甲酰肽受体在电场引导人视网膜色素上皮细胞层损伤修复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     视网膜色素上皮(retinal pigment epithelium,RPE)细胞层位于视网膜光感受器细胞与Bruch膜及脉络膜之间,支持着视网膜光感受器细胞,是维持视网膜结构和功能的重要组成部分。人RPE (human RPE,hRPE)细胞损伤性疾病,如年龄相关性黄斑病变(age-related macular degeneration,AMD)、增殖性玻璃体视网膜病变(proliferation vitreoretinopathy,PVR)以及视网膜色素变性等,是造成视力丧失的重要原因。RPE层一旦损伤,由病变区周围健康的RPE细胞向损伤区移行增生,以修复损伤区,这一过程对结构和功能的恢复十分重要。
     在细胞修复的过程中,有多种复杂的因素参与,其中伴有电场的作用。外加电场可以明显促进皮肤和角膜上皮损伤的修复。我们研究组前期的研究结果表明,在较短的时间内,电场能够引导hRPE细胞向负极移动,而且低于10 V/cm的电场强度对hRPE细胞的正常活性及分裂功能无明显不良影响。但是,单有外加电场的作用,似乎不足以促进hRPE细胞较快地移行修复缺损区。因此,我们试图寻找能够加快细胞在电场中移行的因子。
     有许多分子与细胞的移行有关。而人类甲酰肽受体(Formyl Peptide Receptor,FPR,1976年发现)是一种化学趋化受体,是介导细胞在一系列细胞因子的作用下移行的G蛋白偶联受体,与激动剂结合可以使PI3K,NF-κB和MAPK等激活,调节细胞的活化和移行。
     根据我们前期电场实验的结果,以及对FPR的文献回顾,推测可以将两者结合共同引入到促进RPE细胞移行修复的过程中,为RPE损伤性疾病的治疗提供一个新的治疗途径。
     【目的】
     1.确定FPR在hRPE细胞的表达及定位;观察激活FPR,电场引导hRPE细胞层的移行修复,以及在此过程中细胞间连接mRNA的表达和其超微结构的变化,细胞骨架的变化。
     2.研究此移行修复过程中PI3K/Akt信号通路的变化,Rho GTP ases家族蛋白的表达。
     3.研究此移行修复过程中细胞因子,如表皮生长因子(epidermal growth factor,EGF)、白介素(interleukin 8,IL-8)、单核细胞趋化蛋白-1(monocyte chemotactic protein-1)和转化生长因子-β1(transforming growth factor-β1,TGF-β1 )的表达和分泌。
     【方法】
     1.将hRPE细胞培养于含有fMLF(FPR经典激动剂)的培养液中,应用RT-PCR方法确定hRPE细胞表达FPR,免疫荧光染色方法着染FPR,从而进一步确定FPR在细胞上的表达与定位。根据本研究的前期实验结果,直接将细胞置于6 V/cm电场下,应用免疫荧光三标染色法着染FPR、F-actin以及胞核,通过激光共聚焦显微镜观察电场作用的hRPE细胞骨架F-actin和FPR的变化及定位关系。免疫荧光三标染色法着染细胞骨架F-actin、Vimentin及胞核,观察激活FPR促进电场引导hRPE细胞层的损伤修复以及电场引导下细胞骨架F-actin和Vimentin的变化。显微镜照相系统连续记录每1 h细胞移行的距离和细胞损伤范围的变化。并通过RT-PCR检测细胞间连接mRNA的表达,透射电子显微镜来观察细胞间连接的超微结构改变。
     2.初步研究激活FPR受体通过PI3K / Akt信号转导通路激活Rho GTP ases家族中Cdc42、Rac1和RhoA,促进电场引导下hRPE细胞层移行修复。应用RT-PCR检测Cdc42、Rac和RhoA mRNA的变化,应用Western blotting检测PI3K / Akt,以及RhoA GTPases家族中Cdc42、Rac1和RhoA蛋白表达的变化。
     3.观察激活FPR在电场作用下,采用RT-PCR和ELISA方法检测EGF、IL-8、MCP-1和TGF-β1的表达和分泌,以及加入FPR拮抗剂,PI3K/Akt阻断剂和Rho GTP ases阻断剂后因子的表达和分泌变化。
     【结果】
