凸体的Brunn-Minkowski理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文隶属于Brunn-Minkowski理论领域,该领域是近几十年来在国际上发展非常迅速而重要的一个几何学分支.本学位论文利用几何分析中的凸体理论,积分变换方法和解析不等式理论,研究了凸体和星体的等周问题和相关的不等式问题.
     本文的研究工作主要分为三个方面:
     在经典Brunn-Minkowski理论中,我们推广了矩阵形式的Brunn-Minkowski不等式.作为应用,我们推广了Alexander度量加不等式.
     在对偶Brunn-Minkowski理论中,我们引入了对偶调和均质积分概念,系统的研究了它的性质,并建立对偶调和均质积分的Brunn-Minkowski不等式,Blaschke-Santalo型不等式和Bieberbach不等式;接着我们建立了对偶仿射均质积分的对偶Brunn-Minkowski不等式,最近我们得知这个不等式被Gardner用另外的方式证明;凸体的极体是凸几何中一个重要概念,既然相交体和投影体有对偶关系,因此在研究完投影体的极体之后自然要研究相交体的极体.但相交体不一定凸,所以关于相交体的极体的性质和经典不等式的讨论与研究几乎是一片空白.采用Moszynska引入的星对偶的概念,我们在第五章中研究相交体的星对偶体,从而更进一步地揭示了投影体和相交体两者之间的对偶关系;引入了对偶混合体的概念.作为应用,我们给出了对偶Brunn-Minkowski不等式的加强版本.这些结果都加强了经典Brunn-Minkowski理论与对偶Brunn-Minkowski理论的对偶性.
     在L_p-Brunn-Minkowski理论中,我们首先给出了两个关于新椭球的极值性质;然后研究了L_p仿射表面积,将Petty仿射投影不等式和Winterniz单调性问题推广到L_p仿射表面积;建立了L_p质心体和其极体的Brunn-Minkowski型不等式;研究了凸体的最小L_p平均宽度,给出凸体K具有最小L_p平均宽度的充分必要条件,最后给出了凸体L_p平均宽度位置的稳定性.
This article belong to the Brunn-Minkowski theory, which is a high-speed developing geometry branch during the past several decades. This thesis works for theoretical study on isoperimetric problem and related inequalities by using theory of geometry analysis, way of integral transformations and analysis inequalities.
     The research works of this thesis consists of three parts.
     In classical Brunn-Minkowski theory, we establish an extension of the matrix form of the Brunn-Minkowski inequality. As applications, we give generalizations on metric addition inequality of Alexander.
     In dual Brunn-Minkowski theory, we study the properties of the dual harmonic quer-massintegrals systematically and establish some inequalities for the dual harmonic quer-massintegrals, such as the Minkowski inequality, the Brunn-Minkowski inequality, the Blaschke-Santalo inequality and the Bieberbach inequality. We establish the dual Brunn-Minkowski inequality for dual affine quermassintegrals. Recently we learned that Gardner have independently proved it by a different method. The polar body of a convex body is an important object in the context of convex geometry. Hence, after we studied the intersection bodies, it is natural to consider the inequalities for their polar bodies. But the intersection body of even a convex body generally is not convex. Thus the inequalities for the polar body of the intersection body can not be given in the general cases. Applying the concept of star dual, which is introduced by Moszynska, we establish some inequalities for star duals of intersection bodies. Hence, we present a new kind of duality between intersection bodies and projection bodies. At last, we introduce the dual mixed body and establish some properties and inequalities of it. As applications, we strength some inequalities in the the dual Brunn-Minkowski theory.
     In Brunn-Minkowski-Firey theory, we establish two extremum properties of the new ellipsoid; Then we generalize Petty's affine projection inequality and monotonicity results related to affine surface area to L_p—affine surface area; We establish the Brunn-Minkowski type inequalities for the volume of the L_p centroid body and its polar body with respect to the normalized L_p radial addition. At last, we introduce the minimal L_p—mean width of a convex body and generalize the minimal mean width to the Brunn-Minkowski-Firey theory. Furthermore, we get the stability version of the L_p mean width position for L_p projection body.
引文
[1] A.D. Aleksandrov, Zur Theorie der gemischten Volumina yon konvexen Korpern, Ⅰ. Verallgemeinerung einiger Begriffe der Theorie der konvexen Korpern, Mat. Sbornik N.S. 2(1937), 947-972.
