高聚物注桨材料特性与堤坝定向劈裂注桨机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国堤坝防渗加固工程的迫切需要和高聚物注浆技术的发展,以非水反应类双组份发泡聚氨酯为浆材,在对材料特性进行系统研究的基础上,提出了堤坝防渗加固高聚物定向劈裂注浆方法,主要研究内容如下:
     (1)根据非水反应类双组份发泡聚氨酯材料的特点,研制了材料压缩、弯曲、拉伸试验所需的试样注浆成型模具及膨胀力、材料抗水渗透性能试验装置,对双组份发泡聚氨酯注浆材料的物理力学特性进行了较为全面的试验研究,获得了大量的材料特性试验成果;建立了材料密度与最大膨胀力、材料密度与起始渗水压力及材料密度与抗压强度、弯曲强度、拉伸强度的关系曲线。实验研究结果表明,双组份发泡聚氨酯是一种综合性能优良的堤坝防渗加固注浆材料。
     (2)通过大量的高聚物现场注浆试验,对双组份发泡聚氨酯高聚物注浆材料在土体中的扩散机理进行了深入研究;揭示了高聚物浆液在土体中主要以片状浆脉的方式扩散;具有自膨胀性的高聚物浆液对浆脉周围的土体还有挤密和渗透胶结作用。
     (3)根据高聚物注浆材料在土体中的扩散特征及高聚物注浆技术的特点,首次提出了堤坝防渗加固高聚物定向劈裂注浆方法,建立了定向劈裂缝扩展压力及开裂长度的理论计算公式。利用自行研制的定向劈裂钻具,采用定向劈裂注浆方法能定向构筑厚度为2~3 cIll左右的堤坝高聚物超薄防渗墙,墙体本身具有良好的力学和防渗性能,并能与墙体周围土体紧密结合,形成复合防渗体。
     (4)以流变学、断裂力学及岩土力学理论为基础,建立了非线性有限元粘结元模型,采用粘结元方法对高聚物定向劈裂注浆机理进行了数值模拟,计算出了不同注浆量时定向劈裂缝的扩展长度及开度,计算结果和现场试验的结果基本一致;为堤坝高聚物定向劈裂注浆方案的设计提出了一种有效方法。
     (5)在均质土坝上进行了高聚物定向劈裂注浆原型试验,现场注浆试验开挖结果表明,采用高聚物定向劈裂注浆技术在土体中形成的防渗体的厚度,扩展方向、扩展范围及搭接效果均达到预期效果,验证了堤坝高聚物定向劈裂注浆理论的正确性及方法的可行性。
Aiming at the urgent need of reinforcement engineering in the dykes and dams and the development of the polymer grouting technology, using the non-aqueous reaction type two-component polyurethane foam as the grout material, the directional fracturing grouting technology is developed for anti-seepage reinforcement of dykes and dams on the basis of the systematic study of the material properties in this paper. The main researches are summarized below:
     (1) According to the characteristics of the two-component non-aqueous reaction type polyurethane foam, specimens grouting molds using in the compression, bending and tensile test and equipment testing the expansion force and permeability of material are developed. A large number of test results of material properties are obtained through the more comprehensive experimental study on the physical and mechanical properties of the two-component polyurethane foam grouting material. A group of curves are established including the largest expansion versus the density, the initial seepage pressure versus the density and the compressive strength, the bending strength and the tensile strength versus the density. The results show that two-component polyurethane foam is a comprehensive excellent grouting material in anti-seepage of dykes and dams.
     (2) Further studies on the diffusion mechanism of the two-component polyurethane foam polymer material propagation in the soil are carried through a large number of field tests. It reveals that the polymer grouting propagates in soil mainly in a mode of sheet veins and the self-expansion polymer grout is of compaction and penetration cementation to the surrounding soil.
     (3) Considering the characteristics of polymer injection material diffusion in the soil and the feature of the polymer grouting technology, the method using the polymer directional fracturing grouting in anti-seepage reinforcement of dykes and dams is firstly put forward. At the same time the theoretical formula on the directional fracturing crack propagation pressure and the cracking length is developed. Using the directional fracturing drilling tool developed by self and the directional fracturing method can directionally build a ultra-thin polymer anti-seepage wall about 2 to 3cm thickness which itself has good mechanical and anti-seepage properties and closely bonds with the surrounding soil, forming a composite impervious structure.