     1.首次确定了hRPE细胞表面存在FPR。应用FPR经典激动剂fMLF激活hRPE细胞的FPR,通过RT-PCR检测到hRPE细胞的FPR mRNA表达。同时揭示FPR与F-actin之间存在共定位关系。在电场作用下,hRPE细胞向阴极方向伸出伪足,朝向阴极的方向移行,FPR与F-actin在细胞的伪足上共定位,而在拮抗剂Boc和激动剂fMLF作用下,hRPE细胞的FPR表达减少。在电场和FPR的作用下,可以明显促进hRPE细胞层的移行和损伤修复。将hRPE细胞培养于无血清培养液组,20%血清培养液组及fMLF培养液组,电场作用3 h后,hRPE细胞层的移行距离分别为24.262±6.82μm,40.243±5.069μm(1.7倍),和56.926±7.821μm(2.4倍)。在无血清培养液组,20%血清培养液组和fMLF培养液组中可检测出CX-43和ZO-1 mRNA的表达,而E-cadherin mRNA的表达却分别在2 h,30 min和1 h时检测到。透射电镜可以观察到细胞间连接的的超微结构:包括紧密连接,缝隙连接,桥粒样结构和粘着斑。电场下细胞骨架的空间结构发生改变,细胞伪足朝向阴极方向,并表达F-actin,其荧光亮度在1 h时,达到峰值106.49±8.21,随后逐渐下降。
     2.在电场作用下,Western blotting结果显示pAkt在hRPE细胞中的表达,均在30 min时达到最高,无血清培养液组为0.6±0.012,20%血清培养液组1.36±0.093,含fMLF培养液组为2.44±0.089。加入FPR拮抗剂Boc后,发现pAkt蛋白的表达量明显降低。通过RT-PCR检测到Rho GTP ases家族中Cdc42、Rac1和RhoA mRNA的表达在激活FPR受体后在30 min时明显增加,Western blotting的结果提示其蛋白表达量在电场作用1 h时明显增加,在含fMLF培养液组增加明显,分别为3.5±0.2,5.5±0.21,4.78±0.22,加入PI3K/Akt通路阻断剂LY294002后,Rho GTP ases家族中Cdc42、Rac1和RhoA的表达明显降低。
     3.在电场作用下,RT-PCR结果显示EGF、IL-8、MCP-1和TGF-β1 mRNA表达在1 h时达到高峰,而ELISA结果提示培养液上清中四种因子的分泌量在2 h时,达到高峰,含fMLF培养液组四种因子的表达量和分泌量较其他组升高明显。加入FPR拮抗剂Boc,PI3K/Akt信号转导通路阻断剂LY294002以及Rho GTP ases阻断剂Y27632,发现EGF、IL-8、MCP-1和TGF-β1的表达量和分泌量下降。
     【结论】
     1.首次确定hRPE细胞表达FPR,并与细胞骨架F-actin共定位表达。激活FPR,在电场作用下,hRPE细胞发生形态和极性的改变,朝向阴极伸出伪足,向阴极移行,在细胞伪足上可见FPR与F-actin共定位,说明FPR的激活与hRPE细胞的移行修复有关。激活hRPE细胞FPR,显著促进了RPE细胞层在电场作用下的移行,并能引起细胞骨架蛋白F-actin的改变。细胞间连接mRNA的表达及其超微结构的观察,说明hRPE细胞层的损伤修复是成层移行的。
     2.激活hRPE细胞FPR,在电场作用下,通过PI3K/Akt信号转导通路的激活,活化Cdc42、Rac1和RhoA蛋白,说明FPR的作用至少是通过PI3K/Akt的信号转导通路实现的。
     3.激活hRPE细胞FPR,在电场作用下,诱导EGF、IL-8、MCP-1和TGF-β1的表达和分泌,而且与FPR激活、PI3K/Akt激活、Rho GTP ases活化相关。
     以上研究国内外未见相关报道。
Background
     Retinal pigment epithelial (RPE) cells form the monolayer between photoreceptors and the choroid, which play an important role in supporting the neural retina. RPE is essential for the integrity and function of neural retina. Damages to human RPE monolayer, such as happened in age-related mocular degeneration (AMD), proliferative vitreoretinopathy (PVR), and retinitis pigmentosa, may cause serious loss of vision. Once hRPE layer was wounded, normal hRPE cells surrounding the wound area will migrate and proliferate to cover the area. This process is crucial to recover the structure and function of the retina.
