西洋参茎叶总皂苷抑制内质网应激相关凋亡改善大鼠急性心肌梗死后心室重构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性心肌梗死(acute myocardial infarction, AMI)后心室重构(ventricular remodeling, VR)包括梗死区扩展、心室扩张和非梗死区代偿性肥厚,是引起AMI后心衰的病理基础,与缺血后心肌细胞凋亡、肥大、延长、侧向滑移及心肌间质纤维化等密切相关。心肌缺血触发的内质网应激(endoplasmic reticulum stress, ERS)是引起细胞凋亡的主要信号通路。ERS信号通路能诱导C/EBP同源蛋白(C/EBP homologous protein, CHOP)与其他转录因子结合,诱导促凋亡基因表达。我们前期研究证实,CHOP介导的ERS相关凋亡途径,参与大鼠心肌缺血/再灌注损伤及心肌细胞缺氧/复氧损伤。CHOP介导的ERS相关凋亡,是否参与AMI后心室重构的病理过程?尚缺少研究报道。
     我们前期研究发现,西洋参茎叶总皂苷(Panax quinquefolium saponin, PQS)可通过抑制炎症反应、降低神经内分泌因子的激活、调节细胞外基质代谢等改善AMI后VR; PQS可改善大鼠心肌缺血再灌注损伤,减轻离体大鼠心肌细胞缺氧/复氧损伤,其机制和抑制过度ERS有关。PQS改善AMI后VR的作用,是否与抑制CHOP介导的ERS相关凋亡有关?以往亦缺少研究。
     因此,本研究采用结扎大鼠左冠状动脉前降支建立AMI模型,进一步证实PQS改善AMI后VR的作用,并从CHOP介导的ERS相关凋亡方面,探讨PQS改善AMI后VR的分子机制;采用内质网应激诱导剂毒胡萝卜素(thapsigargin,TG)诱导离体乳大鼠心肌细胞ERS相关凋亡,观察PQS对TG诱导心肌细胞凋亡的影响;以蛋白激酶R样内质网激酶(protein kinase R-like ER kinase, PERK)重组腺病毒感染和RNA干扰(RNA interference, RNAi)方法分别过表达或敲低心肌细胞内质网(endoplasmic reticulum, ER)跨膜蛋白PERK基因,探讨PQS抑制ERS相关凋亡的信号途径。
     研究一西洋参茎叶总皂苷改善急性心肌梗死后心室重构的作用
     目的:证实西洋参茎叶总皂苷对AMI后心室重构的改善作用
     方法:通过结扎大鼠左冠状动脉前降支复制急性心肌梗死模型,术后24h,存活的大鼠随机分为PQS50mg/kg/d组、PQS100mg/kg/d组、PQS200mg/kg/d组、牛磺酸300mg/kg/d组及AMI组(等量饮用水灌胃),每组10只。另设sham组(等量饮用水灌胃)15只。4周后,超声心动图检测左室结构及功能变化、颈动脉插管检测血流动力学、BIOSITE Triage诊断仪测定血浆BNP含量、Evans blue和TTC染色法测定心肌梗死范围、比色法测定非梗死区心肌组织羟脯氨酸含量。
     结果:与AMI组比较,低、中、高剂量PQS均可明显降低收缩期及舒张期左室内径、左室舒张末压、血浆BNP水平、心肌梗死范围和心肌组织羟脯氨酸含量(P<0.05),升高射血分数、左室短轴缩短率、平均颈动脉压、左室收缩末压和--dp/dtmax及-dp/dtmax绝对值(P<0.05),且呈剂量依赖性。
     结论:PQS减轻AMI后大鼠心脏结构变化、功能损伤和纤维化程度,减轻AMI后心室重构。
     研究二西洋参茎叶总皂苷抑制AMI后内质网应激相关凋亡的作用
     目的:证实西洋参茎叶总皂苷抑制AMI后ERS相关凋亡的作用。
     方法:AMI造模后24h,存活大鼠分组(每组10只):AMI组(等量饮用水灌胃),PQS200mg/kg/d组、牛磺酸组(300mg/kg/d),另设sham组15只。4周后,TUNEL法检测非梗死区心肌细胞凋亡率,Western blotting检测ERS分子葡萄糖调节蛋白78(GRP78)、钙网蛋白(CRT)、CHOP及凋亡相关蛋白Bcl-2、Bax的表达。
     结果:与AMI组比较,PQS200mg/kg/d组非梗死区心肌细胞凋亡率、内质网应激分子GRP78和CRT蛋白表达、ERS凋亡相关分子CHOP和促凋亡蛋白Bax表达均明显降低(P<0.05),抗凋亡蛋白Bcl-2明显升高(P<0.05)。Spearman相关分析发现,CHOP蛋白表达与心肌细胞凋亡率呈显著正相关(r=0.797,P<0.01)。
     结论:PQS通过抑制CHOP介导的ERS相关凋亡而减轻AMI后非梗死区心肌细胞凋亡。
     研究三西洋参茎叶总皂苷减轻毒胡萝卜素诱导心肌细胞凋亡的作用
     目的:证实PQS减轻ERS诱导剂TG诱导心肌细胞凋亡的作用。
     方法:原代培养的心肌细胞分为:①Control组:细胞置CO2孵箱37℃,常规培养24h。②TG组:培养液中加1μMTG,作用24h;③、④、⑤、⑥组:分别采用40μg/ml、80μg/ml及160μg/ml PQS及牛磺酸40mM预处理细胞24h后,再向培养液中加入1μM TG作用24h。CCK-8法和流式细胞术检测细胞活性及凋亡率,Western blotting方法检测ERS标志分子GRP78、PERK、CHOP及凋亡相关蛋白Bcl-2、Bax的表达。
     结果:与TG组比较,PQS160μg/ml可显著降低细胞凋亡率,升高细胞比活力(P<0.05);三种不同浓度的PQS均可降低GRP78、PERK、CHOP及Bax蛋白表达,升高Bcl-2蛋白表达(P<0.05),且呈剂量依赖性。
     结论:PQS160μg/ml减轻内质网应激诱导剂毒胡萝卜素诱导的心肌细胞凋亡其机理可能与抑制过度ERS相关凋亡有关。
     研究四西洋参茎叶总皂苷抑制PERK介导的内质网应激相关凋亡途径的作用
     目的:证实PQS通过抑制PERK-eIF2a-ATF4-CHOP减轻心肌细胞凋亡。
     方法:原代培养的心肌细胞分为:①Control组:细胞置CO2孵箱37℃,常规培养24h。②TG组:培养液中加1μMTG,作用24h;③PQS+TG组:160μg/mlPQS预处理24h后,按照②程序操作;④PERK敲低+TG组:以RNAi方法敲低心肌细胞PERK基因后,按照②程序操作:⑤随机双链RNA转染对照组+TG组(MOCK+TG):转染随机合成的25bp双链小RNA片段至心肌细胞后,按照②程序操作;⑥PERK过表达组:以PERK重组腺病毒感染24h;⑦PQS+PERK过表达组:培养液中加入终浓度为160μg/ml的PQS预处理24h后,按照⑥程序操作。以CCK-8法和流式细胞术分别检测细胞活性及凋亡率RT-PCR和Western blotting方法检测ERS标志分子GRP78、PERK、eIF2a、ATF4和CHOP的转录及翻译。
