热激转录因子和XooIARP在水稻抗白叶枯病中作用的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病(Xanthomonas oryzae pv.oryzae,Xoo)作为水稻中三大病害之一,是威胁我国水稻生产的最主要细菌病害。由于致病小种发生变异,已有抗病品种丧失了抗性,从野生稻中发掘、利用抗白叶枯病新基因资源成为抗病育种的有效途径。利用不对称体细胞杂交技术,从疣粒野生稻(Oryza meyeriana L.)获得了抗白叶枯病基因资源。利用蛋白组学方法从该抗病新种质SH5和SH76中筛选出了一个生长素调节蛋白,是一类由生长素调节基因家族编码的蛋白,并命名为XooIARP(Xanthomonas oryzae pv. oryzae-induced auxin regulated protein)。本论文以感病品种8411、抗病新种质SH5和SH76为研究材料,试图用转基因技术研究XooIARP基因的功能;同时分析了热激转录因子(heat shock factor,HSF)在抗白叶枯病过程中的表达。研究结果如下:
     1.根据其它抗病材料的基因芯片表达谱结果筛选出7个在接种前后差异表达的OsHsfs.通过半定量RT-PCR分析8411、SH5和SH76水稻叶组织在接种白叶枯菌小种P6(PX099)后12h、24h、48h、72h的表达情况。相比于感病亲本8411,抗病新种质SH5和SH76中OshsfB2c2基因表达上调,其他基因则无显著变化。
     2.序列分析表明,XooIARP编码蛋白含2个重复的谷胱甘肽-S-转移酶的N末端结构域,推测该蛋白有可能是谷胱甘肽-S-转移酶。本研究将XooIARP cDNA克隆到表达载体pSKB.4(含T7启动子)中,构建重组原核表达质粒pSKB.4-XooIARP,并转化至E.coli菌株BL21(DE3)中,经IPTG诱导后,SDS-PAGE胶获得预测重组融合蛋白条带。
     3.构建了XooIARP基因的超表达和RNAi载体,通过农杆菌介导法转化水稻,将超表达载体转入白叶枯病感病品种日本晴和8411;而RNAi载体转入抗病新种质SH5。并获得转基因植株,PCR鉴定证明目的基因已经整合到基因组中。
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae(Xoo) was one of the three destructive diseases of rice(Oryzae sativa L.), causing the major loss of rice production in China. With existing resistance overcomed by new Xoo race, it is necessary to get new genes resistant to BB from wild rice. SH5 and SH76 contain novel BB resistance gene that was introduced into a cultivated japonica rice variety 8411, via somatic hybridization using the wild Oryzae meyeriana as the donor. By using the proteomic analyses, an auxin-regulated protein from the new hybrids was found, which was named XooIARP(Xanthomonas oryzae pv. oryzae.-induced auxin regulated protein).In this paper the function of XooIARP was studied by using transgenic method. Meanwhile, the expression patterns of seven heat shock factors(OsHSFs) were analysed in 8411, SH5 and SH76. Our results are summarized as follows.
     1. Seven differentially expressed OsHSFs were chosen from the microarray results, and their expression patterns were analyzed in leaves inoculating Xoo for 12h,24h,48h and 72h by reverse transcriptase polymerase chain reaction (RT-PCR) In contrast with 8411, only OshsfB2C2 was up-regulated in two new germplasms.
     2. Sequence analysis indicated that XooIARP contained two repeats of the N-terminal domain of glutathione S-transferase (GST) and may function as glutathione S-transferase. The prokaryotic expression vector pSKB.4 plus T7 promoter was constructed. After IPTG inducing, the fusion protein band with predicted molecular mass appeared on SDS-PAGE.