     During the wound healing process, many factors might play a role. And an endogenous electric field may yield. Moreover, the wound healing of the cornea and the skin can be accelerated by additional EFs. Our research group previously observed that EFs induced directed migration of hRPE cells and that limited period of exposure to EFs under 10 V/cm did not affect the normal viability of human RPE. But EFs exposure alone seems not sufficient to enhance migration of cells to restitute hRPE cell layer. We therefore tried to find some factors which can enhance the cell migration under exposure of EFs.
     Migration and wound healing process of RPE cells are a complex process. Many cytokines, growth factors take part in this process. Formyl Peptide Receptor (FPR) was first defined biochemically in 1976. Upon ligand binding, FPR undergoes a conformation change enabling interactions with G family proteins. Agonist-induced signaling also results in phosphorylation of protein kinases (PI3K,MAPK and NF-κB) and regulation of celluar activations and migration.
     Based on our previous study and understanding of FPR, we supposed that activation of FPR may enhance hRPE cell restitution under EFs.
     Aims
     1. To identify the expression of functional FPR in RPE cells and then observe that the activation of FPR can enhance migration of wounded RPE monolayer under EFs. And to demonstrate the cell sheet as a monolayer with CX-43, E-cadherin, ZO-1, and cell junctions.
     2. To evaluate the increase in cell migration to be associated with activation of PI3K/Akt, Cdc42, Rac1 and RhoA.
     3. To investigate the increase in cell migration to be associated with expressions and secretions of epidermal growth factor (EGF), interleukin 8 (IL-8),monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-β1 (TGF-β1 ) in the cells.
     Methods
     1. The expression of functional FPR in hRPE cells was analyzed with RT-PCR. Based on the previous study, the wound hRPE cells were exposed to EFs at 6 V/cm. FPR and F-actin were stained by immunofluoresence lableling assay and observed the location of FPR in hRPE cells and the change of F-actin of the cells. F-actin and Vimentin of hRPE cells were stained by immunity fluorescence labled assay and observed with a confocal microscope before and 1 h, 2 h and 3 h after exposure to EFs. Images of the monolayer migration were obtained at regular intervals under a Zeiss Axiovert microscope every 1 h. Cell junction, including CX-43, E-cadherin and ZO-1, were measured with RT-PCR. And the cell junctions in the hRPE monolayer were observed with transmission electron microscopy (TEM).
     2. In order to observe FPR activation enhancing the activation of Cdc42, Rac1 and RhoA through PI3K/Akt, the expression of Cdc42, Rac1 and RhoA was determined by RT-PCR and Western blotting. The expression of PI3K/Akt and pAkt was also determined by Western blotting.
     3. To observe FPR activation enhancing the expressions and secretions of EGF, IL-8, MCP-1 and TGF-β1 under EFs through PI3K/Akt or Rho GTP ases, the mRNA expressions of these cytokines were measured with RT-PCR. ELISA was also used to observe the secretions of them in supernatants.
     Results
     1. The expression of functional FPR was observed and localized along actin filaments in the lamellipodia and filopodia of hRPE cells. After treated with Boc and fMLF, the fluorescence value of FPR was decreased. EFs and fMLF significantly increased the migration rate of the wound hRPE monolayer. The migrating distances of hRPE monolayers were measured as 24.262±6.82μm,40.243±5.069μm (1.7-fold) and 56.926±7.821μm (2.4-fold) in hRPE cells cultured with free serum, 20% serum,fMLF under EFs at 3 h, respectively (P<0.01). The mRNA expression of CX-43 and ZO-1 were detected in hRPE cells cultured with free serum, 20% serum and fMLF respectively; but the mRNA expression of E-cadherin was detectable until 2 h, 30 min and 1 h in hRPE cells cultured with free serum, 20% serum and fMLF under EFs respectively. TEM revealed that cell junctions formed. After exposed to EFs, the polyarity and spatial structure of RPE cells was changed, and the lamellipodial and filopodial of hRPE cells were getting along with the direction of the cathode. HRPE cells were migrated to the cathode. After exposure to an EFs for 1 h, the fluorescence value of cytoskeleton was 106.49±8.21, which was higher in the culture with fMLF than that of the control cultures (P<0.05).