     结果:与单纯TG处理组比较,敲低PERK表达及PQS预处理均可显著降低心肌细胞凋亡率,提高细胞比活力,降低ERS分子GRP78、ATF4及CHOP表达,降低PERK及eIF2a的磷酸化水平(P<0.05)。与Control组比较,单纯过表达PERK可升高心肌细胞凋亡率,降低心肌细胞比活力,升高ERS分子GRP78、ATF4及CHOP的翻译及转录水平,升高PERK及eIF2a磷酸化水平(P<0.05);PQS预处理可显著改善过表达PERK导致的上述改变(P<0.05)。
     结论:PQS预处理可产生类似PERK敲低对心肌细胞凋亡和细胞活性的效应,并且减轻过表达PERK导致的心肌细胞凋亡,机理可能与抑制ERS的PERK-eIF2a-ATF4-CHOP凋亡途径有关。
Ventricular remodeling (VR) after acute myocardial infarction (AMI) is a complicated pathological process, including thinning of the ventricular wall, dilatation of the ventricle and myocardial hypertrophy. The underlying mechanism of VR is not clear so far, though most researchers suppose that it involves apoptosis, hypertrophy of cardiomyocytes and fibrosis of the myocardial matrix. Endoplasmic reticulum stress (ERS) triggered by myocardial ischemia induces cardiomyocyte apoptosis, which presented as the up-regulation of ERS-induced apoptosis pathway glucose regulating protein78(GRP78), calreticulin (CRT), and C/EBP homologous protein (CHOP). Our previous study showed that CHOP-mediated ERS-related apoptosis was involved in rat myocardial hypertrophy induced by abdominal aortic constriction and in rat myocardial ischemia/reperfusion injury. However, whether the CHOP-mediated ERS-related apoptosis contributes to the VR after AMI remains to be studied.
     Panax quinquefolium saponin (PQS) has been identified beneficial for VR after AMI, myocardial ischemia/reperfusion (I/R) injury, and hypoxia-reoxygenation (H/R) injury of cardiomyocytes in vitro. We found that PQS alleviates H/R injury and I/R injury by inhibiting excessive ERS in cardiomyocyte. Whether the effect of PQS on VR after AMI involves CHOP-mediated ERS-related apoptosis remains to be studied.
     We established the AMI model by ligating the left anterior descending coronary artery of rats to determine the effects of PQS on LV remodeling after AMI, and explored its possible mechanism involving CHOP-mediated ERS-related apoptosis. The cardioprotective effects of PQS were studied on thapsigargin-treated cardiomyocytes from neonatal Sprague-Dawley (SD) rats to induce ERS-induced apoptosis. Recombinant adenovirus or RNAi were used to exogenous express or knockdown protein kinase R-like ER kinase (PERK), which aimed to explore the signal pathway of PQS inhibiting ERS related apoptosis in cardiomyocytes.
     Part Ⅰ The improvement effect of PQS on VR after AMI
     Objective:To study the effect of PQS on VR after AMI.
     Methods:SD rats subjected to AMI were randomly treated with either driking water, PQS (50mg/kg/d,100mg/kg/d or200mg/kg/d) or taurine, an ERS inhibitor (300mg/kg/d) for4weeks. Left ventricle (LV) fractional shortening (FS), ejection fraction (EF) and structure were then evaluated using echocardiography. The hemodynamic parameters were obtained by carotid artery intubation, and the plasma BNP level was detected by BIOSITE Triage equipment. Myocardial infarct size was measured by Evans blue and2,3,5-triphenyhetrazolium chloride (TTC) staining. The hydroxyproline content in myocardium was determined using the colorimetric method.
