二氧化钛复合纳米结构的制备和光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO_2)是一种重要的无机功能材料,具有化学性质稳定、抗光腐蚀、无毒和低成本等特点,在光电转换和光催化等领域已经受到越来越多的关注。然而,TiO_2是宽带隙半导体,只能被紫外光激发,且光生电子-空穴对容易复合,光量子效率低,限制了其在光电催化领域的应用。因此,开发具有可见光响应的纳米TiO_2光催化剂并拓展其应用领域是当前光催化研究的重要任务。
     尽管传统纳米粉末和纳米颗粒薄膜具有优异的性能,但它们易团聚且光电转换效率低,因此在光电催化领域的应用受到限制,本文展开纳米材料的管/棒状阵列的研究。采用阳极氧化法在钛片上成功制备了分布均匀、排列整齐有序的TiO_2纳米管阵列并在其上热沉积Pt纳米颗粒得到Pt/TiO_2NTs催化剂,对样品进行了形貌、成分和结构的表征,并系统研究了Pt/TiO_2NTs对乙醇的电催化性能。采用水热法制备得到了不同微观结构的TiO_2纳米棒阵列,用不同方法在其上沉积CdS、Co_3O_4和In_2O_3纳米颗粒,得到CdS/TiO_2、Co_3O_4/TiO_2、In_2O_3/TiO_2复合纳米结构,并对这些复合纳米结构的光电化学性能进行了系统研究。采用贵金属沉积和半导体复合手段对金红石型的TiO_2纳米棒阵列进行了改性,得到了CdS-Pt/TiO_2光催化剂,研究了可见光(或紫外光)辐照下,改性TiO_2的光解水性能。本文的主要研究结果如下:
     1)采用阳极氧化法在钛片上成功制备了分布均匀、排列整齐有序的TiO_2纳米管阵列,利用XRD、FESEM、TEM、UV-vis和XPS等手段对样品进行了表征,详细讨论了阳极氧化工艺对其形貌的影响,并对TiO_2纳米管阵列形成机理进行详细阐述。(第二章)
     2)采用水热法在FTO上制备了TiO_2纳米棒阵列,利用XRD、FESEM、TEM、UV-vis和XPS等手段对制备的产物进行表征,系统地讨论了水热参数等对产物结构和形貌的影响,得出了TiO_2纳米棒阵列的生长规律。光电化学性能研究表明,TiO_2纳米棒阵列在光照瞬间产生光电流,20s左右达到稳定。TiO_2纳米棒的一维结构能为光生电子提供直线传输通路,促进光生电子-空穴对的分离。这种独特的棒状阵列结构,具有大的比表面积,具有较好的光电性能,有望成为新一代的半导体电极材料,具有良好的应用前景。(第三章)3)以TiO_2纳米棒阵列为载体,采用连续离子层吸附反应法在其表面沉积CdS纳米颗粒,制备了CdS/TiO_2复合纳米结构。FESEM和TEM表征表明CdS纳米颗粒为立方相,直径为3-5nm,均匀地沉积在TiO_2纳米棒表面上。经CdS量子点敏化后的纳米结构的光电化学性能大大提高,光电流密度达78.48μAcm~(-2),是TiO_2纳米棒产生的光电流的5倍。TiO_2纳米棒阵列,CdS纳米颗粒和CdS/TiO_2复合纳米结构的光电流密度随电极电位的正移而增大,但CdS/TiO_2复合纳米结构增大得更多,表现出更高的光电化学性能。
     以TiO_2纳米棒阵列为载体,采用光化学沉积法在其表面负载Co_3O_4纳米颗粒,制备了Co_3O_4/TiO_2复合纳米结构。XRD、FESEM和TEM表征表明Co_3O_4纳米颗粒像是“铆”在TiO_2纳米棒上的,且直径约为3-5nm。Co_3O_4纳米颗粒的沉积量是可以通过沉积溶液的浓度和光化学反应的时间等来进行调控的。UV-vis测试表明Co_3O_4/TiO_2异质结中TiO_2的禁带宽度减少至3.10eV,说明Co_3O_4的修饰降低了TiO_2的禁带宽度,这将有利于对可见光的吸收并增强其光电化学性能。XPS表征表明Co以+2价和+3价的形式存在。光电化学性能测试结果表明Co_3O_4/TiO_2复合纳米结构的光电性能优于TiO_2纳米棒阵列电极,由于Co_3O_4和TiO_2的耦合效应可以使得TiO_2的吸收光谱范围从紫外延伸到可见光区域所致。
     以TiO_2纳米棒阵列为载体,采用浸渍提拉法在其表面沉积In_2O_3纳米颗粒,制备了In_2O_3/TiO_2复合纳米结构。XRD、FESEM和TEM表征表明In_2O_3纳米颗粒取向随机的粘附于纳米棒的边缘,尺寸为30-40nm之间,且是单晶的。In_2O_3纳米颗粒的厚度可以通过浸渍提拉的次数来控制。UV-vis测试表明TiO_2纳米棒阵列的带隙变窄,说明将宽带隙半导体(TiO_2)与窄带隙半导体(In_2O_3)复合能够起到带隙调变的作用。XPS表征表明In以+3价的形式存在。瞬态光电流谱和电流-电压谱测试结果表明经In_2O_3/TiO_2复合纳米结构的光电性能优于TiO_2纳米棒阵列电极。(第四章)
     4)以TiO_2纳米棒阵列为载体,采用热沉积法制备了Pt/TiO_2,XRD、FESEM和TEM表征结果表明热沉积的Pt为纳米颗粒,尺寸为2-5nm,分布较均匀。采用连续离子吸附反应法循环5次在Pt/TiO_2纳米棒上沉积CdS纳米颗粒后,纳米棒的边缘形貌变得十分模糊,表面粗糙度变大,说明CdS量子点均匀地覆盖在Pt/TiO_2纳米棒的表面上,形成CdS-Pt/TiO_2复合纳米结构。通过稳态光电流谱、瞬态光电流谱和交流阻抗谱等的测量,研究TiO_2、Pt/TiO_2和CdS-Pt/TiO_2的光电解水性能。当测试偏压增加到1.0V时, CdS-Pt/TiO_2电极的光电流密度达到0.30mA/cm~2,是Pt/TiO_2(0.096mA/cm~2)的3.1倍和TiO_2(0.055mA/cm~2)的5.45倍。在可见光下CdS-Pt/TiO_2的最大光电效率为1.90%,为Pt/TiO_2(0.64%)的3.0倍和TiO_2电极(0.19%)的10倍。CdS-Pt/TiO_2较TiO_2和Pt/TiO_2的光电转换效率高,说明CdS-Pt/TiO_2具有更好的光电化学活性,这主要归因于沉积的金属Pt和CdS纳米颗粒。测试了各电极的电化学交流阻抗谱,并用等效电路进行模拟,实验结果表明CdS-Pt/TiO_2复合纳米结构的导电性明显高于TiO_2和Pt/TiO_2。对CdS-Pt/TiO_2复合纳米结构的光解水的机理进行了讨论,沉积Pt和CdS纳米颗粒能显著地减少光激发产生的电子-空穴对的复合,因而能增强光解水制氢的性能。(第五章)
     (5)以电化学阳极氧化制备的TiO_2纳米管阵列为载体,采用光化学沉积法将Pt纳米颗粒负载在TiO_2纳米管阵列上,形成Pt/TiO_2NTs催化剂。FESEM和TEM表征显示光滑的TiO_2纳米管的内、外壁上均匀吸附了3~10nm大小的Pt纳米颗粒;EDS表征表明样品包含元素为Pt、Ti、O;XPS表征表明沉积在TiO_2纳米管上的Pt纳米颗粒为金属。通过循环伏安法、计时电流法和交流阻抗法等来研究Pt/TiO_2NTs催化剂对乙醇在酸性或碱性溶液中的电催化氧化特性。结果表明Pt/TiO_2NTs催化剂比Pt/C和Pt/Ti催化剂具有更高的催化活性和稳定性。(第六章)
Titanium dioxide (TiO_2) is an important semiconductor material and has attractedconsiderable attention in the fields of photoelectric conversion and photocatalysisbecause of its good chemical stability, anti-photocorrosion, nontoxic and low-cost.However, the wide band gap of TiO_2limits them to UV radiation, which is only4%ofthe solar spectrum energy. Moreover, the high recombination rate of photo-electron andhole limits its photoelectrochemical catalytic application. So, the development of TiO_2nano-photocatalysts with visible-light response as well as its new applications is one ofthe most important works in the photocatalytic fields.