    [2] A.D. Aleksandrov, On the theory of mixed volumes. Ⅰ. Extension of certain concepts in the theory of convex bodies, Mat. sb. N. S. 2(1937), 947-972.
    [3] R. Alexander, The Geometry of Metrix and Linear Space, Springer-Verlag, 1975, 57-65.
    [4] K.M. Ball, Some remarks on the geometry of convex sets. In. Geometric Aspects of Functional Analysis,ed. by J. Lindenstrauss and V.D.Milman, Lecture Notes in Mathematics 1317. Springer,Heidelberg.1989.pp224-31.
    [5] K.M. Ball, An Elementary Introduction to Modern Convex Geometry, Flavors of Geometry, ed. by Silvio Levy, Cambridge University Press, New York, 1997, pp.1-58.
    [6] I.J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer, Berlin, 1994.
    [7] J. Bastero, M. Romance, Positions of convex bodies associated to extremal problems and isotropic measures. Adv. Math. 184, (2004), 64-88.
    [8] E.F. Beckenbach and R.Bellman, Inequalities, Springer, Berlin, 1961.
    [9] H. Bergstrom, A triangle inequality for matrices, Den Elfte Skandiaviski Matematikerkongress, Trondheim, 1949.
    [10] L. Bieberbach, Uber eine extremaleigenschaft des kreises. Jber. Deutsch. Verein 24(1915), 247-250.
    [11] W. Blaschke, Uber aJfine Geometrie Ⅸ: Verschiedene Bemerkungen und Aufgaben. Bet. Verh. Sachs. Akad. Wiss. Leipzig Math. Phys. Kl 69(1917), 412-420.
    [12] W. Blaschke, Vorlesungen über Differentialgeometrie Ⅱ, Springer-Verlag, Berlin, 1923.
    [13] E.D.Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145(1969), 323-345.
    [14] T. Bonnesen,W.Fenchel. Theorie der konvexen Korper. Springer,Berlin.1934.
    [15] J.Bourgain, J.Lindenstrauss, Projection bodies, Geometric Aspects of Functional Analysis, Springer Lecture Notes in Math., 1317(1988), 250-270.
    [16] J.Bourgain. On the Busemann-Petty problem for perturbations of the ball. Geom.Functional Anal.1(1991),1-13.
    [17] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent Math., 30(1975), 202-216.
    [18] C. Borell, Capacitary inequality of the Brunn-Minkowski inequality type, Math. Ann., 263(1993), 179-184.
    [19] Y.D. Burago and V.A. Zalgaller, Geometric Inequality, Springer, New York, 1988.
    [20] S.K. Chang and C.K. Chow, The reconstruction of three dimensional objects from two orthogonal projections and its application to cardiac cineangiography, IEEE Trans. Comput. 22(1973), 18-28
    [21] David Gale, Review of Economic Studies, 34, No.1 (1967), 1-18.
    [22] E.G. Gilbert and C.P. Foo, Computing the distance between general convex objects in three-dimensional space, IEEE Trans. ON Robotics and Automation Vol. 6, NO.1, (1990).
    [23] K. Fan, Some inequality concerning positive-definite hermitian matrices, Proc. Cambridge Phil. Soc., 51(1958), 414-421.
    [24] K. Fan, Problem 4786, Amer. Math. Monthly, 65(1958), 289.
    [25] W. Fenchel and B.Jessen, Mengenfunktionen und konvexe Korpern, Danske Vid. Selskab. Mat.-fys. Medd. 16(1938), 3.
    [26] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
    [27] M. Fiedler and T. Markham, Some results on the Bergstrom and Minkowski inequalities, Linear Algebra and Appl., 232(1996), 199-211.
    [28] W.J. Firey, Blaschke sums of convex bodies and mixed bodies, Proc. Colloq. Convexity (Copenhagen 1965), Kobenhavns Univ. Mas. Inst, 1967, 94-101.
    [29] W.J. Firey, p-means of convex bodies, Math, Scand. 10(1962), 17-24.
    [30] E.L. Grinberg, Isoperimetric inequalities and identities for k-dimensional crosssections of a convex bodies, London Math. Soc. (1990)22, 478-484.