     Results:Compared with the AMI group, PQS treatment (50mg/kg/d,100mg/kg/d, and200mg/kg/d) significantly decreased LVESD and LVEDD and increased FS, EF, the mean arterial pressure, left ventricular systolic pressure, the maximal rates of rise and decline of left ventricular pressure (P<0.05) and significantly increased the left ventricular end-diastolic pressure and plasma BNP levels (P<0.05). A similar trend was observed between rats treated with taurine and rats treated with PQS200mg/kg/d. Conclusion:PQS improved the VR after AMI by attenuating cardiac structural changes, functional damage and fibrosis.
     Part Ⅱ The inhibitory effects of PQS on ERS related apoptosis after AMI
     Objective:To study the effect of PQS on ERS-related apoptosis after AMI.
     Methods:Twenty-four hours after the surgery, the AMI rats were randomly divided into3groups as follows:AMI group, PQS200mg/kg/d group and taurine (300mg/kg/d) group. Another15rats underwent the same procedure except for the ligation of the coronary artery as the sham group. Cardiomyocyte apoptosis was detected using Terminal Deoxynucleotidyl Transferase Mediated dUTP Biotin Nick End Labeling (TUNEL). In addition, expression of ERS molecules in the non-infarcted myocardium was detected using Western blotting.
     Results:Compared with the AMI group, PQS treatment (200mg/kg/d) significantly decreased the apoptosis index, the expression of GRP78, calreticulin (CRT), CHOP and Bax protein, as well as increased Bcl-2protein expression in non-infarcted myocardium. PQS200mg/kg/d treatment mimicked the results achieved from the taurine-treated rats. CHOP expression positively correlated with the apoptosis index of cardiomyocytes in the non-infarcted myocardium (r=0.797, P<0.01).
     Conclusion:PQS treatment significantly attenuated apoptosis in the non-infarcted myocardium, which might be attributed to inhibiting CHOP-mediated ERS-related apoptosis.
     Part Ⅲ The effect of PQS on decreasing cardiomyocytes apoptosis induced by thapsigargin
     Objective:To study the effect of PQS on cardiomyocytes apoptosis induced by thapsigargin.
     Methods:Primary cultured cardiomyocytes from neonatal SD rats were divided into6groups as follows:Control group, TG group (cells were treated with1μM TG for24h), PQS40μg/ml+TG group (cells were pretreated with40μg/ml PQS for24h and then treated with1μM TG for24h), PQS80μg/ml+TG group, PQS160μg/ml+TG group, taurine+TG group. Cell viability was detected by CCK-8. Apoptosis was detected by flow cytometry. Western blotting was used to detecte the expression of ERS molecules GRP78, PERK, CHOP and apoptosis related protein Bcl-2and Bax.
     Results:Compared with TG group, PQS treatment (160μg/ml) significantly reduced the apoptosis and increased the cell viability (P<0.05). All the three different concentration of PQS significantly reduced the expression of GRP78, PERK, CHOP and Bax, and increased the expression of Bcl-2(P<0.05), in a dose dependent manner.
     Conclusion:PQS160μg/ml attenuated cardiomyocyte apoptosis induced by thapsigargin through inhibiting excessive ERS.
     Part Ⅳ The inhibitory effect of PQS on apoptosis through the PERK-eIF2a-ATF4-CHOP pathway
     Objective:To explore the mechanism by which PQS inhibiting apoptosis induced by thapsigargin.
     Methods:Primary cultured cardiomyocytes from neonatal SD rats were divided into6groups as follows:control group, TG group, PQS+TG group, Si-PERK+TG group, Random double-stranded RNA-transfected+TG group, PERK overexpression group (Ad-PERK), PQS+PERK overexpression group; Cell viability was detected by CCK-8. Apoptosis was detected by flow cytometry. RT-PCR and Western blotting was used to detecte the expression of ERS molecules including GRP78, PERK, eIF2a, and CHOP.
     Results:Compared with TG group, both PERK knockdown and PQS pretreatment significantly reduced the rate of cardiomyocyte apoptosis, increased the cell viability, decreased the transcription and translation of ERS molecules GRP78, ATF4and CHOP (P<0.05) and decreased the phosphorylation of PERK and eIF2a (P<0.05). Compared with TG group, overexpression of PERK significantly increased the apoptosis rate, decreased the cell viability, and increased the transcription and translation of ERS molecules GRP78, ATF4and CHOP (P<0.05) and decreased the phosphorylation of PERK and eIF2a (P<0.05); PQS pretreatment significantly decreased the changes induced by PERK overexpression (P<0.05).
     Conclusion:PQS pretreatment mimicked the effects of PERK knockdown, which would be related to the PERK--eIF2a-ATF4-CHOP apoptotic pathway of ERS.
引文
1. Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits [J]. Biochim Biophys Acta,2005,1740 (3):499-513.
    2. Tang XL, Sanganalmath SK, Sato H, et al. Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction [J]. PLOS One.2011,6(9):e25320.