     2. After exposed to EFs, western blotting reached a peak in pAkt of hRPE cells at 30 min. The level of pAkt in hRPE cells were measured as 0.6±0.012, 1.36±0.093 (1.8-fold), 2.44±0.089 (4-fold) in cells cultured with free serum, 20% serum and fMLF under EFs. The inhibitor of FPR, Boc abrogated the fMLF-induced increase in the level of pAkt in hRPE cells. The results of RT-PCR showed that a significant increase in Cdc42, Rac1 and RhoA mRNA at 30 min after exposure to EFs. Western blotting showed that a peak in Cdc42, Rac1 and RhoA protein expression of hRPE cells after exposure to EFs at 1 h. The Cdc42, Rac1 and RhoA of hRPE cells were measured as 3.5±0.2 (5 - fold, 1.6 - fold),5.5±0.21 (1.92 - fold, 1.34 - fold),4.78±0.22 (1.9 - fold, 1.9 - fold) in cell cultured with fMLF compared with the cells cultured with free serum and 20% serum, respectively. This up-regulation of Cdc42, Rac1 and RhoA was blocked by Boc and LY294002.
     3. After EFs exposure, the mRNA expression of EGF, MCP-1, IL-8 and TGF-β1 reached a peak at 1 h., the secretion of EGF, MCP-1, IL-8 and TGF-β1 reached a peak at 2 h. After activation of FPR, the level of expression and secretion of these cytokines were higher than control culture. This up-regulation of them was blocked by Boc and LY294002.
     Conclusion
     1. These results firstly showed that functional FPR express in hRPE cells. FPR localized along actin filaments in lamellipodial and dilopodial extrusions, which were getting along with the direction of the cathode. The FPR activation enhances hRPE cell migration and wound healing. Activation of FPR in hRPE cells and the distribution of the cytoskeleton in hRPE cells were changed after exposure to EFs. The expression of cell junction mRNA and cellular junctions shown by TEM further demonstrated the RPE sheet as a monolayer migrating under EFs.
     2. EFs induce directed hRPE cell migration and wound healing which can be enhanced by fMLF. The activation of FPR is associated with activation of PI3K/Akt and through PI3K/Akt-dependent activation of Rho GTP ases family members (Cdc42, Rac1, RhoA).
     3. Activation of FPR could induce expression and secretion of EGF, MCP-1, IL-8 and TGF-β1 in hRPE cells, which could be inhibited by Boc, LY294002 and Y 27632.
引文
[1] Zaja-Milatovic S, Richmond A. CXC chemokines and their receptors: a case for a significant biological role in cutaneous wound healing. Histol Histopathol. 2008; 23 (11):1399- 407
    [2] Kim MK, Min DS, Park YJ, Kim JH, Ryu SH, Bae YS. Expression and functional role of formyl peptide receptor in human bone marrow-derived mesenchymal stem cells. FEBS Letters. 2007; 581: 1917-1922
    [3] Yao XH, Ping YF, Chen JH, Chen DL, Xu CP, Zheng J, Wang JM, Bian XW. Production of angiogenic factors by humam glioblastoma cells fowllowing activation of the G-protein coupled formylpeptide receptor FPR. J Neurooncol. 2008; 86 (1): 47-53
    [4] Babbin BA,Jesaitis AJ, Ivanov AI, Kelly D, Laukoetter M, Nava P, Parkos CA, Nusrat A. Formyl Peptide Receptor-1 Activation enhances intestinal epithelial cell restitution through phosphatidylinositol 3-kinase-dependent activation of Rac1 and Cdc42. J Immunol. 2007; 179: 8112-8121
    [5] Le YY, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol 2002; 23: 541–548
    [6] Boulay F, Tardif M, Brouchon L, Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem Biophys Res Commun. 1990;168:1103- 1109
    [7] Perez HD, Holmes R, Kelly E, Mcclary J, Chou Q, Andrews WH. Cloning of the gene coding for a human receptor for formyl peptides-characterizeation of a promoter region and evidence for polymorphic expression. Biochemistry. 1992; 31: 11595-11599
    [8] Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun. 1992; 184:582-589
    [9] Bao L, Gerard NP, Eddy RL, Shows TB, Gerard C. Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics. 1992; 13: 437-440