     (4) Based on the rheology, fracture mechanics and rock mechanics theory, a nonlinear finite element cohesive element model is established, and then the directional fracturing mechanism of the polymer grouting is simulated by using the bonding element method. As a result, the directional crack propagation length and opening width with the different grouting volume are obtained, which is basically consistent with the field test results. Thus an efficient method is presented for design in polymer directional fracturing grouting project of the dykes and dams
     (5) The polymer fracturing grouting prototype test is performed on the homogeneous earth dam. The site excavation results show that the impermeable body thickness, propagation direction, extended range and overlap effects formed in the soil reached expected results using the polymer directional fracturing grouting technique. It just verified correctness of the dam grouting polymer directional fracturing theory and feasibility of the method.
引文
[1]葛家良.化学灌浆技术的发展与展望[J].岩石力学与工程学报,2006(10):3384-3391.
    [2]刘嘉材.化学注浆[M].北京:中国水利水电出版社,1987.
    [3]Littlejohn G. Si(周彦青译).化学注浆技术(1,2)[J].隧道译丛,1985(5):1-17.
    [4]熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社,2001.
    [5]雷华芳译.灌浆方法的发明与发展[J].北京:水利水电科学研究院译丛,1964(4).
    [6]肖田元,邢京萍.化学灌浆的发展与应用[C].水利水电地基与基础工程学术交流会论文集.天津:天津科学技术出版社,1998.
    [7]邝健政,彭海华.化学灌浆技术在国内土木工程中的研究及应用发展趋势[C].第四届中国岩石锚固与注浆学术会议论文集,2007.
    [8]程鉴基.也谈水泥类化学灌浆加固隧道基底软土的技术问题[C].中国土木工程学会隧道及地下工程学会第八届年会论文集,1994.
    [9]蒋硕忠.我国化学灌浆技术发展与展望[J].长江科学院院报,2003,5:25-27.
    [10]蒋硕忠,邓敬森主编.中国化学灌浆的现状与未来[C].首届中国化学灌浆论坛论文集.武汉:长江出版社,2005.
    [11]Roy W.Tess,Gary W.Poehlein.Applied Polymer Science[M].American chemical society. Washington,D.C.1985.
    [12]徐培林.聚氨酯材料手册[M].化学工业出版社,2003.
    [13]彭丽敏,尚会建,盖丽芳等.聚氨酯工业现状与发展趋势[J].河北工业科技,2006,23(4):253-256.
    [14]沈春林,褚建军.聚氨酯灌浆材料及其标准[J].中国建筑防水,2009(6):41-44.
    [15]刘益军,王毅等.聚氨酯灌浆材料评述[J].粘接,2005(4):40-42.
    [16]URETEK USA/ICR,Inc..The URETEK deep injection process for roadways and building structures[R],A URETEK USA/ICR White Paper,2004.
    [17]Wisconsin Department of Transportation. Evaluation of The URETEK Method of Pavement Lifting[R].APRIL 2007.
    [18]URETEK USA,Inc..The URETEK method for roadways and transportation assets[R],AURETEK USA White Paper,2005.
    [19]Brent Barron, Kansas.DOT decides to go with polyurethane to correct 50 miles of Highway[J].Roads & Bridges,2004(12):24-26.
    [20]郭成超,王复明,钟燕辉.水泥混凝土路面脱空高聚物注浆技术研究[J].公路,2008(10).
    [21]许传桂.我国病险水库的现状[J].大坝与安全,2000(03):52-53.
    [22]王洪恩,卢超.堤坝劈裂灌浆防渗加固技术[M].北京:中国水利水电出版社,2006.
    [23]杜雷功.全国病险水库除险加固专项规划综述[J].水利水电工程设计,2003(3):1-3.
    [24]中央政府门户网站.国务院批准《全国病险水库除险加固专项规划》[EB].www.gov.cn.2008.03.28.
    [25]申海莲,张华,许力.我国小型水库现状及整治对策[J].节水灌溉,2007(08):71-72.
    [26]汝乃华,牛运光.大坝事故与安全·土石坝[M].北京:中国水利出版社,2001.
    [27]白永年,孙晓范等.土坝渗透破坏的原因及治理技术[J].水利水电技术,2002(10):15-16.
    [28]牛运光.土坝安全与加固[M].北京:水利水电出版社,1998.
    [29]王成梓译.土坝破坏的教训[J].水利水电快报,1984(5).
    [30]李伯宁.1998年长江、嫩江大水给我们的启示和反思[J].水利水电科技进展,1999(2):2-8.