     3. XooIARP was first reported to be involved in the plant-pathogen interaction. In order to understand its role in resistance to BB, the over-expression and RNAi vectors of XooIARP gene under the regulation of cauliflower mosaic virus 35s promoter were constructed. Then the rice calluses were infected by Agrobacterium tumefaciens EHA105 with vectors, and hygromycin resistant seedings were obtained. XooIARP was integrated into the genome of the plants by PCR identification.
引文
[1]Sangster T, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity [J]. Curr. Opin. Plant Biol.,2005,8:86-92
    [2]Wu C. Heat stress transcription factors:structure and regulation [J]. Annu. Rev. Cell Dev. Biol.,1995,11:441-469
    [3]Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor [J]. Cell,1998,54:841-853
    [4]Clos J, Westwood JT, Becker PB, et al. Molecular cloning and expression of a heaxameric drosophila heat stress factor subject to negative regulation [J]. Cell,1990,63:1085-1097
    [5]Rahindran SK, Glorgig G, Clos J, et al. Molecular cloning and expression of a human heat stress factor [J]. Proc. Natl. Acad. Sci. USA,1991,88:6906-6910
    [6]Sarge KD, Zimarino V, Holm K, et al. Cloning and characterization of two mouse heat stress factors with distinct inducible and constitutive DNA binding ability [J]. Genes, 1991,5:1902-1911
    [7]Scharf KD, Rose S, Zott W, et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF [J]. EMBO J.,1990,9:4495-4501
    [8]Huhel A, Schoffl F. Arabidopsis heat shock factor:Isolation and characterization of the gene and the recombinant protein [J]. Plant Mol. Biol.,1994,26:353-362
    [9]晁旭,巩振辉,逯明辉,等.拟南芥热激转录因子AtHsfA6a的克隆与细胞定位分析[J].西北农林科技大学学报(自然科学版).2008,36(4):94-98
    [10]武丽娟,章镇,彭日荷,等.水稻热休克转录因子OsHSF13的克隆与生物信息学的初步分析[J].分子细胞生物学报,2007,40(3):251-257
    [11]Yamanouchhi U, Yano M, Lin H, et al. A rice spotted leaf gene, Sp17, encodes a heat stress transcription factor protein [J]. Proc. Natl. Acad. Sci. USA,2002,99:7530-7535
    [12]Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants [J]? Ann. Bot. (Lond),2006,98(2):279-288
    [13]Von Koskull-Doring P, Scharf KD, Nover L. The diversity of plant heat stress transcription factors [J]. Trends Plant Sci.,2007,12(10):452-457
    [14]Nover L, Bharti K, Doring P, et al. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need [J]? Cell Stress Chap., 2007,6(3):177-189
    [15]Baniwal SK, Bharti K, Chan KY, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcriptionfactors [J]. J. Biosci., 2004,29(4):471-487
    [16]Mittal D, Chakrabarti S, Sarkar A, et al. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses [J]. Plant Physiol. Biochem.,2009,47:785-795
    [17]Czarnecka-Verner E, Yuan CX, Scharf KD, et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential [J]. Plant Mol. Biol., 2004,43:459-471
    [18]Mishra SK, Tripp J, Winkelhaus S, et al. In the complex family of heat stress transcription factors, HsfAl has a unique role as master regulator of thermo tolerance in tomato [J]. Genes Dev.,2002,16:1555-1567
    [19]Port M, Tripp J, Zielinski D, et al. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2[J]. Plant Physiol.,2004, 135:1457-1470
    [20]Ogawa D, Yamaguchi K, Nishiuchi T. High-level over-expression of the Arabidopsis HsfA2 gene confers not only increased them tolerance but also salt/osmotic stress tolerance and enhanced callus growth [J]. J. Exp. Bot.,2007,58(12):3373-3383
    [21]Nishizawa A, Yabuta Y, Yoshida E, et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress [J]. Plant J.,48(4): 535-547
    [22]Kotak S, Vierling E, Baumlein H, et al. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis [J]. Plant Cell, 2007,19:182-195