    [10]Murphy PM, Ozcelik T, Kenney RT, Tiffany HL, Mcdermott D, Francke U. A structural homolog of the N-formyl peptide receptor-characterization and chromosome mapping of a peptide chemoattractantreceptor family. J Biol Chem. 1992; 267:7637-7643
    [11]程希远,王明伟.甲酰肽受体研究进展.生命科学. 2004;16(3): 154-159
    [12] Alvarez V, Coto E, Setien F, Lopezlarrea C. A Physical map of two clusters containing the genes for 6 proinflammatory receptors. Immunogenetics. 1994; 40: 100-103
    [13] Durstin M, Gao JL, Tiffany HL, Mcdermott D, Murphy PM. Differential expression of members of the N-formylpeptide receptor genecluster in human phagocytes. Biochem Biophys Res Commun. 1994;201:174-179
    [14] Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J Periodontol. 1999; 70: 1194-1201
    [15] Sahagun-Ruiz A, Colla JS, Juhn J, Gao JL, Murphy PM, McDermott DH. Contrasting evolution of the human leukocyte N-formylpeptide receptor subtypes FPR and FPRL1R. Genes Immun. 2001;2: 335-342
    [16] Alvarez V, Coto E, Setien F, GonzalezRoces S, Lopezlarrea C. Molecular evolution of the N-formyl peptide and C5a receptors in non-human primates. Immunogenetics. 1996; 44: 446- 452
    [17] Gao JL, Murphy PM. Species and subtype variants of the N-formyl peptide chemotactic receptor reveal multiple important functional domains. J Biol Chem. 1993; 268: 25395-25401
    [18] Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. Aspirin-triggered 15-Epi-Lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med. 1997; 185: 1693- 1704
    [19] Gao JL, Chen H, Filie JD, Kozak CA, Murphy PM. Differential expansion of the N-formyl- peptide receptor gene cluster in human and mouse. Genomics. 1998; 51: 270-276
    [20]Hartt JK, Barish G, Murphy PM, Gao JL. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes: molecular characterization of FPR2, a second mouse neutrophil FPR. J Exp Med.1999;190:741-747
    [21] Wang ZG, Ye RD. Characterization of two new members of the formyl peptide receptor gene family from 129S6 mice. Gene. 2002;299:57-63
    [22] Ye RD, Quehenberger O, Thomas KM, Navarro J, Cavanagh SL, Prossnitz ER. The rabbit neutrophil N-formyl peptide receptor-cDNA cloning, expression, and structure-function implications. J Immunol. 1993;150:1383-1394
    [23] Chiang N, Takano T, Arita M, Watanabe S, Serhan CN. A novel rat lipoxin A (4) receptor that is conserved in structure and function. Br J Pharmacol. 2003;139:89-98
    [24] Kang HK, Lee HY, Kim MK, Park KS, Park YM, Kwak JY, Bae YS. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocyte- derived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2. J Immunol. 2005;175(2):685-692
    [25] John CD, Sahni V, Mehet D, Morris JF, Christian HC, Perretti M, Flower RJ, Solito E, Buckingham JC. Formyl peptide receptors and the regulation of ACTH secretion: targets for annexin A1, lipoxins, and bacterial peptides. FASEB J. 2007;21(4): 1037- 1046
    [26] Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors Exp Hematol. 2005; 33 (1):73-84
    [27] Kim SD, Kim JM, Jo SH, Lee HY, Lee SY, Shim JW, Seo SK, Yun J, Bae YS. Functional expression of formyl peptide receptor family in human NK cells. J Immunol. 2009; 183(9): 5511 -5517
    [28] Rane MJ, Prossnitz ER, Arthur JM, Ward RA, McLeish KR. Deficient homologous desensitization of formyl peptide receptors stably expressed in undifferentiated HL-60 cells. Biochem Pharmacol. 2000; 60(2):179-187
    [29] VanCompernolle SE, Clark KL, Rummel KA, Todd SC. Expression and function of formyl peptide receptors on human fibroblast cells Immunol. 2003; 171(4):2050-2056
    [30] Le Y, Hu J, Gong W, Shen W, Li B, Dunlop NM, Halverson DO, Blair DG, Wang JM. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol. 2000;111(1-2):102-108