    [31] R.J.Gardner. Geometric Tomography. Cambridge Univ. Press, New York.1995.
    [32] R.J. Gardner and S. Vassallo, Inequalities for dual Isoperimetric Deficits, Mathematika, 45(1998), 269-285.
    [33] R.J. Gardner and P. Gronchi,A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc., 353(2001), 3995-4024.
    [34] R.J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39(2002), 355-405.
    [35] R.J.Gardner. Intersection bodies and the Busemann-Petty problem. Trans.Amer.Math.Soc. 342(1994), 435-445.
    [36] R.J. Gardner, The Dual Brunn-Minkowski Theory For Bounded Borel Sets: Dual Affine Quermassintegrals and Inequalities, submit.
    [37] R.J.Gardner. A positive answer to the Busemann-Petty problem in three dimensions. Annals of Math. 140(1994),435-447.
    [38] A.A.Giannopoulos. A note on a problem of H.Busemann and C.M.Petty concerning sections of symmetric convex bodies. Mathematika, 37(1990),239-244.
    [39] A. Giannopoulos, M. Papadimitrakis Isotropic surface area measures. Mathematika. 46, (1999), 1-13.
    [40] A. Giannopoulos, V. D. Milman, Extremal problem and isotropic position of convex bodies, Israel J. Math. 117, (2000) 29-60.
    [41] A. Giannopoulos, V.D. Milman and M. Rudelson, Convex bodies with minimal mean width, Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 1745, (2000) 81-93.
    [42] A. Giannopoulos, Notes on isotropic convex bodies, Institute of Mathematics, Polish Academy of Sciences, Warsaw. 2003
    [43] P.M. Gruber, Approximation of convex bodies, Convexity and its Application, P.M.Gruber and J.M.Wills, Eds., Birkhauser, Bsel, 1983, pp.131-162.
    [44] P.F. Guan, Topics in Geometric Fully Nonlinear Equations, http://www.math.mcgill.ca/guan/notes.html.
    [45] E. Grinberg, G.Y.Zhang, Convolutions, Transforms, and Convex Bodies, Proc. London Math. Soc. 78(1999), 77-115.
    [46] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Gambridge University Press. 1996
    [47] G.H. Hardy, J.E.Littlewood, and G.Pólys, Inequalities, Cambridge Univ. Press, Cambridge, 1959.
    [48] H. Hadwiger. Vorlesungen über Inhalt, Oberflache und Isoperimetrie. Berlin Gottingen Heidelberg:Springer 1957.
    [49] G.H. Hardy, J.E.Littlewood, and G.Pólys, Inequalities, Cambridge Univ. Press, Cambridge, 1959.
    [50] E.V. Haynesworth, Note on bounds for certain determinants, Duke Math. J., 24(1957), 313-320.
    [51] E.V. Haynesworth, Bounds for determinants with positive diagonals, Trans. Amer. Math. Soc., 96(1960), 395-413.
    [52] E.V. Haynsworth, Applications of an inequality for the Schur complement, Proc. Amer. Math. Soc., 24(1970), 512-516.
    [53] R. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
    [54] F. John, Extremun problems with inequalities as subsidiary conditions, in Studies and essays presented to Courant R on his 6oth birthday (Jan. 8, 1948), Interscience, New York, 1948, 187-204.
    [55] J. Jonasson, Optimization of shape in continuum percolation. Ann. Probab. 2001, 29: 624-635.
    [56] D.G.Larman and C.A.Rogers. The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika, 22(1975),164-175.
    [57] G.S. Leng, The Brunn-Minkowski inequality for volume differences, Adv. Appl. Math., 32(2004), 615-624.
    [58] 冷岗松,凸体的曲率映象与仿射表面积,数学学报(A),45(2002),4:797-802.
    [59] K. Leichtweiss. Konvexe Mengen. Berlin Heidelberg New York:Springer.1980.
    [60] K. Leichtweβ, Affine Geometry of Convex Bodies. J. A. Barth, Heidelberg, 1998.
    [61] K. Leichtweiβ, Zur affinoberflache konvexer korper, Manuscr. Math., 56(1986): 429-464.
    [62] K. Leichtweiβ, Uber einige eigenschaften der affinoberflache beliebiger konvexer kSrper, Results Math., 13(1988): 255-282.