    3. Husic M, Egstrup K. Usefulness of left ventricular diastolic wall motion abnormality as an early predictor of left ventficular dilation after a fimt acute myoeardial infarction [J]. Am J Cardiol,2005,96(9):1186-1189.
    4.赵鹏,朱兴雷.急性心肌梗死与左室重构[J].国际内科学杂志,2007,34(1):17-20.
    5. 尹智炜,史力生,陈志强,等.儿茶酚胺-β受体-cAMP系统在急性心肌梗死左室重塑中的生物学调控作用[J].中国老年学杂志,2006,26(4):447-450.
    6. Sadoshima J, lzumo S. Signal transduction pathways of angiotens in induced c-fos gene expression in cardiac myocytes in vitro [J]. Circ Res,1993,73(3): 424-438.
    7. Cohn JN, Colucci W. Cardiovascular effect of aldosterone and post-acute myocardial infarction pathophysiology [J]. Am J Cardiol,2006,97 (suppl): 4F-12F.
    8. Cemacek P, Stewart DJ, Monge JC, et al. The endothehn system and its role in acute myocardial infarction [J]. Can J Physiol Pharmacol,2003,81(6):598-606.
    9. Yue P, Massie BM, Simpson PC, et al. Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure [J]. Am J Physiol,1998, 275(1 Pt 2):H250-H258.
    10. Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarction remodeling [J]. Circ Res,2004,94(12):1543-1553.
    11. Puhakka M, Magga J, Hietakorpi S, et al. Interleukin-6 and tumor necrosis factor alpha in relation tomyocardial infarct size and collagen formation [J]. J Card Fail, 2003,9(4):325-332.
    12. Saitoh T, Nakajima T, Kawahara K. Possible involvement of apoptotic death of myocytes in left ventricular remodeling after myocardial infarction [J]. Jpn J Physiol,2003,53(3):247-252.
    13. Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy [J]. J Clin Invest,1997,100(8):1991-1999.
    14. Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats [J]. Am J Physiol Heart Circ Physiol,2001,280(6):H2726-H2731.
    15. Abbate A, Biondi Zoccai GG, Bussani R, et al. Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure [J]. J Am Coll Cardiol,2003,41(5):753-760.
    16. Cheng W, Kajstura J, Nitahara J, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats [J]. Exp Cell Ras,1996,226(2): 316-327.
    17. Sam F, Sawyer D B, Chang D L, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart [J]. Am J Physiol Heart Circ Physiol,2000,279(1):H422-H428.
    18. Kondo H, Hojo Y, Tsuru R, et al. Elevation of plasma granzyme B levels after acute myocardial infarction [J]. Circ J,2009,73(3):503-507.
    19. Lee P, SataM, Lefer D J, et al. Fas pathway is a criticalmediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo [J]. Am J Physiol Heart Circ Physiol,2003,284 (2):H456-H463.
    20. Ashkenazi A, Dixit V M. Death receptors:signaling and modulation [J]. Science, 1998,281 (5381):1305-1308.
    21. Soeki T, Tamura Y, Shinohara H, et al. Relation between circulating soluble Fas ligand and subsequent ventricular remodelling following myocardial infarction [J]. Heart Vessels,2003,89(3):339-341.
    22. Kanamori H, Takemura G, Li Y, Okada H, et al. Inhibition of Fas-associated apoptosis in granulation tissue cells accompanies attenuation of postinfarction left ventricular remodeling by olmesartan [J]. Am J Physiol Heart Circ Physiol,2007, 292(5):H2184-H2194.
    23. Li Y, Takemura G, Kosai K, et al. Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure [J]. Circ Res,2004,95(6): 627-636.
    24. Ito Y, Pandey P, Mishra N, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis [J]. Mol Cell Biol,2001,21(18):6233-6242.
    25. Nakamura K, Bossy Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis [J]. J Cell Biol,2000, 150(4):731-740.
    26. Xin W, Li X, Lu X, et al. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia [J]. Int J Mol Med,2011,27(4):503-509.
    27. Infanger M, Faramarzi S, Grosse J, et al. Expression of vascular endothelial growth factor and receptor tyrosine kinases in cardiac ischemia/reperfusion injury [J]. Cardiovasc Pathol.2007,16(5):291-299.
    28.郑欢,罗明.炎性细胞因子与急性心肌梗死后心室重构的关系[J].心血管病学进展,2007,28(2):208-211.
    29. Gurantz D, Cowling RT, Varki N, et al. IL-1β and TNF-α upregulate angiotensin Ⅱ type 1(AT1) receptors no cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart [J]. J Mol Cell Cardiol,2005,38(3):505-515.
    30. Yue P, Massie BM, Simpson PC, et al. Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure [J]. Am J Physiol,1998, 275(1 Pt 2):H250-H258.
    31. Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarction remodeling [J]. Circ Res,2004,94(12):1543-1553.
    32. Uemura K, Zheng C, Li M, et al. Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction [J]. J Card Fail,2010,16(8):689-699.
    33. Niccoli G, Cosentino N, Lombardo A, et al. Angiographic patterns of myocardial reperfusion after primary angioplasty and ventricular remodeling. Coron Artery Dis,2011,22(7):507-514.
    34. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both [J]. N Engl J Med.2003,349(20):1893-1906.