    [23]Wang C, Zhang Q, Shou H. Identification and expression analysis of OsHsfs in rice [J]. J. Zhejiang Univ. Sci. B,2009,10(4):291-300
    [24]党姣,蒋明义,林凡.ABA上调水稻叶片中OsHsf基因的表达[J].南京农业大学学报.2010,33(1):11-15
    [25]Yokotani N, Ichikawa T, Kondou Y, et al. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis [J]. Planta,2008,227(5):957-967
    [26]Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature [J]. Plant Physiol.,2008,146:748-761
    [27]Yoshida T, Sakuma Y, Todaka D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system [J]. Biochem. Biophys. Res. Commun.,2008,368:515-521
    [28]Bharti K, Von Koskull-Doring P, Bharti S, et al. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1 [J]. Plant Cell, 2004,16:1521-1535
    [29]Rizhsky L, Liang H, Shuman J, et al. When defense pathways collide:The response of Arabidopsis to a combination of drought and heat stress [J]. Plant Physiol.,2004,134: 1683-1696
    [30]Mittler R. Abiotic stress, the field environment and stress combination [J]. Trends Plant Sci.,2006,11:15-19
    [31]Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. Arabidopsis microarray database and analysis toolbox [J]. Plant Physiol.,2004,136:2621-2632
    [32]Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways [J]. BMC Genomics,2007,8:125
    [33]Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase is a central component of the reactive oxygen gene network of Arabidopsis [J]. Plant Cell,2005,17: 268-281
    [34]Wigge PA, Kim MC, Jaeger KE, et al. Integration of spatial and temporal information during floral induction in Arabidopsis [J]. Science,2005,309:1056-1059
    [35]Liu JG, Qin QL, Zhang Z, Peng RH, et al. OsHSF7 gene in rice, Oryza sativa L. encodes a transcription factor that functions as a high temperature receptive and responsive factor [J]. BMB Rep.,2009,42:16-20
    [36]Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis [J]. Plant Physiol., 2005,139:847-856
    [37]Li C, Chen Q, Gao X, et al. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis [J]. Sci. China C Life Sci.,2005,48:540-550
    [38]Storozhenko S, de Pauw P, van Montagu M, et al. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol.,1998, 118:1005-1014.
    [39]Sakuma Y, Maruyama, K, Qin, F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA,2006,103:18822-18827
    [40]Wilce MC, Parker MW. Structure and function of glutathione S-transferases [J]. Biochim. Biophys. Acta,1994,1205:1-18
    [41]Sheehan D, Meade G, Foley VM, et al. Structure, function and evolution of glutathione transferases:implications for classification of nonmammalian members of an ancient enzyme superfamily [J]. Biochem. J.,2001,360:1-16
    [42]Dix DP, Laptho A, Edwar R. Plant glutathione transferases [J]. Genome Biol.,2002,2 (3):3001-3010
    [43]Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress [J]. Free Radic. Res.,1999,31: 273-300
    [44]Soranzo N, Gorla MS, Mizzi L, et al. Organisation and structural evolution of the rice glutathione S-transferase gene family [J]. Mol. Gen. Genomics,2004,271:511-521
    [45]Gronwald JW, Plaisance KL. Isolation and characterization of glutathione S-transferase isozymes from sorghum [J]. Plant Physiol.,1998,117:877-892
    [46]何华纲,高安礼,王秀娥,等.簇毛麦中谷胱甘肽硫转移酶基因的克隆与表达分析[J].河南大学学报(自然科学版),2008,38:387-392
    [47]Chi Y, Cheng Y, Vanitha J, et al. Expansion mechanisms and functional divergence of the glutathione S-transferase family in sorghum and other higher plants [J]. DNA Res., 2011,18:1-16
    [48]Wagner U, Edwards R, Dixon DP, et al. Probing the diversity of the Arabidopsis glutathione S-transferase gene family [J]. Plant Mol. Biol.,2002,49:515-532