    [63] K. Leichtweiβ, Bemerkungen zur definition einer erweiterten affinoberflache von, Manuscr. Math., 65(1989): 181-197.
    [64] K. Leichtweiβ , On the history of the affine surface area for convex bodies, Results in Math., 20(1991): 650-656.
    [65] C.K. Li and R. Mathias, Extremal Characterizations of Schur Complement and Resulting Inequalities, SIAM Review., 42(2000), 233-246.
    [66] J. Lindenstrauss and V.D. Milman, Local theory of normal spaces and convexity, Handbook of Convex Geometry (Gruber P M and Wills J M, eds.), North-Holland, Amsterdam, 1993. 1149-1220.
    [67] E.Lutwak, Dual mixed volumes, Pacific J.Math. 58(1975), 417-426.
    [68] E.Lutwak, A general Bieberbach inequality, Math. Proc. Camb. Phil. Soc. 78(1975), 493-495.
    [69] E.Lutwak. A general isepiphanic inequality. Proc.Amer.Math.Soc. 90(1984)415-421.
    [70] E. Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl. 119(1979), 139-148.
    [71] E. Lutwak, Inequalities for Hadwiger's harmonic quermassintegrals. Math. Ann. 280(1988), 165-175.
    [72] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71(1988), 232-261.
    [73] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math.Soc. 60(1990),365-391.
    [74] E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339(1993), 901-916.
    [75] E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc.287(1985), 91-106.
    [76] E. Lutwak, On quermassintegrals of mixed projection bodies, Geom. Dedi. 33(1990), 51-58.
    [77] E. Lutwak, Volume of mixed bodies, Trans. Amer. Math. Soc, 294(1986), 487-450.
    [78] E. Lutwak, The Brunn-Minkowski-Firey theory Ⅰ: Mixed volumes and the Minkowski problem, J. Differential Geom. 1993, 38:131-150.
    [79] E. Lutwak, The Brunn-Minkowski-Firey theory Ⅱ: affine and geominimal surface areas. Adv. in Math. 1996, 118:244-294.
    [80] E. Lutwak, D. Yang and G. Y. Zhang A new ellipsoid associated with convex bodies. Duke. Math. J. 2000, 104:375-390.
    [81] E. Lutwak, On the Blaschke-Santaló inequality, Ann. N. Y. Acad. Sci., 440(1985), 106-112.
    [82] E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125(1987): 351-360.
    [83] E. Lutwak, Extended affine surface area, Adv. Math., 85(1991): 39-68.
    [84] E. Lutwak, Selected affine isoperimetric inequalities, Handbook of Convex geometry (P.M.Gruber and J.M.Will, Eds.), North-Holland, Amsterdam, 1993, 151-176.
    [85] E. Lutwak, On some affine isoperimetric inequalities, J. Differential Geom., 56(1986):1-13.
    [86] E. Lutwak, D. Yang and G.Y. Zhang, L_p affine isoperimetric inequalities, J.Differential Geom., 56(2000), 111-132.
    [87] E. Lutwak, D. Yang and G.Y. Zhang, The Cramer-Rao inequality for star bodies, Duke. Math. J. 112(2002), 59-81.
    [88] E. Lutwak and G.Y. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47(1997), 1-16.
    [89] E. Lutwak, D. Yang and G.Y. Zhang, L_p John Ellipsoids, Proc. London Math. Soc. 90(2005), 497-520.
    [90] S.J.Lv and G.S.Leng, Extended Affine Surface Area and Zonotopes, J.Kore.Math.Soc. submit.
    [91] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normal n-dimensional space, Geometric Aspect of Functional Analysis, Springer Lecture Note in Math. 1989, 1376:64-104.
    [92] V. D. Milman and G. Schechtman Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics 1200, (1986) Springer, Berlin.
    [93] H. Minkowski, Volumen und Oberfiache, Math. Ann. 57(1903), 447-495.
    [94] M. Moszynska, Quotient Star Bodies, Intersection Bodies and Star Duality. J. Math. Anal. Appl. 232(1999), 45-60.
    [95] M. Moszynska, Selected Topics in Convex Geometry, Springer Verlag, 2005.
    [96] A. Oppenheim, Advanced problems 5092, Amer. Math. Monthly, 701(1963), 444.