    35. Latini R, Staszewsky L, Maggioni AP, et al. Beneficial effects of angiotensin-converting enzyme inhibitor and nitrate association on left ventricular remodeling in patients with large acute myocardial infarction:the Delapril Remodeling after Acute Myocardial Infarction (DRAMI) trial [J]. Am Heart J,2003,146(1):133.
    36. Palaniyappan A, Uwiera RR, Idikio H, et al. Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin Ⅱ and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction [J]. Mol Cell Biochem,2013,376(1-2): 175-188.
    37. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction:the CAPRICORN randomised trial [J]. Lancet.2001,357(9266):1385-1390.
    38. Doughty RN, Whalley GA, Walsh HA, et al. Effects of carvedilol on left ventricular remodeling after acute myocardial infarction:the CAPRICORN Echo Substudy [J]. Circulation.2004,109(2):201-206.
    39. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction [J]. N Engl J Med.2003,348(14):1309-1321.
    40. Cosmo S. Francisco JC, Cunha RC. et al. Effect of exercise associated with stem cell transplantation on ventricular function in rats after acute myocardial infarction [J]. Rev Bras Cir Cardiovasc.2012.27(4):542-551.
    41. Roehl AB. Funcke S, Becker MM. et al. Xenon and Isoflurane Reduce Left Ventricular Remodeling after Myocardial Infarction in the Rat [J]. Anesthesiology.2013 Jan 29. [Epub ahead of print]
    42.王振涛,王硕仁,李敏,等.活血益气注射液治疗心衰大鼠心气虚证的研究[J].中药药理与临床,2000,16(增刊):73-75.
    43.董国菊,刘剑刚,史大卓,等.愈心梗液对急性心肌梗死大鼠心肌能量代谢和内皮功能障碍的影响[J].中国中医急症,2005,14(9):872-874.
    44.上官海娟,徐江,官洪山,等.当归对心肌梗死后心肌细胞凋亡和心室重构的影响[J].中国中西医结合急救杂志,2008,15(1):39-44.
    45.李广阔,范金爽,李焕明.西洋参茎叶总皂苷对心室重构大鼠的保护作用[J].中国老年学杂志,2011,31(12):4634-4636.
    46.睢大员,于晓风,曲绍春,等.西洋参叶20S-原人参二醇组皂甙对大鼠实验性心室重构的影响[J].中国药学杂志,2007,42(2):108-112.
    47.王薇娜,赵良平, 王丽,等.人参皂甙Rbl对大鼠急性心肌梗死后左室重构的影响[J].中国微循环,2006,10(4):256-258.
    1. Liu XH. Progress in endogenous cardioprotection induced by ischemia postconditioning [J]. Acta Physiol Sin.2008,59(5):628-634.
    2. Isodono K, Takahashi T, Imoto H, et al. PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes [J]. J PLoS One.2010,5(3):e9746.
    3. Matsushita E, Asai N, Enomoto A, et al. Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells [J]. J Mol Biol Cell.2011,22(6):736-747.
    4. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner [J]. Mol Cell.2012,48(3):353-364.
    5. Fu HY, Okada K, Liao Y, et al. Ablation of C/EBP homologous protein atteuates ER-mediated apoptosis and cardiac dysfunction induced by pressure overload [J]. Circulation.2010,122(4):361-369.
    6. Cheng WP, Wang BW, Shyu KG. Regulation of GADD153 induced by mechanical stress in cardiomyocytes [J]. Eur J Clin Invest.2009,39(11): 960-971.
    7. McCullough KD, Martindale JL, Klotz LO, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state [J]. Mol Cell Biol.2001,21(4):1249-1259.
    8. Puthalakath H, O'Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3-only protein Bim [J]. Cell.2007,129(7):1337-1349.
    9. Glembotski CC. The role of the unfolded protein response in the heart [J]. Mol Cell Cardiol.2008,44(3):453-459.
    10. Hellman M, Arumae U, Yu LY,et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons [J]. J Biol Chem.2011,286(4):2675-2680.
    11. Tadimalla A, Belmont PJ, Thuerauf DJ, et al. Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart [J]. Circ Res.2008,103(11):1249-1258.
    12. Park SJ, Kim TS, Park CK, et al. hCG-induced endoplasmic reticulum stress triggers apoptosis and reduces steroidogenic enzyme expression through activating transcription factor 6 in Leydig cells of the testis [J]. J Mol Endocrinol. 2013,50(2):151-166.
    13. Glembotski CC. Endoplasmic Reticulum Stress in the Heart [J]. Circ Res.2007, 101(10):975-984.
    14. Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2 [J]. Biol Pharm Bull.2003,26(7): 931-935.
    15. Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy:a quality control perspective [J]. Cardiovasc Res.2010,85(2):253-262.
    16. Petrovski G, Das S, Juhasz B, et al. Cardioprotection by Endoplasmic Reticulum Stress-Induced Autophagy [J]. J Antioxid Redox Signal.2011,14(11): 2191-2200.
    17. Pattison JS, Sanbe A, Maloyan A, et al. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure [J]. Circulation.2008, 117(21):2743-2751.
    18. Xu Q. Disturbed flow-enhanced endothelial turnover in atherosclerosis [J]. Trends Cardiovasc Med.2009,19(6):191-195.
    19. Tsukano H, Gotoh T, Endo M, et al. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques [J]. Arterioscler Thromb Vasc Biol.2010, 30(10):1925-1932.