    [31]麻荣永.土石坝风险分析方法及其应用[M].北京:中国水利出版社,2004.
    [32]李思慎主编.堤防防渗工程技术[M].武汉:长江出版社,2006.
    [33]白永年,王王洪恩等.中国堤坝防渗加固新技术[M].北京:中国水利水电出版社,2001.
    [34]张启岳.土石坝加固技术[M].北京:中国水利出版社,1999.
    [35]盛金保,刘嘉折等,病险水库除险加固项目溃坝机理调查分析[J].岩土工程学报,2008(11):1620-1625.
    [36]尹红莲.堤坝防渗技术试验研究[D].南京:河海大学,2004.
    [37]张景秀.坝基防渗与灌浆技术[M].北京:中国水利水电出版社,2002.
    [38]何松云.深圳市长岭水库大坝防渗灌浆处理技术研究[D],南京:河海大学,2006.
    [39]蒋硕忠.灌浆材料与灌浆工艺研究[J].水利水·电技术,2001.09:32-34.
    [40]张景秀.水泥灌浆的机理与其正确运用[J].水利水电技术,1982(02):41-45.
    [41]李文通.渗透注浆法在防护工程中的应用[J].山西建筑,2007,33(30):132-133.
    [42]王东海.渗透注浆法在水利工程地基处理中的应用[J].山西建筑,2007,33(15):363-367.
    [43]孟耀峰.浅析充填灌浆在水库坝体处理中的应用[J].城市建设2009(25):134-135.
    [44]赵铁峰,韩栋材,韩忠立.土坝坝体劈裂灌浆技术[M].北京:中国水利水电出版社,1987.
    [45]蒋楚生.劈裂注浆条件下锚索承载力的理论分析[J].铁道工程学报,2003(4):119-123.
    [46]白云,侯学渊.软土地基劈裂注浆加固的机理和应用[J].岩土工程学报,1991(2):89-93.
    [47]王明森等.高压喷射灌浆防渗加固技术[M].北京:中国水利水电出版社,2010.
    [48]王宝玉,查振衡.高压喷射灌浆技术及其应用[J].水利水电技术,1991(34):360-361.
    [49]杨小风.垂直铺塑防渗技术的改进及推广应用[D].济南:山东大学,2007.
    [50]崔海华,赵玉珍.土工合成材料在土坝除险加固中的应用[C].中国水利学会2008年学术年会论文集,2008.
    [51]钱玉林.堤防振动沉模防渗墙材料与受力变形特性研究[D],南京:河海大学,2005.
    [52]魏剑宏,晁旭.水泥土搅拌桩成墙技术在黄河工程中的应用[J].人民黄河,2003(11):22-23
    [53]张玉琴.土石坝混凝土防渗墙的应力变形分析研究[D],郑州:华北水利水电学院,2006.
    [54]沈新慧.防渗墙及其周围土体的应力探讨[J].水力学报,1995(11):39-45.
    [55]蔚高洋.青山水库土石坝低弹模砼防渗墙加固设计[D].杭州:浙江大学,2003.
    [56]王清友,孙万功,熊欢.塑性混凝土防渗墙[M].北京:中国水利水电出版社,2008.
    [57]陈慧远.小浪底土石坝坝基防渗墙的应力和变形[J].河海科技进展,1993(4)64-68,232-236.
    [58]Mona Weideborg,Torsten Kallqvis,Knut E.Fdegard. Environmental risk assessment of acryamide and methyloacryamide from a grouting agent used in the tunnel construction of Romeriksporten[J],Norway. Water Research,2001,35(11):2645-2652.
    [59]中华人民共和国卫生部.GB/T 5750.1-2006生活饮用水标准检验方法总则[S].北京:中国标准出版社,2007.
    [60]中华人民共和国卫生部.GB5749-2006生活饮用水标准[S].北京:中国标准出版社,2007.
    [6l]翁永基.材料腐蚀通论-腐蚀科学与工程基础[M].石油工业出版社.2004.
    [62]刘景军,李效玉.高分子材料的环境行为与老化机理研究进展[J].高分子通报,2005(03):62-69.
    [63]贺传兰,邓建国,张银生.聚氨酯材料的老化降解[J].聚氨酯工业,2002(03):1-5.
    [64]谭晓倩,史鸣军.高分子材料的老化性能研究[J].山西建筑,2006,32(1):197-180.