     Because traditional nanometer-scale powders are likely of aggregate and theconversion efficiencies of nanoparticle polycrystalline films is limited, TiO_2nanorodarray and nanotube array films are studied in this work. The vertically aligned TiO_2nanotube arrays (NTs) have been prepared by anodizing method on Ti foil and Pt/TiO_2electrocatalyst composite electrodes have been prepared and used for the electrooxidationof ethanol in acidic and alkaline media. Vertically aligned TiO_2nanorod arrays (NRs)were synthesized by a facile hydrothermal method, and followed by depositing CdS,Co_3O_4and In_2O_3nanoparticles on TiO_2NRs by different methods. The surfacemorphology, structure, optical and photoelectrochemical behaviors of these CdS/TiO_2、Co_3O_4/TiO_2、In_2O_3/TiO_2composite films are studied in detail. Modified rutile TiO_2NRswere synthesized by being treated using the noble metal (Pt) deposition andsemiconductor (CdS) compounding. The photocatalytic-activities for hydrogenevolution were firstly studied and compared with TiO_2NRs, Pt/TiO_2NRs andCdS-Pt/TiO_2NRs electrodes in the electrochemical system under the visible light (orUV-light) irradiation. The details are described as follows:
     1) The highly ordered TiO_2nanotube arrays (NTs) have been prepared byanodizing method on Ti foil. The morphology and composition of the as-preparedsamples were characterized by X-ray diffraction, field-emission electron scanningmicroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy,ultraviolet-visible reflection spectrophotometry, and X-ray photoelectron spectroscopy.The formation mechanism of TiO_2NTs was discussed in detail.(Chapter2)
     2) TiO_2nanorod arrays (NRs) were synthesized by a facile hydrothermal methodand were characterized by XRD, FESEM, TEM, UV-vis spectrum, and XPS respectively. The influences of hydrothermic factor, such as solution concentration,hydrothermal temperature,and hydrothermal time on the structure and morphology ofthe samples were systematically studied. Then, the growth mechanisms of the sampleswere proposed. The TiO_2NRs was applied to construct photoelectric devices, by whichhighly sensitive and steady photocurrent responses were obtained. The electrodes showan instantaneous change in current upon light illumination and keep stable after20s.The current retracts to its original value almost instantaneously once the illumination isswitched off. The highly sensitive responses and excellent stability to the UV lightreveal that the TiO_2NRs can be used to fabricate the UV sensors/switches.(Chapter3)
     3) CdS/TiO_2composite films have been fabricated via a two-step method.Vertically aligned TiO_2NRs were synthesized by a facile hydrothermal method, andfollowed by depositing CdS nanoparticles on TiO_2NRs by successive ionic layeradsorption and reaction (SILAR) method. The surface morphology, structure, opticaland photoelectrochemical behaviors of the CdS/TiO_2nanocomposite were considered.The CdS nanoparticles with a diameter of3-5nm are uniformly dispersed on the TiO_2NRs. The TiO_2NRs coated by CdS nanoparticles show higher photocurrent value thanthat of pure TiO_2NRs. The enhanced photoelectrochemical behaviors can be attributedto the coated CdS nanoparticles, which increase the probability of electron–holeseparation and extend the range of the TiO_2photoresponse from ultraviolet to visibleregion due to the low band gap of2.56eV.
     A novel heterostructure of Co_3O_4/TiO_2was fabricated by Co_3O_4nanoparticlescoated on the TiO_2NRs using a photochemical coating method. The composition andmorphologies of samples were characterized. HRTEM showed that Co_3O_4nanoparticleswith mean size of2–3nm are coated on TiO_2nanorod, could not be ‘‘peeled’’ off fromTiO_2nanorod even under sonication for10min. The gap energy3.10and2.15eV isestimated corresponding to TiO_2and Co_3O_4in the Co_3O_4/TiO_2heterostructure,respectively, which is smaller than that of the reported pure TiO_2due to the interfacialincorporation and matched band edges between the semiconductor TiO_2and Co_3O_4. Thephotoelectrochemical properties have been investigated under visible-light irradiationand the results showed remarkably enhanced visible light PEC response of theCo_3O_4/TiO_2heterostructure due to the coupling effects of Co_3O_4and TiO_2incomparison with the pure TiO_2NRs, offering attractive perspectives for applications ofthe Co_3O_4/TiO_2heterostructure in solar cells or photocatalysts.
     The In_2O_3/TiO_2nanocomposite films have been prepared by dip-coating process. The composition and morphologies of samples were characterized. In_2O_3nanoparticleswith mean size of30–40nm adhered to TiO_2NRs and the density of the nanoparticles isdramatically increased with the number of cycles of dip-coating process. Thephotoelectrochemical properties of the TiO_2NRs photoelectrodes before and after beingsensitized with In_2O_3nanoparticles were investigated under visible light illumination.The results show that the photocurrent of In_2O_3/TiO_2is dramatically enhancedcompared with that of the TiO_2NRs or In_2O_3nanoparticles under visible lightillumination. The enhanced photocurrent is attributed to the coupling effects of In_2O_3nanoparticles and TiO_2NRs. However, it also shows that when excess In_2O_3nanoparticles are deposited on the TiO_2NRs, there is a decrease of photocurrent undervisible light illumination.(Chapter4)
     4) CdS-Pt/TiO_2composite nanostructure has been fabricated via a two-step method,which was used for the hydrogen production under visible-light irradiation. Pt/TiO_2wassynthesized by Pt nanoparticles deposited on TiO_2NRs, and followed by depositing CdSnanoparticles on Pt/TiO_2by SILAR method. The composition and morphologies ofobtained CdS-Pt/TiO_2nanocomposites were characterized by XRD, FESEM, TEM,UV-vis spectrum, and XPS respectively. The results show that the Pt nanoparticles with adiameter of2-5nm are uniformly dispersed on the TiO_2NRs and the CdS nanoparticles arealso uniformly dispersed on the Pt/TiO_2. It is found that the CdS nanoparticlesembedded in the interstices of the Pt/TiO_2formed intimate contacts between the NRs,which benefit to significantly enhance the charge separation and then the photocatalyticactivity. The photoactivity for the hydrogen production of CdS-Pt/TiO_2, Pt/TiO_2andTiO_2electrodes were assessed comparatively in terms of the photocurrent collected. TheCdS-Pt/TiO_2electrode shows the biggest photocurrent (0.30mA cm~(-2)) at1.0V undervisible-light illumination, which is about3.1times larger than that of the Pt/TiO_2electrode and5.45times larger than that of the TiO_2electrode, respectively. Thephotoelectricity efficiency CdS-Pt/TiO_2electrode is1.90%, which is about3.0timeslarger than that of the Pt/TiO_2electrode and10.0times larger than that of the TiO_2electrode, respectively. The electrochemical impedance spectroscopies were studied,and the results indicate that the electrical conductivity of CdS-Pt/TiO_2electrode is betterthan that of Pt/TiO_2and TiO_2electrodes. And the possible mechanism of the obtainedCdS-Pt/TiO_2nanocomposite as a photocatalyst for hydrogen production was proposed.(Chapter5)
     5) The TiO_2NTs were prepared by anodizing method and Pt/TiO_2electrocatalyst composite electrodes were prepared by photodeposition method. FESEM and TEMobservations reveal that the Pt nanoparticles about3-10nm in diameter are uniformlydispersed on the TiO_2NTs, both inside and outside of the tubes. Electrocatalytic activityand stability for the electrooxidation of ethanol were studied by cyclic voltammetry,chronoamperometry and electrochemical impedance spectroscopy. Because of thethree-dimensional open nanostructure of the TiO_2support for well-dispersed Ptnanoparticles, the Pt/TiO_2electrocatalyst has a larger active surface area for faciletransport of ethanol in comparison with the Pt/C and Pt/Ti electrocatalysts. Meanwhile,Pt/TiO_2catalysts show a relatively higher activity and anti-poisoning capability forethanol electrooxidation in both acidic and alkaline media than the Pt/C and Pt/Tielectrocatalysts due to the stronger synergistic interaction between TiO_2support and Ptnanoparticles with smaller particle size.(Chapter6)
引文
[1] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M.Shimohigoshi, T. Watanabe, Light–induced amphiphilic surfaces [J]. Nature,1997,388:431–432.