    20. Erbay E, Babaev VR, Mayers JR, et al. Reducing endoplasmic reticulum stress through a macrophage lipchaperone alleviates atherosclerosis [J]. Nat Med.2009, 15(12):1383-1391.
    21.王琛,刘蜜,孙胜,宋丹丹,刘秀华,史大卓.西洋参茎叶总皂苷通过抑制过度内质网应激减轻大鼠心肌缺血/再灌注损伤[J].中国病理生理杂志,2013,29(1):20-27.
    22. Myoishi M, Hao H, Minamino T, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome [J]. Circulation. 2007,116(11):1226-1233.
    23. Wang C, Li YZ, Wang XR, et al. Panax quinquefolium saponins reduce myocardial hypoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress [J]. Shock,2012,37(2):228-233.
    24. Thuerauf DJ, Marcinko M, Gude N, et al. Activation of the unfolded protein response in infracted mouse heart and hypoxic cultured cardiac myocytes [J]. Circ Res.2006,99(3):275-282.
    25. Shintani-Ishida K, Nakajima M, Uemura K, et al. Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78 [J]. Biochem Biophys Res Commun.2006,345(4):1600-1605.
    26. Liu XH, Zhang ZY, Sun S, et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress [J]. Shock.2008,30(4):422-427.
    27. Nickson P, Toth A, Erhardt P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress [J]. Cardiovasc Res.2007, 73(1):48-56.
    28. Doroudgar S, Thuerauf DJ, Marcinko MC, et al. Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response [J]. J Biol Chem.2009, 284(43):29735-29745.
    29. Severino A, Campioni M, Straino S, et al. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy [J]. J Am Coll Cardiol.2007,50(11):1029-1037.
    30. Terai K, Hiramoto Y, Masaki M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress [J]. Mol Cell Biol.2005,25(21):9554-9575.
    31. Zhang ZY, Liu XH, Ye YJ, et al. C/EBP homologous protein-mediated endoplasmic reticulum stress-related apoptosis pathway is involved in abdominal aortic constriction-induced myocardium hypertrophy in rats [J]. Acta Physiol Sin. 2009,61(2):161-168.
    32. Zhang ZY, Liu XH, Hu WC, et al. The calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes [J]. Am J Physiol Heart Circ Physiol.2010,298(5): H1499-1509.
    33. Liu XH, Zhang ZY, Kristin Brevik Andersson, et al. Cardiomyocyte-specific disruption of Serca2 in adult mice causes sarco(endo)plasmic reticulum stress and apoptosis[J]. Cell Calciun 2010,49(4):201-207.
    34. Xin W, Li X, Lu X, et al. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia [J]. Int J Mol Med.2011,27 (4):503-9.
    35. Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease:molecular mechanisms and clinical implications [J]. J Clin Sci (Lond).2009,117(3): 95-109.
    36. Younce CW, Kolattukudy PE. MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP [J]. Biochem J.2010,426 (1): 43-53.
    37. Wu T, Dong Z, Geng J, et al. Valsartan protects against ER stress-induced myocardial apoptosis via CHOP/Puma signaling pathway in streptozotocin-induced diabetic rats [J]. Eur J Pharm Sci.2011 Feb 21.
    38. Mao W, Iwai C, Liu J, et al. Darbepoetin alfa exerts a cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and activation of the PI3K/Akt and STAT3 pathways [J]. J Mol Cell Cardiol.2008,45(2):250-260.
    1. Pfeffer MA, Braunwald E. Ventricular remodelling after myocardial infarction: experimental observations and clinical implications [J]. Circulation,1990,81(4): 1161-1172.
    2. Olivetti G, Capasso JM, Meggs LG, et al. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats [J]. Circ Res,1991,68(3): 856-869.
    3. Weisman HF, Bush DE, Mannisi JA, et al. Cellular mechanisms of myocardial infarct expansion. Circulation,1988,78(1):186-201.
    4. Tang XL, Sanganalmath SK, Sato H, et al. Atorvastatin therapy during the peri-Infarct period attenuates left ventricular dysfunction and remodeling after myocardial infarction [J]. Plos one,2011,6(9):e25320.
    5. Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats [J]. Am J Physiol Heart Circ Physiol,2001,280(6):H2726-H2731.
    6. Sam F, Sawyer DB, Chang DL, et a 1. Progressive left ventricular remodeling and apoptosis late after myocardial infarction on mouse heart [J]. Am J Physiol Heart Circ Physiol,2000,279(1):H422-H428.
    7. Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits [J]. Biochim Biophys Acta,2005,1740(3):499-513.
    8. Ren J, Zhang S, Kovacs A, et al. Role of p38 alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction [J]. J nol Cell Cardiol,2005,38(4): 617-623.
    9. Thuerauf dJ, Marcinko M, Gude N, et al. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes [J]. Circ Res,2006,99(8):275-282.
    10. Boya PI, Cohen N, Zamzami HL, et al. Endoplasmic reticulum stress induced cell death requires mitochondrial membrane permeabilization [J]. Cell Death Differ,2002,9(4):465-467.
    11. Breckenridge DG, Germain M, Mathai JP, et al. Regulation of apoptosis by endoplasmic retieulum pathways [J]. Oncogene,2003,22(53):8608-8618.
    12. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress:cell life and death decisions [J]. J. Clin. Invest.2005,115(10):2656-2664.