    [31] Rescher U, Danielczyk A, Markoff A, Gerke V. Functional activation of the formyl peptide receptor by a new endogenous ligand in human lung A549 cells J Immunol. 2002; 169(3):1500-1504
    [32] Becker EL, Forouhar FA, Grunnet ML, Boulay F, Tardif M, Bormann BJ, Sodja D, Ye RD, Woska JR,Murphy PM. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res. 1998; 292: 129-135
    [33] Le Y, Oppenheim JJ, Wang JM. Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev.2001;12:91-105
    [34] Honda S, Campbell JJ, Andrew DP, Engelhardt B, Butcher BA, Warnock RA, Ye RD, Butcher EC. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor. J Immunol. 1994;152 (8):4026-4035
    [35] Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S. N-formylated humanin activates both formyl peptide receptor-Like 1 and 2. Biochem Biophys Res Commun. 2004; 324:255-261
    [36] Yang D, Chen Q, Le Y, Wang JM, Oppenheim JJ. Differential regulation of formyl peptide receptor-like1 expression during the differentiation of monocytes to dendritic cells and macrophages. J Immunol. 2001;166: 4092- 4098
    [37] Devosse T, Guillabert A, D'Haene N, Berton A, De Nadai P, Noel S, Brait M, Franssen JD, Sozzani S, Salmon I, Parmentier M. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils. J Immunol. 2009; 182 (8):4974-4984.
    [38] Yang D, Chen Q, Gertz B, He R, Phulsuksombati M, Ye RD, Oppenheim JJ. Human dendritic cells express functional formyl peptide receptor- Like-2 (FPRL2) throughout maturation. J Leukoc Biol. 2002;72:598-607
    [39] Migeotte I, Riboldi E, Franssen JD, Gregoire F, Loison C, Wittamer V, Detheux M, Robberecht P, Costagliola S, Vassart G, Sozzani S, Parmentier M, Communi D. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J Exp Med. 2005;201: 83-93
    [40] Thomas KM, Pyun HY, Navarro J. Molecular cloning of the fMet-Leu-Phe receptor from neutrophils. J Biol Chem. 1990; 265:20061-20064
    [41] Mandal P, Novotny M, Hamilton TA. Lipopolysaccharide induces formyl peptide receptor 1 gene expression in macrophages and neutrophils via transcriptional and posttranscriptional mechanisms. JImmunol. 2005;175: 6085-6091
    [42] Dai Y, Major J, Novotny M, Hamilton TA. IL-4 inhibits expression of the formyl peptide receptor gene in mouse peritoneal macrophages. J Interferon Cytokine Res. 2005;25:11–19
    [43] Iribarren P, Cui YH, Le Y, Ying G, Zhang X, Gong WH, Wang JM. IL-4 down-regulates lipopolysaccharide-induced formyl peptide receptor 2 in murine microglial cells by inhibiting the activation of mitogenactivated protein kinases. J Immunol. 2003;171: 5482-5488
    [44] Iribarren P, Chen K, Hu J, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM. CpGcontaining oligodeoxynucleotide promotes microglial cell uptake of amyloid & beta; 1-42 peptide by up-regulating the expression of the G protein-coupled receptor mFPR2. FASEB J. 2005; 19(14): 2032-2034
    [45] Iribarren P, Chen K, Hu J, Zhang X, GongW, Wang JM. IL-4 inhibits the expression of mouse formyl peptide receptor 2, a receptor for amyloid {beta} 1-42, in TNF- {alpha}- activated microglia. J Immunol. 2005;175:6100–6106
    [46] Lee HY, Kang HK, Jo EJ, Kim JI, Lee YN, Lee SH, Park YM, Ryu SH, Kwak JY, Bae YS. Trp-Lys-Tyr-Met-Val-Met stimulates phagocytosis via phospholipase D-dependent signaling in mouse dendritic cells. Exp Mol Med. 2004;36:135-144
    [47] Le Y, Yang Y, Cui Y, Yazawa H, Gong W, Qiu C, Wang JM. Receptors for chemotactic formyl peptides as pharmacological targets. Int Immunopharmacol. 2002;2(1):1-13
    [48] Yao XH, Ping YF, Chen JH, Xu CP, Chen DL, Zhang R, Wang JM, Bian XW. Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR. J Pathol. 2008 ; 215 (4) :369-376
    [49]曹雯. fMLP受体研究进展.国外医学(生理、病理科学与临床分册). 2002; 22 (5): 484-486
    [50] Prat C, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J Immunol. 2006; 177 (11): 8017-8026.