    [2] J.L. Gole, J.D. Stout, C. Burda, et al., Highly efficient formation of visible light tunableTiO2–xNxphotocatalysts and their transformation at the nanoscale [J]. J. Phys. Chem. B,2004,108:1230–1233.
    [3] T. Sreethawong, C. Junbua, S. Chavadej, Photocatalytic H2production from water splittingunder visible light irradiation using cosin Y–sensitized mesoporous–assembled Pt/TiO2nanocrystal photocatalyst [J]. J. Power Sources,2009,190(2):513–524.
    [4] W. Smith, S. Mao, G.H. Lu, A. Catlett, J.H. Chen, Y.P. Zhao, The effect of Ag nanoparticleloading on the photocatalytic activity of TiO2nanorod arrays [J]. Chem. Phys. Lett.,2010,485:171–175.
    [5] S. Chen, M. Malig, M. Tian, A.C. Chen, Electrocatalytic activity of Pt/Au nanoparticlesdeposited on TiO2nanotubes [J]. J. Phys. Chem. C,2012,116:32983304.
    [6] M.A. Khan, D.H. Han, O.B.Yang, Enhanced photoresponse towards visible light in Ru dopedtitania nanotube [J]. Appl. Surf. Sci.,2009,255,(6):3687–3690.
    [7] Z.B. Wu, Z.Y. Sheng, Y. Liu, et al. Characterization and activity of Pd–modified TiO2catalysts for photocatalytic oxidation of NO in gas phase [J]. J. Hazard. Mater.,2009,164(2–3):542–548.
    [8] M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxidephotocatalysts operating under visible light irradiation [J]. Catalyst,2003,216:505–516.
    [9] Q. Wu, J.J. Ouyang, K.P. Xie, L. Sun, M.Y. Wang, C.J. Lin, Ultrasound-assisted synthesisand visible-light-driven photocatalytic activity of Fe-incorporated TiO2nanotube arrayphotocatalysts [J]. J. Hazard. Mater.,2012,199–200:410–417.
    [10] S.M. Zhang, Y.Y. Chen, Y. Yu, H.H. Wu, S.Y. Wang, B.L. Zhu, W.P. Huang, S.H. Wu,Synthesis, characterization of Cr-doped TiO2nanotubes with high photocatalytic activity [J].J. Nanopart. Res.,2008,10:871–875.
    [11] S. Klosek, D.Raftery, Visible light driven V-doped TiO2photocatalyst and its photooxidationof ethanol [J]. J. Phys. Chem. B,2001,105(14):2815–2819.
    [12] J.G.Yu, Jimmy C. Yu, B. Cheng, X.J. Zhao, Photocatalytic activity and characterization ofthe sol-gel derived Pb-doped TiO2thin films [J]. J. Sol-Gel Sci. Technol.,2002,24:39-48.
    [13] N. Sasirekha, S. J. S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatasemounted on silica for reduction of carbon dioxide [J]. Appl. Catal. B: Environ.,2006,62:169-180.
    [14] D.H. Kim, K.S. Lee,Y.S. Kim,Y.C. Chung,S.J. Kim, Photocatalytic activity of Ni8wt%-doped TiO2photocatalyst synthesized by mechanical alloying under visible light [J]. J.Am. Ceram. Soc.,2006,89:515-518.
    [15] L.G. Devi, B.N. Murthy, Characterization of Mo doped TiO2and its enhanced photo catalyticactivity under visible light [J]. Catal. Lett.,2008,125:320-330.
    [16] W. Smith, S. Mao, G.H. Lu, A. Catlett, J.H. Chen, Y.P.Zhao, The effect of Ag nanoparticleloading on the photocatalytic activity of TiO2nanorod arrays [J]. Chem. Phys. Lett.,2010,485:171–175
    [17] M.Jung, Synthesis and Structural Analysis of Au-Doped TiO2/SiO2Mixed Oxide FilmsPrepared by Sol-Gel Process. J. Sol-Gel Sci. Technol.,2000,19:563-568.
    [18] Y.Y. Song, Z.D. Gao, P. Schmuki, Highly uniform Pt nanoparticle decoration on TiO2nanotube arrays: A refreshable platform for methanol electrooxidation [J]. Electrochem.Commun.,13(2011):290–293.
    [19] L. Sun, J. Li, C.L. Wang, et al, An electrochemical strategy of doping Fe3+into TiO2nanotube array films for enhancement in photocatalytic activity[J].Solar Energy Mater SolarCells,2009,93(10):1875–1879.
    [20] C.T. Hsieh, W.S. Fan, W.Y. Chen, et a1.Adsorption and visible–light–derived photocatalytickinetics of organic dye on Co–doped titania nanotubes prepared by hydrothermal synhesis [J].Separation Purif. Techn.,2009,67(3):312–316.
    [21] C.R. Estrellan, C. Salim, H. Hinode, Photocatalytic decomposition of perfluorooctanoic acidby iron and niobium co–doped titanium dioxide [J]. J. Hazard. Mater.,2010,179(1–3):79–83.
    [22] Na Lu, X. Quan, J.Y. Li, S. Chen, H.T. Yu, G.H. Chen, Fabrication of boron-doped TiO2nanotube array electrode and investigation of its photoelectrochemical capability [J]. J. Phys.Chem. C,2007,111:11836-11842
    [23] C.Y. Hu, S.W. Duo, T.Z. Liu, W.K. Li, R.F. Zhang, Low temperature facile synthesis ofanatase TiO2coated multiwalled carbon nanotube nanocomposites [J]. Mater. Lett.,2010,64:2472–2474
    [24] Y.X Li, Y. Jiang, S.Q. Peng, F.Y. Jiang, Nitrogen-doped TiO2modified with NH4F forefficient photocatalytic degradation of formaldehyde under blue light-emitting diodes [J]. J.Hazard. Mater.,2010,182:90–96
    [25] J.H. Huang, W.K. Ho, F.S.C. Lee, Facile synthesis of visible-light-activated F-doped TiO2hollow spheres by ultrasonic spray pyrolysis [J]. SCI. Adv. Mater.,2012,4(8):863-868
    [26] X.K. Wang, C. Wang, W.Q. Jiang, W.L. Guo, J.G. Wang, Sonochemical synthesis andcharacterization of Cl-doped TiO2and its application in the photodegradation of phthalateester under visible light irradiation [J]. Chem. Eng.,2012,189:288-294.
    [27] G.D. Du, N. Sharma, V.K. Peterson, J.A. Kimpton, D.Z. Jia, Z.P. Guo, Br-doped Li4Ti5O12and composite TiO2anodes for Li-ion batteries: Synchrotron X-ray and in situ neutrondiffraction studies [J]. Adv. Funct. Mater.,2011,21(20):3990-3997.