    [49]Wu J, Cramer CL, Hatzios KK. Characterization of two cDNAs encoding glutathione S-transferases in rice and induction of their transcripts by the herbicide safener fenchlorim [J]. Physiol. Plant.,1999,105:102-108
    [50]Rossini L, Jepson I, Greenland AJ, et al. Characterisation of GST isoforms in three maize inbred lines exhibiting differential sensitivity to alachlor [J]. Plant Physiol.,1996, 112:1595-1600
    [51]Rossini L, Frova C, Pe ME, et al. Alachlor regulation of maize glutathione S-transferase genes [J]. Pestic. Biochem. Physiol.,1998,60:205-211
    [52]Hatton PJ, Cummins I, Cole DJ, et al. Glutathione transferases involved in herbicide detoxification in the leaves of Setaria faberi (giant foxtail) [J]. Physiol. Plant.,1999,105: 9-16
    [53]王光勇,刘迪秋,葛锋,等.GST在植物非生物逆境胁迫中的作用[J].植物生理学通讯,2010,(46):890-894
    [54]Edwards R, Dixon DP. The role of glutathione transferases inherbicide metabolism in herbicides and their mechanisms of action [M]. Sheffield Academic Press,2000:33-71.
    [55]Rea PA. MRP subfamily ABC transporters from plants and yeast [J]. J. Exp. Bot.,1999, 50:895-913
    [56]Sandermann H Jr. Plant metabolism of xenobiotics [J]. Trends Biochem. Sci.,1992, 17(2):82-84
    [57]Marrs KA, Alfenito MR, Lloyd AM, et al. A glutathione S-transferase involved in vacuolar transfer enconded by the maize gene Bronze-2 [J]. Nature,1995,375:397-400
    [58]Axarli IA, Rigden DJ, Labrou NE. Characterization of the ligandin site of maize glutathione S-transferase I [J]. Biochem. J.,2004,382:885-893
    [59]Mannervik B, Danielson UH. Glutathione transferases structure and catalytic activity [J]. CRC Crit. Rev. Biochem.,1988,23:283-337
    [60]Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases [J]. Genome Biol., 2002,3(3):3004.1-3004.10
    [61]Edwards R, Dixon DP and Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health [J]. Trends Plant Sci.,2000,5:193-198
    [62]Seppanen MM, Cardi T, Hyokki MB, et al. Characterisation and expression of cold induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids [J]. Plant Sci.,2000,153:125-133
    [63]Moons A. Osgstu3 and Osgstu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stressresponsive in rice roots [J]. FEBS Lett.,2003,553:427-432
    [64]Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidopsis thaliana L. [J]. FEBS Lett.,1993,335:189-192
    [65]Bianchi MW, Roux C, Vartanian N. Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase [J]. Physiol. Plant.,2002,116:96-105
    [66]Vollenweider S, Weber H, Stolz S, et al. Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves [J]. Plant J.,2000,24:467-476
    [67]Mauch F, Dudler R. Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack [J]. Plant Physiol.,1993,102:1193-1201
    [68]Zhou J, Goldsbrough PB. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene [J]. Plant Mol. Biol.,1993,22:517-523
    [69]Chen W, Singh KB. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element [J]. Plant J., 1999,19:667-677
    [70]Brentner LB, Mukherji ST, Merchie KM, et al. Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT) [J]. Chemosphere,2008,73:657-662
    [71]Chen W, Chao G, Singh KB. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF-and OBP1-binding sites [J]. Plant J., 1996,10:955-966
    [72]Dixon DP, McEwen AG, Lapthorn AJ, et al. Forced evolution of a herbicide detoxifying glutathione transferase [J]. J. Biol. Chem.,2003,278:23930-23935
    [73]Yu T, Li YS, Chen XF, et al. Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methylviologen [J]. J. Plant Physiol.,2003,160:1305-1311