    13. Reddy RK, Mao C, Baumeister P, et al. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation [J]. J. Biol. Chem.2003,278(23):20915-20924.
    14. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+:a control point for apoptosis [J]. Science,2003, 300(5616):135-139.
    15. White C, Li C, Yang J, et al. The endoplasmic reticulum gateway to apoptosis by Bcl-X (L) modulation of the InsP3R [J].Nat. Cell Biol,2005,7(10):1021-1028.
    16. Zhang ZY, Liu XH, Ye YJ, et al. C/EBP homologous protein-mediated endoplasmic reticulum stress-related apoptosis pathway is involved in abdominal aortic constriction-induced myocardium hypertrophy in rats [J]. Acta Physiol Sin,2009,61(2):161-168.
    17.王琛,刘蜜,孙胜.等.西洋参茎叶总皂苷通过抑制过度内质网应激减轻大鼠心肌缺血/再灌注损伤[J].中国病理生理杂志,2013,29(1):20-27.
    18. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum [J]. J Biol Chem.2004,279(25):25935-25938.
    19. Puthalakath H, O'Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell.2007,129(7):1337-1349.
    20. Zou CG, Cao XZ, Zhao YS, et al. The molecular mechanism of endoplasmic reticulum stress-induced apoptos ER stress triggers apoptosis by activating BH3-only protein Bim is in PC-12 neuronal cells:the protective effect of insulinlike growth factor I. Endocrinology,2009,150(1):277-285.
    21. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem.1991, 266(26):17067-17071.
    22. Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+transport ATPase by thapsigargin at subnanomolar concentrations. J.Biol. Chem.1991, 266(26):13503-13506.
    23. Treiman M, Caspersen C, Christensen SB. A tool coming of age:thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. TIPS,1998,19(4): 131-135.
    24. Denmeade SR, Isaacs JT. The SERCA pump as a therapeutic target:making a "smart bomb" for prostate cancer. Cancer Biol. Ther,2005,4(1):14-22.
    25. Chung H, Chung HY, Chong WB, et al. Ghrelin suppresses tunicamycin-or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells [J]. Endocrine Journal,2011,58 (5): 409-420.
    26. Foldi I, Toth AM, Szabo Z, et al. Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells [J]. Neurochem Int. 2013,62(1):58-69.
    27.王承龙,史大卓,殷惠军,等.西洋参茎叶总皂苷对急性心肌梗死大鼠心肌VEGF.bFGF表达及血管新生的影响[J].中国中西医结合杂志,2007,27(4):331-334.
    28.殷惠军,张颖,蒋跃绒,等.西洋参叶总皂苷对急性心肌梗死大鼠心肌细胞凋亡及凋亡相关基因表达的影响[J].中国中西医结合杂志,2005,25(3):232-235.
    29. Wang C, Li YZ, Wang XR, et al. Panax quinquefolium saponins reduce myocardial hypoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress [J]. Shock,2012,37(2):228-233.
    1. 睢大员,于晓风,曲绍春,等.西洋参叶20S-原人参二醇组皂甙对大鼠实验性心室重构的影响[J].中国药学杂志,2007,42(2):108-112.
    2.李广阔,范金爽,李焕明.西洋参茎叶总皂苷对心室重构大鼠的保护作用[J].中国老年学杂志,2011,31(12):4634-4636.
    3. Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats [J]. Am J Physiol Heart Circ Physiol,2001,280(6):H2726-H2731.
    4. SE Litwin, SE Katz, JP Morgan, et al. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat [J]. Circulation,1994,89(1):345-354.
    5. Zornoff LA, Paiva SA, Duarte DR, et al. Ventricular remodeling after myocardial infarction:concepts and clinical implications [J]. Arq Bras Cardiol, 2009,92 (2):150-164.
    6. Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits [J]. Biochim Biophys Acta,2005,1740 (3):499-513.
    7. Tang XL, Sanganalmath SK, Sato H, et al. Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction [J]. PLOS One.2011,6(9):e25320.
    8. Wilson S. Colucci, Uri Elkaym, Darlene P. Horton, et al. Intravenous Nesiritide, a Natriuretic Peptide, in the Treatment of Decompensated Congestive Heart Failure [J]. N Engl J Med.2000,343(20):246-253.
    9.王永霞,任红杰,朱明军,等.参附益心颗粒对慢性心力衰竭大鼠血浆心钠素、脑钠素的影响[J].中国实验方剂学杂志,2011,17(4):118-120
    1. K.B. Andersson, J.A. Birkeland, A.V. Finsen, et al. Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the Serca2 gene [J]. J. Mol. Cell. Cardiol.2009,47 (2):180-187.
    2. Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats [J]. Am J Physiol Heart Circ Physiol,2001,280(6):H2726-H2731.
    3. Okada K, Minamino T, Tsukamoto Y, et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis [J]. Circulation,2004,110(6):705-712.
    4. Xin W, Li X, Lu X, et al. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia [J]. Int J Mol Med,2011,27(4):503-509.
    5. Zhang ZY, Liu XH, Ye YJ, et al. C/EBP homologous protein-mediated endoplasmic reticulum stress-related apoptosis pathway is involved in abdominal aortic constriction-induced myocardium hypertrophy in rats [J]. Acta Physiol Sin.2009,61(2):161-168.