    [28] S.Z. Hu, F.Y. Li, Z.P. Fan, Enhanced photocatalytic activity of S-doped TiO2prepared via amodified sol-gel process [J]. Asian J. Chem.,2012,24:4389-4392.
    [29] Z.X. Li, G.L. Xu, Y. Li, Q.Wang, A.H. Sun, L. Duan, Y.L. Li, J. Jiang, Effect of SnO2dopingon the performance of TiO2-based varistor [J]. Rare Metal Mater. Eng.,2007,36:177-180.
    [30] J. Zhou, B. Song, G.L. Zhao, W.X. Dong, G.R. Han, TiO2Nanorod arrays sensitized withCdS quantum dots for solar cell applications: effects of rod geometry onphotoelectrochemical performance [J]. Appl. Phys. A,2012,107:321–331.
    [31] W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitizedtio2nanotube–array photoelectrodes [J]. J. Am. Chem. Soc.2008,130:1124–1125.
    [32] Y.J. Zhang, W. Yan, Y.P. Wu, Z.H. Wang, Synthesis of TiO2nanotubes coupled with CdSnanoparticles and production of hydrogen by photocatalytic water decomposition [J].Materials Letters,2008,62:3846–3848.
    [33] H. Cheng, X.J. Zhao, X.T. Sui, Y.L. Xiong, J. Zhao, Fabrication and characterization ofCdS–sensitized TiO2nanotube photoelectrode [J]. J. Nanopart. Res.,2011,(13):555–562.
    [34] C.J. Lin, Y.H. Yu, Y.H. Liou, Free–standing TiO2nanotube array films sensitized with CdSas highly active solar light–driven photocatalysts [J]. Appl. Cataly. B: Environmental,2009,93:119–125.
    [35] Z.B. Shao, W. Zhu, Z. Li, Q.H. Yang, G.Z. Wang, One–step fabrication of CdSnanoparticle–sensitized TiO2nanotube arrays via electrodeposition [J]. J. Phys. Chem. C2012,116:2438–2442.
    [36] Y. Bessekhouad, D. Robea, J.V. Weber, Bi2Si/TiO2and CdS/TiO2heterojunctions as anavailable configuration for photocatalytic degradation of organic pollutant [J]. J. Photochem.Photobiol. A: Chem.,2004,163:569–580.
    [37] H. Fujii, M. Ohtaki, K. Eguchi, H. Arai, Preparation and photocatalytic activities of asemiconductor composite of CdS embedded in a TiO2gel as a stable oxide semiconductingmatrix [J]. J. Mol. Catal. A: Chem.1998,129:61–68.
    [38] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,37(1):238–245.
    [39] M.H. Zhou, Y.X. Li, S.Q. Peng, G.X. Lu, S.B. Li, Effect of epimerization of d–glucose onphotocatalytic hydrogen generation over Pt/TiO2, Catal. Commun.,2012,18:21–25.
    [40] J. Cao, J.Z. Sun, H.Y. Li, J. Hong, M. Wang, A facile room–temperature chemical reductionmethod to TiO2@CdS core/sheath heterostructure nanowires [J]. J. Mater. Chem.,2004,14:1203–1206.
    [41] P. Wongwanwattana, P. Krongkitsiri, P. Limsuwan, U. Tipparach, Fabrication andphotocatalysis of nanostructured TiO2for solar hydrogen production [J]. CeramicsInternational,2012,38: S517–S519.
    [42] Stefano Caramori, Vito Cristino, Roberto Argazzi, Laura Meda, Carlo A. Bignozzi,Photoelectrochemical behavior of sensitized TiO2photoanodes in an aqueous environment:application to hydrogen production [J]. Inorg. Chem.2010,49:3320–3328.
    [43] K.Yamaguti, S. Sato, Photolysis of water over metallized powdered titanium dioxide [J]. J.Chem. Soc., Faraday Trans.1,1985,81:1237–1246.
    [44] Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible lightirradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625–627.
    [45] Y.B. Liu, B.X. Zhou, J. Bai, J.H. Li, J.L. Zhang, Q. Zheng, X.Y. Zhu, W.M. Cai, Efficientphotochemical water splitting and organic pollutant degradation by highly ordered TiO2nanopore arrays [J]. Appl. Catal. B: Environ.,2009,89(1–2):142–148.
    [46] T. Sato, Y. Fukugami, Synthesis and photocatalytic properties of TiO2and Pt pillaredHCa2Nb3O10doped with various rare earth iron [J]. Solids States Ionics,2001,141–142:397–405.
    [47] K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalystreleasing hydrogen from water [J]. Nature,2006,440:295–296.
    [48] K. Maeda, K. Teramura, D. Lu, et al. Studies on TiNxOyFzas a visible–light–reponsivephotocatalyst [J]. Phys. Chem. C,2007,111:18264–18270.
    [49] K. Maeda, K. Takata, M. Hara, et al. GaN: ZnO solid solution as a photocatalyst forvisible–light–driven overall water splitting [J]. Am. Chem. Soc.,2005,127:8286–8287.
    [50] Y. Lee, K. Teramura, Y. Shimodaira, et al. Zinc germanium oxynitride as a photocatalyst foroverall water splitting under visible light [J]. Phys. Chem. C,2007,1111:1042–1048.
    [51] Y. Lee, K. Teramura, M. Hara, et al. Modification of (Zn1+xGe)(N2Ox) solid solution as avisible light driven photocatalyst for overall water splitting [J]. Chem. Mater.,2007,19:2120–2127.
    [52] Z.G. Zou, H. Arakawa, Direct water splitting into H2and O2under light irradiation with anew series of mixed oxide semiconductor photocatalysts [J]. J. Photochem. Photobiol. A:Chem.,2003,158:145–162.
    [53] Z.G. Zou, J.H. Ye, Arakawa H., Structural properties of InNbO4and InTaO4: correlation withphotocatalytic and photophysical properties [J]. Chem. Phys. Let.,2000,332:271–277.
    [54] Z.G. Zou, J.H.Ye, Arakawa H., Photophysical and photocatalytic properties of InMO4(M=Nb5+, Ta5+) under visible light irradiation [J]. Mat. Res. Bul.,2001,36:1185–1193.
    [55] Z.G. Zou, J.H. Ye, K.Sayama, et al. Direct splitting of water under visible light irradiationwith an oxide semiconductor photocatalyst [J].Nature,2001,414:625–629.
    [56] K.G. Ong, O.K. Varghese, G.K. Mor, Application of finite–difference time domain TiO2dye–sensitized solar cells: the effect of nanotube–array negative electrode dimensions onlight absorption. Sol. Energy Mater. Sol. Cells,2007,91:250–257.
    [57] Z.H. Zhang, Y. Yuan, G.Y. Shi, Y.J.Fang, L.H. Liang, H.C. Ding, L.T. Jin,Photoelectrocatalytic activity of highly ordered TiO2nanotube arrays electrode for azo dyedegradation [J]. Environ. Sci. Technol.,2007,41:6259–6263.
    [58] Y.L. Su, S. Han, X.W. Z hang, X.Q. Chen, L.C. Lei, Preparation and visible–light drivenphotoelectrocatalytic properties of boron–doped TiO2nanotubes [J]. Mater. Chem. Phys.,2008,110:239–246.
    [59] E. Kim, J. Park, G.Y. Han, Design of TiO2nanotube array–based water–splitting reactor forhydrogen generation [J]. J. Power Sources,2008,184:284–287.
    [60] V.M. Arakelyan, V.E. Galstyan, Kh.S. Martirosyan, G.E. Shahnazaryan, V.M. Aroutiounian,P.G. Soukiassian, Hydrogen sensitive gas sensor based on porous silicon/TiO2–xstructure [J].Physica E,2007,38:219–221.