    [51] Seo JK, Choi SY, Kim Y, Baek SH, Kim KT, Chae CB,Lambeth JD,Suh PG,Ryu SH. A peptide with unique receptor specificity: stimulation of phosphoinositide hydrolysis and induction of superoxidegeneration in human neutrophils. J Immunol. 1997;158: 1895-1901
    [52] Seil M, KabréE, Nagant C, Vandenbranden M, Fontanils U, Marino A, Pochet S, Dehaye JP. Regulation by CRAMP of the responses of murine peritoneal macrophages to extracellular ATP. Biochim Biophys Acta. 2009. [Epub ahead of print]
    [53] Stenfeldt AL, Karlsson J, Wenner?s C, Bylund J, Fu H, Dahlgren C. Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation. 2007; 30(6):224-229
    [54]Fu H, Karlsson J, Bj?rkman L, Stenfeldt AL, Karlsson A, Bylund J, Dahlgren C. Changes in the ratio between FPR and FPRL1 triggered superoxide production in human neutrophils-a tool in analysing receptor specific events. J Immunol Methods. 2008;331(1-2):50-58
    [55] Wan HX, Zhou C, Zhang Y, Sun M, Wang X, Yu H, Yang X, Ye RD, Shen JK, Wang MW. Discovery of Trp-Nle-Tyr-Met as a novel agonist for human formyl peptide receptor-like 1. Biochem Pharmacol. 2007; 74(2):317-326
    [56]Karlsson J, Fu H, Boulay F, Bylund J, Dahlgren C. The peptide Trp-Lys-Tyr-Met-Val- D-Met activates neutrophils through the formyl peptide receptor only when signaling through the formylpeptide receptor like 1 is blocked. A receptor switch with implications for signal transduction studies with inhibitors and receptor antagonists. Biochem Pharmacol. 2006;71 (10): 1488-1496
    [57]Bae YS, Park EY, Kim Y, He R, Ye RD, Kwak JY, Suh PG, Ryu SH. Novel chemoattractant peptides for human leukocytes. Biochem Pharmacol. 2003;66:1841 -1851
    [58] Su SB, Gong WH, Gao JL, Shen WP, Grimm MC, Deng X, Murphy PM, Oppenheim JJ, Wang JM. T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is anactivator of human phagocyte N- formyl- peptide receptor. Blood. 1999; 93 (11): 3885-3892
    [59] Su SB, Gao J, Gong W, Dunlop NM, Murphy PM, Oppenheim JJ, Wang JM. T21/DP107, a synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-proteincoupled formyl peptide receptors. J Immunol. 1999;162: 5924-5930
    [60] Le Y Y, Jiang S B, Hu J Y, et al. N36, a synthetic N-terminal heptad repeat domain of the HIV-1envelope protein gp41, is an activator of human phagocytes. Clin Immunol. 2000;96 (3): 236-242
    [61] Mills JS. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor. Biochim Biophys Acta. 2006; 1762(7): 693-703
    [62] Deng X, Ueda H, Su SB, Gong W, Dunlop NM, Gao JL, Murphy PM, Wang JM.. A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood. 1999; 94 (4): 1165-1173
    [63] de Paulis A, Florio G, Prevete N, Triggiani M, Fiorentino I, Genovese A, Marone G. HIV-1 envelope gp41 peptides promote migration of human Fc epsilon RI+ cells and inhibit IL-13 synthesis through interaction with formyl peptide receptors. J Immunol. 2002;169 (8): 4559-4567.