    6. McCullough KD, Martindale JL, Klotz LO, et al. Gaddl53 sensitizes cells to endoplasmic reticulum stress by down regulating Bcl-2 and perturbing the cellular redox state [J]. Mol Cell Biol,2001,21 (4):1249-1259.
    7. Song H, Kim H, Park T, et al. Characterization of myogenic differentiation under endoplasmic reticulum stress and taurine treatment [J]. Adv Exp Med Biol, 2009,643(3):253-261.
    8. Chunliu Pan, Grace S Giraldo, Howard Prentice, et al. Taurine protection of PC 12 cells against endoplasmic reticulum stress induced by oxidative stress [J]. Journal of Biomedical Science,2010,17(1):S17.
    9. Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits [J]. Biochim Biophys Acta,2005,1740 (3):499-513.
    1. Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions [J]. J. Chem. Neuroanat.2004,28(1-2):51-65.
    2. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress:cell life and death decisions [J]. J. Clin. Invest.2005,115(10):2656-2664.
    3. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps [J]. J. Biol. Chem. 1991,266(26):17067-17071.
    4. Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+transport ATPase by thapsigargin at subnanomolar concentrations [J]. J. Biol. Chem. 1991,266(26):13503-13506.
    5. Treiman M, Caspersen C, Christensen SB. A tool coming of age:thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases [J]. TIPS.1998, 19(4):131-135.
    6. Denmeade SR, Isaacs JT. The SERCA pump as a therapeutic target:making a "smart bomb" for prostate cancer [J]. Cancer Biol. Ther.2005,4(1):14-22.
    7. Hyunju Chung, Ho-Yeon Chung, Chong Woo Bae, et al. Ghrelin suppresses tunicamycin-or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells [J]. Endocrine Journal, 2011,58 (5):409-420.
    8. Foldi I, Toth AM, Szabo Z, et al. Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells [J]. Neurochem Int. 2013,62(1):58-69.
    9. Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol [J]. Circ Res,1982,50(1):101-116.
    10. Tsukano H, Gotoh T, Endo M, et al. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques [J]. Arterioscler Thromb Vasc Biol.2010, 30(10):1925-1932.
    11. Xin W, Li X, Lu X, et al. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. Int J Mol Med.2011,27 (4):503-509.
    12. Kim DS, Kwon DY, Kim MS, et al. The involvement of endoplasmic reticulum stress in flavonoid-induced protection on cardiac cell death caused by ischaemia/reperfusion [J]. Pharm Pharmacol.2010,62(2):197-204.
    13. Liu XH, Zhang ZY, Sun S, et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress [J]. Shock,2008,30(4):422-427.
    14. Zhang ZY, Liu XH, Ye YJ, et al. C/EBP homologous protein-mediated endoplasmic reticulum stress-related apoptosis pathway is involved in abdominal aortic constriction-induced myocardium hypertrophy in rats [J]. Acta Physiol Sin. 2009,61(2):161-168.
    15. Zhen-Ying Zhang, Xiu-Hua Liu, Wei-Cheng Hu, et al. Caleineurin-myocyte enhancer factor 2c Pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes [J]. The American Journal of Physiology,2010,298 (5):H1499-H1509.
    1. Glembotski CC. The role of the unfolded protein response in the heart [J]. J Mol Cell Cardiol,2008,44(3):453-459.
    2. Zeiig L, Zampetaki A, Marqariti A, et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow [J]. P Natl Acad Sci,2009,106 (20):8326-8331.
    3. Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress induced cell death triggered by expanded polyglutamine repeats [J]. Genes Dev,2002,16(11):1345-1355.
    4. Diane RF, Constantinos K. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth [J]. Cancer Biology & Therapy,2006,5(7): 723-728.
    5. Fu HY, Okada K, Liao Y, et al. Ablation of C/EBP homologous protein atteuates ER-mediated apoptosis and cardiac dysfunction induced by pressure overload [J]. Circulation.2010,122(4):361-369.
    6. Cheng WP, Wang BW, Shyu KG. Regulation of GADD153 induced by mechanical stress in cardiomyocytes [J]. Eur J Clin Invest.2009,39(11): 960-971.
    7. M.L. Whitney, L.S. Jefferson, S.R. Kimball, ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression [J]. Biochem. Biophys. Res. Commun.379 (2009) 451-455.
    8. Liu CL, Li X, Hu GL, Li RJ, He YY, Zhong W, Li S, He KL, Wang LL. Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2a signaling pathway [J]. J Geriatr Cardiol.2012, 9(3):258-268.
    9.曹洁,杨朝霞,沈薇,等.靶向PERK基因的shRNA真核表达载体的构建及对内质网应激状态下L02肝细胞凋亡的影响[J].中国病理生理杂志,2011,27(12):2376-2381.
    10. Nilesh S. Chitnis, Dariusz Pytel, Ekaterina Bobrovnikova-Marjon, et al. miR-211 Is a Prosurvival MicroRNA that Regulates chop Expression in a PERK-Dependent Manner [J]. Molecular Cell,2012,48(9):353-364.
    11. Takadera T, Fujibayashi M, Kaniyu H, et al. Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons [J]. Neurochem Res.2007,32(8):1336-1342.
    12. Szegezdi E, Herbert KR, Kavanagh ET, et al. Nerve growth factor blocks thapsigargin-induced apoptosis at the level of the mitochondrion via regulation of Bim [J]. J Cell Mol Med.2008,12(6A):2482-2496.