WB, Kloos RT et al: Anaplastic thyroid cancer. Endocrinol Metab Clin North Am,2008,37(2):525-538, xi.
    19. Schaller RT, Jr., Stevenson JK:Development of carcinoma of the thyroid in iodine-deficient mice. Cancer,1966,19(8):1063-1080.
    20. Mousavi SM, Brandt A, Sundquist J et al: Risks of papillary and follicular thyroid cancer among immigrants to sweden. Int J Cancer,2010.
    21. McTiernan AM, Weiss NS, Daling JR:Incidence of thyroid cancer in women in relation to reproductive and hormonal factors. Am J Epidemiol,1984, 120(3):423-435.
    22. O'Neill JP, Power D, Condron C et al: Anaplastic thyroid cancer, tumorigenesis and therapy. Ir J Med Sci,2010,179(1):9-15.
    23. Dal Maso L, Bosetti C, La Vecchia C et al: Risk factors for thyroid cancer:an epidemiological review focused on nutritional factors. Cancer Causes Control,2009,20(1):75-86.
    24. Rahbari R, Zhang L, Kebebew E:Thyroid cancer gender disparity. Future Oncol,2010,6(11):1771-1779.
    25. Fusco A, Grieco M, Santoro M et al: A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature,1987, 328(6126):170-172.
    26. Cakir M, Grossman AB:Medullary thyroid cancer:molecular biology and novel molecular therapies. Neuroendocrinology,2009,90(4):323-348.
    27. Severskaia NV, Saenko VA, Il'in AA et al: [RET and GFRA1 germline polymorphisms in medullary thyroid cancer patients]. Mol Biol (Mosk),2006, 40(3):425-435.
    28. Peyssonnaux C, Eychene A:The Raf/MEK/ERK pathway:new concepts of activation. Biol Cell,2001,93(1-2):53-62.
    29. DeLuca AM, Srinivas A, Alani RM:BRAF kinase in melanoma development and progression. Expert Rev Mol Med,2008,10:e6.
    30. Kim SK, Song KH, Lim SD et al: Clinical and pathological features and the BRAF(V600E) mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid,2009,19(2):137-141.
    31. Davies H, Bignell GR, Cox C et al: Mutations of the BRAF gene in human cancer. Nature,2002,417(6892):949-954.
    32. Knauf JA, Fagin JA:Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Curr Opin Cell Biol,2009,21(2):296-303.
    33. Palona I, Namba H, Mitsutake N et al: BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology,2006,147(12):5699-5707.
    34. Garcia-Rostan G, Zhao H, Camp RL et al: ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol,2003,21(17):3226-3235.
    35. Balmanno K, Cook SJ:Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ,2009,16(3):368-377.
    36. Xing M:BRAF mutation in thyroid cancer. Endocr Relat Cancer,2005, 12(2):245-262.
    37. Samuels Y, Wang Z, Bardelli A et al: High frequency of mutations of the PIK3CA gene in human cancers. Science,2004,304(5670):554.
    38. Kubbutat MH, Jones SN, Vousden KH:Regulation of p53 stability by Mdm2. Nature,1997,387(6630):299-303.
    39. Frisk T, Foukakis T, Dwight T et al: Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer,2002, 35(1):74-80.
    40. Smallridge RC, Marlow LA, Copland JA:Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer,2009, 16(1):17-44.
    41. Goh AM, Coffill CR, Lane DP:The role of mutant p53 in human cancer. J Pathol,2011,223(2):116-126.
    42. Fagin JA, Mitsiades N:Molecular pathology of thyroid cancer:diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab,2008, 22(6):955-969.
    43. Collins BJ, Chiappetta G, Schneider AB et al: RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab,2002,87(8):3941-3946.
    44. Kouniavsky G, Zeiger MA:Thyroid tumorigenesis and molecular markers in thyroid cancer. Curr Opin Oncol,2010,22(1):23-29.
    45. Mebratu Y, Tesfaigzi Y:How ERK1/2 activation controls cell proliferation and cell death:Is subcellular localization the answer? Cell Cycle,2009, 8(8):1168-1175.
    46. Frasca F, Nucera C, Pellegriti G et al: BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer,2008,15(1):191-205.
    47. Knauf JA, Ma X, Smith EP et al: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res,2005,65(10):4238-4245.
    48. Sabatini DM:mTOR and cancer:insights into a complex relationship. Nat Rev Cancer,2006,6(9):729-734.
    49. Shinohara M, Chung YJ, Saji M et al: AKT in thyroid tumorigenesis and progression. Endocrinology,2007,148(3):942-947.
    50. Ringel MD, Hayre N, Saito J et al: Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res,2001,61 (16):6105-6111.
    51. Kim CS, Vasko VV, Kato Y et al: AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology,2005, 146(10):4456-4463.
    52. Lin JD:Thyroglobulin and human thyroid cancer. Clin Chim Acta,2008, 388(1-2):15-21.
    53. Ashcroft M, Kubbutat MH, Vousden KH:Regulation of p53 function and stability by phosphorylation. Mol Cell Biol,1999,19(3):1751-1758.
    54. Kenzelmann Broz D, Attardi LD:In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis,2010, 31(8):1311-1318.
    55. Vella V, Puppin C, Damante G et al: DeltaNp73alpha inhibits PTEN expression in thyroid cancer cells. Int J Cancer,2009,124(11):2539-2548.
    56. Rocha AS, Soares P, Fonseca E et al: E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology,2003,42(6):580-587.
    57. Lantsov D, Meirmanov S, Nakashima M et al: Cyclin D1 overexpression in thyroid papillary microcarcinoma:its association with tumour size and aberrant beta-catenin expression. Histopathology,2005,47(3):248-256.
    58. Gujral TS, van Veelen W, Richardson DS et al: A novel RET kinase-beta-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res,2008,68(5):1338-1346.
    59. Bushati N, Cohen SM:microRNA functions. Annu Rev Cell Dev Biol,2007, 23:175-205.
    60. Farazi TA, Spitzer JI, Morozov P et al: miRNAs in human cancer. J Pathol,2011.
    61. Wang D, Qiu C, Zhang H et al: Human microRNA oncogenes and tumor suppressors show significantly different biological patterns:from functions to targets. PLoS One,2010,5(9).
    62. Ball DW:Selectively targeting mutant BRAF in thyroid cancer. J Clin Endocrinol Metab 95(1):60-61.
    63. Nikiforova MN, Tseng GC, Steward D et al: MicroRNA expression profiling of thyroid tumors:biological significance and diagnostic utility. J Clin Endocrinol Metab,2008,93(5):1600-1608.
    64. Weber F, Teresi RE, Broelsch CE et al: A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab,2006, 91(9):3584-3591.
    65. Visone R, Pallante P, Vecchione A et al: Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene,2007, 26(54):7590-7595.