    [65]刘昌银,田发根.高分子材料的寿命及其预测方法一可靠性化学与实用科学[J].合成材料老化与应用.1992(04):45-57.
    [66]Uretek UK Ltd..Technical information about Uretek Material's Resistance to ageing[R].2007.
    [67]University of Hanover,Germany.Technical Information about Uretek Chemical Resistance to Aging[R].2009.
    [68]梁书恩.聚氨酯泡沫塑料泡孔结构与力学性能关系的研究[D].北京:中国工程物理研究院,2005.
    [69]卢子兴,李怀祥,田常津.聚氨酯泡沫塑料胞体结构特性的确定[J].高分子材料科学与工程.1995(02):86-91.
    [70]Katsuhisa Yamashita,Chisato Nonomura,Kazumi Yamaguchi.Modeling of Cell Structure in Polyurethane Foam[J].Journal of Cellular Plastics,2004.40(6):481-488.
    [71]O.Buzzi,S.Ftyus,Y.Sasaki,S.Sloan.Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil[J].mechanics of materials 2008(40)1012-1021.
    [72]中华人民共和国住房和城乡建设部.GBT 50082-2009普通混凝土长期性能和耐久性能试验方法[S].北京:中国建筑工业出版社.2010.
    [73]中华人民共和国国家经济贸易委员会.DL/T5150-2001水工混凝土试验规程[S].北京:中国电力出版社,2002.
    [74]中华人民共和国交通部.JTJ270-98水运工程混凝土试验规程[S].北京:人民交通出版社,1998.
    [75]中华人民共和国交通部.JTGE30-2005公路工程水泥及水泥混凝土试验规程[S].北京:人民交通出版社,2005.
    [76]中华人民共和国水利部.SL352-2006水工混凝土试验规程[s].北京:中国中医药出版社,2006.
    [77]ASTM C642-06:Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.1997.
    [78]EN 12390-8.Testing hardened concrete. Depth of penetration of water under pressure[S].UKAS publications,2009.
    [79]Steven Soltesz. Injected Polyurethane Slab Jacking (Interim Report SPR 306-261)[R].Oregon Department of Transportation Research Group and Federal Highway Administration,September 2000.
    [80]URETEK Technical Staff in collaboration with Padua University IMAGE Department.Technical notes and laboratory test results on the latest generation of the Uretek Geoplus expanding resin[R].2004.
    [81]R.Park, T.Paulay,Reinforced Concrete Structures[M].New York:John Wiley & Sons,Inc.,1975.
    [82]刘志远.高聚物注浆材料工程特性的试验研究[D].郑州:郑州大学,2007.
    [83]卢子兴,邹波.短纤维增强泡沫塑料力学行为的研究进展[J].复合材料学报,2005(05):1-8
    [84]王建华,芦艾等.增强硬质聚氨酯泡沫塑料的压缩破坏行为[J].高分子材料科学与工程,2003,4:133-135.
    [85]卢子兴,田常津,谢若泽.硬质聚氨酯泡沫塑料压缩力学性能[J].材料研究学报,1994(10):167-172.
    [86]中华人民共和国轻工业部.GB 8813-88硬质泡沫塑料压缩试验方法[S].北京:中国标准出版社.1988.
    [87]中国石油和化学工业协.GB/T 1039-1992塑料力学性能试验方法总则[S].北京:中国标准出版社.1992.
    [88]中华人民共和国轻工业部.GB 9641-88硬质泡沫塑料拉伸性能试验方法[S].北京:中国标准出版社.1988.
    [89]中华人民共和国轻工业部.GB 8812-88硬质泡沫塑料弯曲试验方法[S].北京:中国标准出版社.1988.
    [90]全国纤维增强塑料标准化技术委员会.GB/T 1449-2005纤维增强塑料弯曲性能试验方法[S].北京:中国标准出版社,1995:745-747.
    [91]孙明权,张玉琴,刘桂梅.土坝防渗墙材料与厚度对墙体应力变形的影响[J].华北水利水电学院学报,2004(04):1-4.
    [92]卢廷浩,汪荣大.瀑布沟土石坝防渗墙应力变形分析[J].河海大学学报(自然科学版),1998(02):41-44.
    [93]刘嘉材.化学注浆[M].北京:中国水利水电出版社,1987.
    [94]杜嘉鸿,张崇瑞,何修仁.地下建筑灌浆工程简明手册[M].北京:科学出版社,1998.