    [97] R. Osserman, The Brunn-Minkowski inequality for multiplictities, Invent. Math., 125(1996),405-411.
    [98] M.Papadimitrakis. On the Busemann-Petty problem about convex, centrally symmetric bodies in R~n. Mathematika,39(1992),258-266.
    [99] C.M. Petty. Isopermetric problems. Proc.Conf.Convexity and Combinatorial Geometry, (Univ. Oklahoma, 1971), University of Oklahoma, 1972, pp. 26-41.
    [100] C.M. Petty, Projection bodies, Proc. Coll. Convexity, Copenhagen, 1965, Kφbenhavns Univ. Mat. Inst. 1967,234-241.
    [101] C. M. Petty, Affine isoperimetric problems, Ann. N. Y. Acad. Sci., 440(1985), 113-127.
    [102] C.M. Petty, Geominimal surface area, Geom. Dedicata, 3(1974), 77-97.
    [103] C. M. Petty, Centroid surface, Pacific J. Math., 11 (1961), 1535-1547.
    [104] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Univ. Press, Cambridge.
    [105] Delin Ren, Topics in Intergral Geometry, World Scientific, 1994
    [106] L.A. Santal5. Un invariante afin para los cuerpos del espacio de n dimensiones. Portugal. Math. 8(1949), 155-161.
    [107] L.A. Santaló. Integral geometry .and geometric probability. Reading, MA:addison-Wesley.1976.
    [108] R.S. Strichartz, L~p estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke. Math. J. 48(1981), 699-727.
    [109] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
    [110] R. Schneider, Simplices, Educational talks in the Research Semester on Geometric Methods in Analysis and Probability, Erwin Schrodinger Institute, Vienna, July 2005.
    [111] Schneider R., Zu einem problem von shephard über die projectionen konvexer korper, Math. Z., 101 (1967), 71-82.
    [112] C. Schütt, On the affine surface area, Proc. Am. Math. Soc., 118(1993): 1213-1218.
    [113] C. Schütt, and E. Werner, The convex floating body, 66(1990): 275-290.
    [114] I. Stefanakis, A note on the surface isotropic position, avalaible on Michael Papadimitrakis's web page http://www.math.uoc.gr/~papadim/stud.html
    [115] Tóth L Fejes. Regulaere Figuren. Akademiai Kiado, Budapest, 1965.
    [116] A.C.Thompson, Minkowski Geometry, Cambridge Univ. Press, Cambridge ,1996.
    [117] Tomczak-Jaegermann, Banach- M azur distances and finite dimensional operator ideals, Pitman Monographs 38,(1989) Pitman, London.
    [118] P. Urysohn.Mean width and volume of bodies in n dimensional space. Rec. Math. Soc. Math. Moscow 8(1924), 477-480.(Russian)
    [119] E. Werner, Illumilation bodies and affine surface area, Studia Math., 110(1994): 257-269.
    [120] L. Yang and J.Z. Zhang, On Alexander's conjecture, Chinese Science Bulletin, 27 (1982), 1-3.
    [121] 杨路,张景中,关于有限点集的一类几何不等式,数学学报,23(5)(1980),740-749.
    [122] 杨路,张景中,Neuberg-Pedoe不等式的高维推广及应用,数学学报,24(3)(1981),401-408.
    [123] 杨路,张景中,给二面角的单形嵌入的充分必要条件,数学学报,26(2)(1983),250-256.
    [124] W.Y. Yu, G.S. Leng G and D.H. Wu, Isotropic p-surface area measure, Submitted.
    [125] J.Yuan, S.Yuan and G.S. Leng, Inequalities for Dual Harmonic Quermassintegrals, J. Korean. Math. Soc. 43(2006), 593-607.
    [126] J.Yuan, and G.S. Leng, Inequalities for Dual Affine Quermassintegrals, J. Inequal. Appl. vol. 2006, Article ID 50181, 7 pages, 2006.
    [127] G.Y. Zhang, Centered bodies and dual mixed volumes, Tran. Amer. Math. 345(1994), 777-801.
    [128] G.Y. Zhang, Dual kinematic Formulas, Tran. Amer. Math., 351(1999), 985-995.
    [129] G. Y. Zhang, A positive solution to the Busemann-Petty problem in R~4, Annals of Math., 149 (1999), 535-543.