    [61] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible–light photocatalysis innitrogen–doped titanium oxides [J]. Science,2001,293:269–271.
    [162] S.U. M. Khan, M. Al–Shahry, W.B.I. Jr, Efficient photochemical water splitting by achemically modified n–TiO2[J]. Science,2002,297:2243–2245.
    [63] O.K. Varghese,D.W. Gong,M. Paulose,K.G. Ong,C.A. Grimes, Hydrogen sensing usingtitania nanotubes [J]. Sens. Actuator B–Chem.,2003,93:338–344.
    [64] P. Zeman,S. Takabayashi, Effect of total and oxygen partial pressures on structure ofphotocatalytic TiO2films sputtered on unheated substrate [J]. J. Vac. Sci. Technol. A.2002.20.388–393.
    [65] G. R. A. Kumara,M. Okuya, K. Murakami,S. Kaneko,V. V. Jayaweera, K. Tennakon,Highly efficient dye–sensitized solar cells: Progress and future challenges [J]. J. Photochem.Photobiol.,2004,164:183–185.
    [66] I. Hiroaki, T. Yuko, S. Kazuhiko, M. Manabu, H. Hiroshi, Direct preparation of anatase TiO2nanotubes in porous alumina membranes [J]. J. Mater. Chem.1999,9:2971–2972.
    [67] B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Sol Gel template synthesis of semiconductornanostructures [J]. Chem. Mater.,1997,9:857–862.
    [68] Z. Jiang, F. Yang, N. Luo, B.T.T. Chu, D. Sun, H. Shi, T. Xiao, P.P. Edwards, Solvothermalsynthesis of N–doped TiO2nanotubes for visible–light–responsive photocatalysis [J]. Chem.Commun.(2008)6372–6374.
    [69] W.Z. Wang, O. K. Varghese, M. paulose, C. A. Grimes, Q.L. Wang, E. C. Dickey, A study onthe growth and structure of titania nanotubes [J]. J. Mater. Res.,2004,19:417–422.
    [70] X. Quan, S.G. Yang, X.L. Ruan, H.M. Zhao, Preparation of titania nanotubes and theirenvironmental applications as electrode [J]. Environ. Sci. Technol.,2005,39:3770–3775.
    [71] D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R. S. Singh, Z. Chen, E. C. Dickey,Titanium oxide nanotube arrays prepared by anodie oxidation [J]. Mater. Res.,2001,16(12):3331–3334.
    [72] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grjmes, A review oil highlyordered, vertically oriented TiO2nanotube arrays:Fabrication, material properties, and solarenergy applications [J]. Sol. Energy Mater. Sol. Cells,2006,90(14):2011–2075.
    [73] S.B. Aldabergenova, A. Ghicova, S. Albua, J.M. Macak, P. Schmukia, Smooth titaniananotubes: self–organization and stabilization of anatase phase [J]. J. Nano–Cryst. Solids,2008,351(14):1451–1474.
    [74] S. Yuan, L. Yu,Y. Zhao, Highly ordered TiO2nanotube array as recyclable catalyst for thesono–photo–catalytic degradation of methylene blue [J]. Catal. Commun.,2009,10:1188–1191.
    [75] W. M. Wesley and H. G. H. Wendlandt, Reflectance Spectroscopy, John Wiley–IntersciencePublishers, New York (1966).
    [76] F. Mei, C. Liu, L. Zhang, F. Ren, L. Zhou, W.K. Zhao, Y.L. Fang, Microstructural study ofbinary TiO2:SiO2nanocrystalline thin films [J]. J. Cryst. Growth,2006,292(1):87–91.
    [77] M.P. Casaletto, G.M. Ingo, S. Kaciulis, G. Mattogno, L. Pandolfi, G. Scavia, Surface studiesof in vitro biocompatibility of titanium oxide coatings [J]. Appl. Surf. Sci.,2001,172(1–2):167–177
    [78] G. Li, Z.Q. Liu, Z. Zhang, X. Yan, Preparation of titania nanotube arrays by the hydrothermalmethod [J]. Chinese J. Catal.,2009,30(1):37–42.
    [79] Hoyer, Patrick, Formation of a titanium dioxide nanotube array [J]. Langmuir,1996,12(6):141–145.
    [80] J.L. Zhao, X.H. Wang, R.Z. Chen, L.T. Li, Fabrication of titanium oxide nanotube arrays byanodic oxidation [J]. Solid State Commun.,2005,134:705–7l0.
    [81] G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, Fabrication of tapered,conical–shaped titania nanotubes [J]. J. Mater. Res.,2003,18:2588–2593.
    [82] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Titanium oxide nanotubes prepared inphosphate electrolytes [J]. Electrochem. Commun.,2005,7:505–509.
    [83] G.E. Thompson, Porous anodic alumin fabrication, characterization and applications [J].Thin Solid Films,1997,297:192–195.
    [84] J. Siejka,C. Ortega, An O18study of field–assisted pore formation in compact anodic oxidefilms on aluminum [J]. Electrochem. Soc.: Solid State Sci. Technol.,1977,124:883–891.
    [85] V.P. Parkhutik, V.I. Shershulsky, Theoretical modeling of porous oxide growth on aluminum[J]. J. Phys. D: Appl. Phys.,1992,25:1258–1261.
    [86] J. Zhou, B. Song, G.L. Zhao, W.X. Dong, G.R. Han, TiO2nanorod arrays sensitized withCdS quantum dots for solar cell applications: effects of rod geometry onphotoelectrochemical performance [J]. Appl. Phys. A,2012,107:321–331.
    [87] J.H. Bang, P.V. Kamat, Solar cells by design: photoelectrochemistry of TiO2nanorod arraysdecorated with CdSe [J]. Adv. Funct. Mater.2010,20,1970–1976.
    [88] L.D. Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R.Cingolani, G. Gigli, Novel preparation method of TiO2–nanorod–based photoelectrodes fordye–sensitized solar cells with improved light–harvesting efficiency [J]. J. Phys. Chem. C,2010,114:4228–4236.
    [89] M. Abd–Lefdil, R. Diaz, H. Bihri, M. A. Aouaj, F. Rueda, Preparation and characterizationof sprayed FTO thin films[J], Eur. Phys. J. Appl. Phys.,2007,38(3):217–219.
    [90] C.J. Howard, T.M. Sabine, F. Dickson, Structural and thermal parameters for rutile andanatase [J]. Acta. Crystallogr. Sect. B,1991,47:462–468.
    [91] F. Mei, C. Liu, L. Zhang, F. Ren, L. Zhou, W.K. Zhao, Y.L. Fang, Microstructural study ofbinary TiO2:SiO2nanocrystalline thin films [J]. J. Cryst. Growth,2006,292(1):87–91.
    [92] M.P. Casaletto, G.M. Ingo, S. Kaciulis, G. Mattogno, L. Pandolfi, G. Scavia, Surface studiesof in vitro biocompatibility of titanium oxide coatings [J]. Appl. Surf. Sci.,2001,172(1–2):167–177
    [93] G. Li, Z.Q. Liu, Z. Zhang, X. Yan, Preparation of titania nanotube arrays by the hydrothermalmethod [J]. Chinese J. Catal.,2009,30(1):37–42.
    [94] M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, Highly efficientdye–sensitized solar cells with a titania thin–film electrode composed of a network structureof single–crystal–like TiO2nanowires made by the “oriented attachment” mechanism [J]. J.Am. Chem. Soc.,2004,126(45):14943–14949.
    [95] J.R. Jenning, A. Ghicoy, L.M. Peter, P. Schmuki, A.B. Walker, Dye–sensitized solar cellsbased on oriented TiO2nanotube arrays: transport, trapping, and transfer of electrons [J]. J.Am. Chem. Soc.,2008,130(40):13364–13372.