    [74]Roxas VP, Smith RK, Allen ER, et al. Overexpression of glutathione S-transferase glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress [J]. Nat. Biotechnol.,1997,15:988-991
    [75]Ezaki B, Katsuhara M, Kawamura M, et al. Different mechanisms of four aluminum (Al) resistant transgenes for Al toxicity in Arabidopsis [J]. Plant Physiol.,2001,127:918-927
    [76]Light GG, Mahan JR, Roxas VP, et al. Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance [J]. Planta,2005,222:346-354
    [77]Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochem. J.,1997,322:681-692
    [78]Kitamura S, Shikazono N, Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis [J]. Plant J., 2004,37:104-114
    [79]Zettl R, Schell J, Palme K. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid: identification of a glutathione S-transferase [J]. Proc. Natl. Acad. Sci. USA,1994,91:689-693
    [80]Bilang J, Sturm A. Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-azidoindole-3-acetic acid [J]. Plant Physiol.,1995,109:253-260
    [81]Lederer B, Boger P. Binding and protection of porphyrins by glutathione S-transferases of Zea mays L. [J]. Biochim. Biophys. Acta,2003,1621:226-233
    [82]da Fonseca RR, Johnson WE, O'Brien SJ, et al. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases [J]. BMC Evol. Biol.,2010,10:281-289
    [83]Chothia C, Gough J, Vogel C, et al. Evolution of the protein repertoire [J]. Science,2003, 300:1701-1703
    [84]Dixon DP, Hawkins T, Hussey PJ, et al. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily [J]. J. Exp. Bot.,2009, 60:1207-1218
    [85]Jiang SY, Ramamoorthy R, Ramachandran S. Comparative transcriptional profiling and evolutionary analysis of the GRAM domain family in eukaryotes [J]. Dev. Biol.,2008, 314:418-432
    [86]Gonzali S, Loreti E, Solfanelli C, et al. Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis [J]. J. Plant Res.,2006,119:115-123
    [87]Yu CL, Yan SP, Wang CC, et al. Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight [J]. Phytochemistry,2008,69:1989-1996
    [88]黄佳男,王长春,胡海涛,等.疣粒野生稻抗白叶枯病新基因的初步鉴定[J].中国水稻科学,2008,22:33-37
    [89]J.萨姆布鲁克,D W拉塞尔著,黄培堂译.分子克隆实验指南[M].北京:科学出版社,2003:1688-1692
    [90]Kumar M, Busch W, Birke H, et al. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis [J]. Mol. Plant,2009,2:152-165
    [91]Biase D D, Tramonti A, Bossa F, et al. The response to stationary-phase stress conditions in Escherichia coli:role and regulation of the glutamic acid decarboxylase system [J]. Molecular Microbiology.1999,32:1198-1211
    [92]Castanie-Cornet M P, Penfound T A, Smith D, et al. Control of acid resistance in Escherichia coli [J]. The Journal of Bacteriology.1999,181:3525-3535
    [93]Wesley SV, Helliwell CA, Smith NA, et al. Construct design for efficient, effective and high-throughput gene silencing in plants [J]. Plant J.,2001,27:581-590
    [94]Miki D, Ithor R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice [J]. Plant Physiol.,2005,138:1903-1913
    [95]彭昊,翟英,张芊,等.水稻高效RNA干涉体系的建立及其功能分析[J].中国农业科学,2006,39,9:1729-1735
    [96]Horiguchig G. RNA silencing in plants:a shortcut to functional analysis [J]. Differentiation,2004,72:65-73
    [97]Hammond-Kosack KE, Parker JE. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding[J]. Curr Opin Biotech,2003,14:177-193
    [98]Kukcuoglu S, Degenhardt J, Lensing J, et al. Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere[J]. J Exp Bot,2007,58:733-741
    [99]Qin G, Tian S, Chan Z, et al. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of penicillium expansum: Analysis based on proteomic approach[J]. Mol Cell Proteomics,2007,6:425-438