    [95]曾荣秀.灌浆技术经验汇编[M].北京:煤炭工业出版社,1988.
    [96]叶书麟.地基处理[M].北京:中国建筑工业出版社,1988.
    [97]《地基处理手册》编写委员会.地基处理手册[M].北京:中国建筑工业出版社,2000.
    [98]彭振斌.注浆工程设计计算与施工[M].武汉:中国地质大学出版社,1997.]
    [99]葛家良,江涛.巷道围岩劈裂注浆作用机制[J].矿山压力与顶板管理,1997,(增1):161-163.
    [100]章锌雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [101]孙斌堂,凌贤长等.渗透注浆浆液扩散与注浆压力分布数值模拟[J].水利学报,2007,37(11):1402-1407.
    [102]Jonathan Kantor. The Uretek Method Drives More Effective Road and Highway Maintance[N].Columbia Daily Tribune,July 13 2004.
    [103]谷拴成,苏培莉等.注浆压力作用下裂隙尖端劈裂的数值模拟[C].中国土木工程学会第十届土力学及岩土工程学术会议论文集.重庆:重庆大学出版社,2007.
    [104]徐萃薇,王复来,郭俊仃.碧口土石坝和防渗墙的应力应变分析与非线性有限元程序[J].水力发电.1980(06):11-19.
    [105]殷宗泽.高土石坝应力变形分析[C].海峡两岸土力学及基础工程地工技术学术研讨会论文 集.1994.
    [106]郦能惠,李国英等.土石坝原型观测资料的统计分析[C].土石坝与岩土力学技术研讨会论文集.2001.
    [107]Lister,J.R. and Kerr,R.C., Fluid-mechanical models of crack-propagation and their application to magmatransport in dykes[J].Journal of Geophysical Research-Solid Earth and Planets,1991,96(B6):10049-10077.
    [108]Rubin,A.M, Propagation of magma-filled cracks[R].Annual Review of Earth and Planetary Sciences,1995,23:287-336.
    [109]Adachi,A.,Siebrits,E.,Peirce,A.,and Desroches,J.,Computer simulation of hydraulic fracture-s.International Journal of Rock Mechanics and Mining Sciences[J],2007,44(5):739-757.
    [110]Bunger,A.P.,Detournay,E.,and Garagash,D. I.,Toughness-dominated hydraulic fracture with leak-off[J].International Journal of Fracture,2005,134(2):175-190.
    [111]Bunger,A.P. and Detournay,E., Experimental validation of the tip asymptotics for a fluid-driven crack[J].Journal of the Mechanics and Physics of Solids,2008,56(11):3101-3115.
    [112]Detournay,E., Propagation regimes of fluid-driven fractures in impermeable rocks[J].International JournalofGeomechanics,2004,4(1):35-45.
    [113]Lecamplon,B. and Detournay,E., An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196:4863-4880.
    [114]Peirce,A. and Detournay,E., An implicit level set method for modeling hydraulically driven fractures. Computer Methods in Applied Mechanics and Engineering,2008,197(33-40): 2858-2885.
    [115]Zhang,X., Detournay,E. and Jeffrey,R., Propagation of a penny-shaped hydraulic fracture parallel to the free-surface of an elastic half-space[J]. International Journal of Fracture,2002,115(2):125-158.
    [116]Zhang,X. and Jeffrey,R.G., The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures[J]. Geophysical Journal International, 2006,166(3):1454-1465.
    [117]Lecampion,B., An extended finite element method for hydraulic fracture problems[J]. Communications in Numerical Methods in Engineering,2009,25(2):121-133.
    [118]Peirce,A. and Detournay,E., An implicit level set method for modeling hydraulically driven fractures[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(33-40):2858-2885.
    [119]Shet,C. and Chandra,N., Analysis of energy balance when using cohesive zone models to simulate fracture processes. Journal of Engineering Materials and Technology-Transactions of the ASME, 2002,124(4):440-450.
    [120]ABAQUS Documentation,Version 6.9-1,2009.
    [121]Shet,C. and Chandra,N., Analysis of energy balance when using cohesive zone models to simulate fracture processes[J]. Journal of Engineering Materials and Technology-Transactions of the ASME, 2002,124(4):440-450.
    [122]管学茂.超细高性能灌浆水泥研究[D].武汉:武汉理工大学,2003年.
    [123]曾祥熹,郑长成.水泥浆的流变性及其对浆液运动的影响[J].华东地质学院学报.1999(2):137-141.