    [96] X. Feng, K.Shankar, O.K.Varghese, M.Paulose, T.J. Latempa, C.A. Grimes, Verticallyaligned single crystal TiO2nanowire arrays grown directly on transparent conducting oxidecoated glass: synthesis details and applications [J]. Nano. Lett.,2008,8(11):3781–3786.
    [97] B. Liu, E.S. Avdil, Growth of oriented single–crystalline rutile TiO2nanorods on transparentconducting substrates for dye–sensitized solar cells [J]. J. Am. Chem. Soc.,2008,131(11):3985–3990.
    [98] Q. Zeng, L.W. Zhang, B. Qi, J.F. Zhi, Low–temperature and normal–pressure growth oforiented rutile TiO2nanorod arrays on F–doped tin oxide substrate [J]. Scripta. Mater.,2010,62(10):810–813.
    [99] P. Pu, H. Cachet, E.M.M. Sutter, Electrochemical impedance spectroscopy to studyphoto-induced effects on self-organized TiO2nanotube arrays [J]. Electrochim. Acta,2010,55:5938–5946.
    [100] Y.X. Tang, J. Tao, Y.Y. Zhang, T. Wu, H.J. Tao, Z.G. Bao, Preparation and characterizationof TiO2nanotube arrays via anodization of titanium films deposited on FTO conducting glassat room temperature [J]. Acta. Phys. Chim. Sin.,2008,24(12):2191–2197.
    [101] S.A. Vanalakar, R.C. Pawar, M.P. Suryawanshi, S.S. Mali, D.S. Dalavi, A.V. Moholkar, K.U.Sim,Y.B. Kown, J.H. Kim, P.S. Patil, Low temperature aqueous chemical synthesis of CdSsensitized ZnO nanorods [J]. Mater. Lett.,2011,65:548–551.
    [102] H.W. Park, W.Y. Choi, Visible light and Fe(Ⅲ)–mediated degradation of acid orange7inthe absence of H2O2[J]. J. Photochem. Photobiol., A: Chemistry,2003,159:241–247.
    [103] C.H. Ku, J.J. Wu, Electron transport properties in ZnO nanowire array/nanoparticlecomposite dye-sensitized solar cells [J]. Appl. Phys. Lett.,2007,91,093117
    [104] K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G. K. Mor, X.J. Feng, M. Paulose, J.A.Seabold, K.S. Choi, C.A. Grimes, Recent advances in the use of TiO2nanotube and nanowirearrays for oxidative photoelectrochemistry [J].J. Phys. Chem. C,2009,113(16):6327–6359.
    [105] S.C. Lo,C.F. Lin,C.H. Wu, Capability of coupled CdSe/TiO2for photocatalytic degradationof4–chlorophenol [J].J. Hazard Mater.,2004,114(1–3):183–190.
    [106] J.S. Hong,D.S. Choi,M.G. Kang,D. Kim,K.J. Kim, Photocurrent instability ofPbS–sensitized TiO2electrodes in S2–andSO2–3solution [J]. J. Photochem. Photobiol. A,2001,143(1):87–92.
    [107] H. Jia, H. Xu, Y. Hu, Y. Tang, L. Zhang, TiO2@CdS core–shell nanorods films:Fabricationand dramatically enhanced photoelectrochemical properties [J]. Electrochem. Commun.,2007,9(3):354–360.
    [108] S. Chen, M. Paulose, C. Ruan, G.K. Mor, O.K.Varghese, D. Kouzoudis, C.A. Grimes,Electrochemically synthesized CdS nanoparticle–modified TiO2nanotube–arrayphotoelectrodes: Preparation, characterization, and application to photoelectrochemical Cells[J].J. Photochem. Photobiol. A,2006,177(2–3):177–184.
    [109] J.L. Zhang, X.W. Zhang, L.C. Lei, Modification of TiO2nanotubes arrays by CdS and theirphotoelectrocatalytic hydrogen generation properties [J]. Chi. Sci. Bull,2008,53(12):1929–1932.
    [110] J.C. Kim, J. Choi, Y.B. Lee, J.H. Hong, J.I. Lee, J.W. Yang, W.I. Lee, N.H. Hur, Enhancedphotocatalytic activity in composites of TiO2nanotubes and CdS nanoparticles [J]. Chem.Commun.,2006,48:5024–5026.
    [111] D.T.H. Wassell, G. Embery, Adsorption of bovine serum albumin onto titanium powder [J].Biomaterials,1996,179(9):859–864.
    [112] D.R. Baker, P.V. Kamat, Photosensitization of TiO2nanostructures with CdS quantum dots:particulate versus tubular support architectures [J]. Adv. Funct. Mater.,2009,19(5):805–811.
    [113] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben and J. Chastain, Handbook of X–rayPhotoelectron Spectroscopy, Physical. Electronics, Inc., Eden Prairie, MN,1992.
    [114] S.K. Liu, W.Y. Fu, H.B. Yang, M.H. Li, P. Sun, B.M. Luo, Q.J. Yu, R.H. Wei, M.X. Yuan, Y.Y.Zhang, D. Ma, Y.X. Li, G.T. Zou, Synthesis and characterization of self–organized oxidenanotube arrays via a Facile Electrochemical Anodization [J]. J. Phys. Chem. C,2008,112(50):19852–19859.
    [115] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. harvesting lightenergy with CdSe nanocrystals molecularly linked to mesoscopic TiO2films [J]. J. Am.Chem. Soc.,2006,128,2385–2393.
    [116] D. Barreca, A. Devi, R.A. Fischer, D. Bekermann, A. Gasparotto, M. Gavagnin, C. Maccato,E. Tondello, E. Bontempi, L.E. Depero, C. Sada, Strongly oriented Co3O4thin films on MgO(100) and MgAl2O4(100) substrates by PE–CVD [J]. Cryst. Eng. Comm.,2011,13:3670–3673.
    [117] D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E.Tondello,Composition and microstructure of cobalt oxide thin films obtained from a novel Cobalt(II)precursor by chemical vapor deposition [J]. Chem. Mater.,2001,13:588–593.
    [118] L. Armelao,D. Barreca, S. Gross, A. Martucci, M. Tieto, E. Tondello, Cobalt oxide–basedfilms: sol–gel synthesis and characterization.[J]. J. Non–Crystal. Solids,2001,293–295:477–482.
    [119] D. Barreca, E. Comini, A. Gasparotto, C. Maccato, A. Pozza, C. Sada, G.Sberveglieri, E.Tondello, Vapor phase synthesis, characterization and gas sensing performances of Co3O4and Au/Co3O4nanosystems [J]. J. Nanosci. Nanotechnol.2010,10:8054–8061.
    [120] D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, M.Gavagnin, C.Maccato, C. Sada, G. Sberveglieri, E. Tondello, Plasma enhanced–CVD of undoped andfluorine–doped Co3O4nanosystems for novel gas sensors [J]. Sens. Actuators B,2011,160:79–86.
    [121] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X–ray photoelectronspectroscopy. Perkin Elmer: Eden Prairie, MN,1992.
    [122] Y.L.Lee B.M.Huang, H.T. Chien, Highly efficient CdSe–sensitized TiO2photoelectrode forquantum–dot–sensitized solar cell applications [J]. Chem. Mater.,2008,20(22):6903–6905.
    [123] G. Zhu, Z.J. Cheng, T. Lv, L.K. Pan, Q.F. Zhao, Z. Sun, Zn–doped nanocrystalline TiO2filmsfor CdS quantum dot sensitized solar cells [J]. Nanoscale,2010,2:1229–1232.
    [124] A. Kudo, Catal. Sur. Asia,2003,7:31–38.
    [125] B.S. Jeong, Y.W. Heo, D.P. Norton, J.G. Kelly, R. Rairigh, A.F. Hebard, J.D. Budai, Y.D.Park, Spatial distribution and electronic state of Co in epitaxial anatase CoxTi1–xO2thin filmsgrown by reactive sputtering [J]. Appl. Phys. Lett.,2004,84:2608–2610.
    [126] A. Manivannan, M.S. Seehra, S.B. Majumder, R.S. Katiyar, Magnetism of Co–doped titaniathin films prepared by spray pyrolysis. Appl. Phys. Lett.2003,83:111–113.
    [127] M.R. Benjaram, C. Biswajit, G.S. Panagiotis, An XPS study of La2O3and In2O3influence onthe physicochemical properties of MoO3/TiO2catalysts [J]. Appl. Catal. A–Gen.2001,219:53–60.
    [128] I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2using sol–gel derived titania andtitania–supported copper catalysts, Appl. Catal. B: Environ.,2002,37:37–48.
    [129] I.H. Tseng, J.C.S. Wu, H.Y. Chou, Effects of sol–gel procedures on the photocatalysis ofCu/TiO2in CO2photoreduction [J]. J. Catal.,2004,221:432–440.
    [130] In Sun Cho, Zhebo Chen, Arnold J. Forman, Dong Rip Kim, Pratap M. Rao, Thomas F.Jaramillo, Xiaolin Zheng, Branched TiO2nanorods for photoelectrochemical hydrogenproduction [J]. Nano. Lett.2011,11:4978–4984.
    [131] P. Zeng, X.G. Zhang, X.H. Zhang, B. Chai, T.Y. Peng, Efficient photocatalytic hydrogenproduction over Ni@C/TiO2nanocomposite under visible light irradiation [J]. Chem. Phys.Lett.,2011,503:262–265.
    [132] S.P. Xu, Alan Jianhong Du, J.C. Liu, J.W. Ng, Darren Delai Sun, Highly efficient CuOincorporated TiO2nanotube photocatalyst for hydrogen production from water [J]. Int. J.Hydrogen Energy,2011,36:6560–6568.
    [133] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications ofsemiconductor photocatalysis [J]. Chem. Rev.,1995,95,69–96.
    [134] J. G. Yu, J. Zhang, A simple template–free approach to TiO2hollow spheres with enhancedphotocatalytic activity [J]. Dalton Trans.,2010,39:5860–5867.
    [135] Y.W. Cheng, R.C.Y. Chan, P.K. Wong, Disinfection of legionella pneumophila byphotocatalytic oxidation [J]. Water Res.,2007,41,842–845.
    [136] J.G. Yu, J.J. Fan, K.L. Lv, Anatase TiO2nanosheets with exposed (001) facets: improvedphotoelectric conversion efficiency in dye–sensitized solar cells [J]. Nanoscale,2010,2:2144–2149.
    [137] Q.J. Xiang, K.L. Lv, J.G. Yu, Pivotal role of fluorine in enhanced photocatalytic activity ofanatase TiO2nanosheets with dominant (001) facets for the photocatalytic degradation ofacetone in air[J]. Appl. Catal., B,2010,96:557–564.
    [138] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen–concentration dependence on photocatalyticactivity of TiO2–xNxpowders [J]. J. Phys. Chem. B,2003,107:5483–5486.
    [139] Q.J. Xiang, J.G. Yu, M. Jaroniec, Nitrogen and sulfur co–doped TiO2nanosheets withexposed {001} facets: synthesis, characterization and visible–light photocatalytic activity [J].Phys. Chem. Chem. Phys.,2011,13,4853–4861.
    [140] S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, Design of a Highly efficientphotoelectrolytic cell for hydrogen generation by water splitting: application of TiO2–xCxnanotubes as a photoanode and Pt/TiO2nanotubes as a cathode [J]. J. Phys. Chem. C,2007,111(24):8677–8685.
    [141] D.R. Baker, P.V. Kamat, Photosensitization of TiO2nanostructures with CdS quantum dots:particulate versus tubular support architectures [J]. Adv. Funct. Mater.,2009,19:805–811.
    [142] A.A. Nada, M.H. Barakat,H.A. Hamed,N.R. Mohamed,T.N. Veziroglu, Studies on thephotocatalytic hydrogen production using suspended modified TiO2photocatalysts [J]. Int. J.Hydrogen Energy,2005,30(7):687–691.
    [143] S.C. Lin, Y.L. Lee, C.H. Chang, Y.J. Shen, Y.M. Yang, Quantum–dot–sensitized solar cells:Assembly of CdS–quantum–dots coupling techniques of self–assembled monolayer andchemical bath deposition [J]. Appl. Phys. Lett.,2007,90,143517–143517–3.
    [144] C.H. Chang, Y.L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2films for application in quantum–dot–sensitized solar cells [J]. Appl. Phys. Lett.2007,91:053503–053506.
    [145] L.P. Liu, J. Hensel, R.C. Fitzmorris, Y.D. Li, J.Z. Zhang, Preparation andphotoelectrochemical properties of CdSe/TiO2hybrid mesoporous structures [J]. J. Phys.Chem. Lett.,2010,1(1):155–160.
    [146] C. Ratanatawanate, C.R. Xiong, K. J. Balkus, Jr., Fabrication of PbS quantum dot dopedTiO2nanotubes [J]. ACS Nano,2008,2(8):1682–1688.
    [147] C. Ratanatawanate, Y. Tao, K.J. Balkus, Jr., Photocatalytic activity of PbS quantum dot/TiO2nanotube composites, J. Phys. Chem. C,2009,113:10755–10760.
    [148] K.P. Acharya, T.R. Alabi, N. Schmall, N.N. Hewa–Kasakarage, M. Kirsanova, A.Nemchinov, E. Khon, M. Zamkov, Linker–free modification of TiO2nanorods with PbSeNanocrystals [J]. J. Phys. Chem. C,2009,113(45):9531–19535.
    [149] A. Zaban, O. I. Mi i, B. A. Gregg, A. J. Nozik, Photosensitization of nanoporous TiO2electrodes with InP quantum dots [J]. Langmuir,1998,14:3153–3156.
    [150] W.T. Sun, Y.Yu, H.Y. Pan, X.F. Gao, Q.Chen, L.M. Peng, CdS quantum dots sensitized TiO2nanotube–array photoelectrodes. J. Am. Chem. Soc.,2008,130,1124–1125.
    [151] J. Bai, J.H. Li, Y.B. Liu, B.X. Zhou, W.M. Cai, A new glass substrate photoelectrocatalyticelectrode for efficient visible–light hydrogen production: CdS sensitized TiO2nanotubearrays.Appl. Catal. B,2010,95:408–413.
    [152] E. Martínez–Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas and C.Sanchez, Nanostructured titanium oxynitride porous thin films as efficient visible‐activephotocatalysts. Adv. Funct. Mater.,2007,17:3348–3354.
    [153] L.F. Qi, J.G. Yu, M. Jaroniec, Preparation and enhanced visible–light photocatalyticH2–production activity of CdS–sensitized Pt/TiO2nanosheets with exposed (001) facets,Phys. Chem. Chem. Phys.,2011,13:8915–8923.
    [154] H.W. Park, W.Y. Choi, M.R. Hoffmann, Effects of the preparation method of the ternaryCdS/TiO2/Pt hybrid photocatalysts on visible light–induced hydrogen production. J. Mater.Chem.,2008,18:2379–2385.
    [155] C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis andcharacterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemicalproperty [J]. J. Alloys Comp.,2012,53:139–145.
    [156] C.L. Wang, L. Sun, H. Yun, J. Li, Y.K. Lai, C.J. Lin, Sonoelectrochemical synthesis of highlyphotoelectrochemically active TiO2nanotubes by incorporating CdS nanoparticles [J].Nanotechnology,2009,20:295601.
    [157] H.W. Chen, Y. Ku, Y.L. Kuo, Effect of Pt/TiO2characteristics on temporal behavior ofO–cresol decomposition by visible light–induced photocatalysis [J]. Water Res.,2007,41:2069–2078.
    [158] L.J. Sherry, S.H.Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y.N. Xia, Localizedsurface plasmon resonance spectroscopy of single silver nanocubes [J]. Nano Lett.,2005,5(10):2034–2038.
    [159] F.B. Li, X.Z. Li, The enhancement of photodegradation efficiency using Pt–TiO2catalyst [J].Chemosphere,2002,48:1103–1111.
    [160] M.A. Khan, M.S. Akhtar, S.I. Woo, O.B. Yang, Enhanced photoresponse under visible lightin Pt ionized TiO2nanotube for the photocatalytic splitting of water [J]. Catal. Commun.,2008,10:1–5.
    [161] L.Y. Chen, Z.D. Zhang, W.Z. Wang, Self–assembled porous3D flowerlike β–In2S3structures:synthesis, characterization, and optical properties [J]. J. Phys. Chem. C,2008,112:4117–4123.
    [162] G.K. Mor, O.K. Varghese, M. Paulose, et a1.A review on highly ordered,vertically orientedTiO2nanotube arrays:fabrication,material properties,and solar energy applications [J]. Sol.Energ. Mat. Sol. Cells,2006,90(14):2011–2075.
    [163] Oliva F.Y., Avalle L.B., Santos E., Cámara O.R., Photoelectrochemical characterization ofnanocrystalline TiO2films on titanium substrates [J]. J. Photochem. Photobiol. A,2002,146:175–88.
    [164] N.K. Allam, K. Shankar, C.A. Grimes, Photoelectrochemical and water photoelectrolysisproperties of ordered TiO2nanotubes fabricated by Ti anodization in fluoride–free HClelectrolytes [J]. J. Mater. Chem.,2008,18:2341–2348.
    [165] C. Ruan, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photoelectrochemical responsein highly ordered TiO2nanotube–arrays anodized in boric acid containing electrolyte [J]. Sol.Energ. Mat. Sol. Cells,2006,90:1283–95.
    [166] M. Paulose, G.K. Mor, O.K.Varghese, K. Shankar, C.A. Grimes, Visible lightphotoelectrochemical and water–photoelectrolysis properties of titania nanotube arrays [J]. J.Photoch. Photobio. A,2006,178:8–15.
    [167] S.K. Mohapatra, K.S. Raja, V.K. Mahajan, M. Misra, Efficient photoelectrolysis of waterusing TiO2nanotube arrays by minimizing recombination losses with organic additives [J]. J.Phys. Chem. C,2008,112:11007–110012.
    [168] Q. Kang, Q.Z. Lu, S.H. Liu, L.X. Yang, L.F. Wen, S.L. Luo, Q.Y. Cai,A ternary hybridCdS/Pt–TiO2nanotube structure for photoelectrocatalytic bactericidal effects on EscherichiaColi [J]. Biomater.,2010,31:3317–3326.
    [169] A. Hagfeldt,H. Lindstrom, S. Sodergren, S.E. Lindquist, Photoelectrochemical studies ofcolloidal Ti02films: the effect of oxygen studied by photocurrent transients [J]. J.Electroanal. Chem.,1995,38l (1–2):39–46.
    [170] D. Tafalla,P. Salvador, R.M. Benito, Kinetic approach to the photocurrent transients in waterphotoelectrolysis at n–TiO2electrodes [J]. J. Electrochem. Soc.1990,137:1810–1815.
    [171] H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Y.B. Zhang, Fabrication of TiO2–Ptcoaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenolin aqueous solution [J]. J. Phys. Chem. C,2008,112:9285–9290.
    [172] J. Lin, R. Zong,M. Zhou,Y.F. Zhou, Photoelectric catalytic degradation of methylene blueby C60–modified TiO2nanotube array [J]. Appl. Catal. B: Environ.,2009,89(3–4):425–431.
    [173] J. Li, L. Zheng, L. Li, et a1.Fabrication of TiO2/Ti electrode by laser–assisted anodicoxidation and its application on photoelectrocatalytic degradation of methylene blue [J]. J.Hazard. Mater.,2007,139(1):72–78.
    [174] D.R. Baker, P.V. Kamat, Photosensitization of TiO2nanostructures with CdS quantum dots:particulate versus tubular support architectures [J]. Advanced Functional Materials,2009,19(5):805–811.
    [175] J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag–TiO2multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Appl. Catal.,B,2005,60(3–4):211–221.
    [176] B. Cheng, Y. Le, J.G. Yu, Preparation and enhanced photocatalytic activity of Ag@TiO2core–shell nanocomposite nanowires [J]. J. Hazard. Mater.,2010,177(1–3):971–977.
    [177] H.Q. Song, P. Xiao, X.P. Qiu, W.T. Zhu, Design and preparation of highly active carbonnanotube–supported sulfated TiO2and platinum catalysts for methanol electrooxidation [J]. J.Power Sources,2010,195:1610–1614.
    [178] Z.L. Liu,X.Y. Ling,X.D. Su,et a1.Preparationand characterization Pt/C and Pt–Ru/Celectrcatalysts for direct ethanol fuel cells [J]. J. Power Sources,2005,149:1-5.
    [179] D.J. Guo, J.M. You, Highly catalytic activity of Pt electrocatalyst supported on sulphatedSnO2/multi–walled carbon nanotube composites for methanol electro–oxidation [J]. J. PowerSources,2012,198:127–131.
    [180] X.S. He, C.G. Hu, Building three–dimensional Pt catalysts on TiO2nanorod arrays foreffective ethanol electrooxidation [J]. J. Power Sources,2011,196:3119–3123.
    [181] Z.H. Xu, J.G. Yu, G. Liu, Enhancement of ethanol electrooxidation on plasmonic Au/TiO2nanotube arrays [J]. Electrochem. Commun.,2011,13:1260–1263.
    [182] B.D. Cullity, Elements of X–ray Diffraction, Addison–Wesley, New York,1984.
    [183] J.J. Zhou, C.J. Liu, K.L. Yu, D.G. Cheng, Y.P. Zhang, F. He, H.Y. Du, L. Cui, Highlyefficient Pt/TiO2photocatalyst prepared by plasma–enhanced impregnation method [J].Chem. Phys. Lett.,2004,400:520–523.
    [184] M.V. Martínez–Huerta, N. Tsiouvaras, M.A. Pe a, J.L.G. Fierro, J.L. Rodríguez, E. Pastor,Electrochemical activation of nanostructured carbon–supported PtRuMo electrocatalyst formethanol oxidation [J]. Electrochim. Acta,2010,55:7634–7642
    [185] M. Yin, Y. Huang, Q. Lv, L. Liang, J. Liao, C. Liu, W. Xing, Recent advances in catalysts fordirect methanol fuel cells [J]. Electrochim. Acta,2011,58:6–11.
    [186] M. Sogaard, M. Odgaard, E.M. Skou, An improved method for the determination of theelectrochemical active area of porous composite platinum electrodes [J]. Solid State Ionics,2001,145:31–35.
    [187] E.P. Lee, Z. Peng, D.M. Cate, H.Yang, C.T. Campbell, Y. Xia, Growing Pt nanowires as adensely packed array on metal gauze [J]. J. Am. Chem. Soc.,2007,129:10634–10635.
    [188] C.S. Chen, F.M. Pan, Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2supports toward methanol oxidation [J]. Appl. Catal., B,2009,(91):663–669.
    [189] S. Pronkin, M. Hara, T. Wandlowski, Electrocatalytic properties of Au (111)–Pdquasi–single–crystal film electrodes as probed by ATR–SEIRAS [J]. Russ. J. Electrochem.,2006,42:1177–1192.
    [190] G. Tremiliosi–Filho, E.R. Gonzalez, A.J. Motheo, E.M. Belgsir, J.M. Léger, C. Lamy,Electro–oxidation of ethanol on gold: analysis of the reaction products and mechanism [J]. J.Electroanal. Chem.,1998,44:31–39.