    [64]Su SB, Gong WH, Gao JL, Shen WP, Murphy PM., Oppenheim JJ, Wang JM. A Seven-transmembrane, G Protein-coupled Receptor, FPRL1, Mediates the Chemotactic Activity of Serum Amyloid A for Human Phagocytic Cells. The Journal of Experimental Medicine.1999; 189(2), 395-402
    [65]Shim JW, Seong JH, Kim SD, Lee HY, Yun J,Bae YS. Lysophosphatidylglycerol inhibits formyl peptide receptor like-1-stimulated chemotactic migration and IL-1production from human phagocytes. Experimental and molecular medicine. 2009: 41(8); 584-591
    [66] Badolato R, Wang JM, Murphy WJ, Lloyd AR, Michiel DF, Bausserman LL, Kelvin D J, Oppenheim JJ. Serum amyloid A is a chemoattractant: Induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J. Exp. Med. 1994; 180: 203-209
    [67]Liang TS, Wang JM,Murphy PM, Gao JL. Serum Amyloid A Is a Chemotactic Agonist at FPR2, a Low-Affinity N-Formylpeptide Receptor on Mouse Neutrophils. Biochemical and Biophysical Research Communications 2000; 270:331-335
    [68]Walther A, Riehemann K, Gerke V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell, 2000; 5:831-840
    [69]Gerke V, Moss S E. Annexins: from structure to function. Physiol. Rev. 2002; 82:331-371
    [70] Lim LH, Solito E, Russo-Marie F, Flower RJ, Perretti M. Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: effect of lipocortin Proc. Natl. Acad. Sci. USA.1998;95:14535-14539
    [71]Perretti M. Lipocortin 1 and chemokine modulation of granulocyte and monocyte accumulation in experimental inflammation. Gen. Pharmacol. 1998; 31:545-549
    [72]Ernst S, Lange C, Wilbers A, Goebeler V, Gerke V, Rescher U. An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J Immunol. 2004;172(12):7669-76
    [73]Babbin BA, Lee WY, Parkos CA, Winfree LM, Akyildiz A, Perretti M, Nusrat A. Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J Biol Chem. 2006;281(28):19588-19599
    [74] BaeYS, ParkJC, HeR. Differential signaling of formyl peptide receptor-like 1 by Trp-Lys-Tyr-Met-Val-Met-CONH2 or lipoxin A4 in human neutrophils. Mol Pharmacol. 2003; 64: 721-730
    [75] Betten Bylund J, Cristophe T. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Invest. 2001;108 (8): 1221-1228
    [76] Bylund J, Karlsson A, Boulay F, Dahlgren C. Lipopolysaccharide induced granule mobilization and priming of the neutrophil response to Helicobacter pylori peptide Hp(2-20), which activates formyl peptide receptor-like1. Infect Immun. 2002;70 (6): 2908-2914
    [77] Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM. Amyloid (beta) 42 activates a G-protein- coupled chemoattractant receptor, FPR-like-1. J Neurosci. 2001;21: RC 123 (1-5)
    [78] Le YY, Yazawa H, Gong WH. Cutting edge: the neurotoxic prion peptide fragment PrP106-126 is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol. 2001; 166: 1448-1451
    [79] Koczulla R, von Degenfeld G, Kupatt C. An angiogenic role for the human peptide antibioticLL-37/hCAP-18. J Clin Invest. 2003; 111: 1665-1672
    [80]刘宏,卞修武,陈代伦,赵雯,陈剑鸿,冯玉慧,徐承平.诺帝对人恶性胶质瘤裸鼠原位移植瘤FPR、VEGF表达的影响及意义.中国微侵袭神经外科杂志. 2007;12(2):72-75
    [81] Di Padova FE. Pharmacology of cyclosporine (sandimmune). V. Pharm- acological effects on immune function: in vitro studies. Pharmacol. Rev. 1990; 41: 373- 405
    [82] Hess AD, Colombani PM.. Mechanism of action of cyclosporine: role of calmodulin, cyclophilin, and other cyclosporine-binding proteins. Transplant. Proc. 1986;18: 219- 237
    [83] Wenzel-Seifert K, Grunbaum L, Seifert R. Differential inhibition of human neutrophil activation by cyclosporins A, D, and H. Cyclosporin H is a potent and effective inhibitor of formyl peptide-induced superoxide formation. J Immunol. 1991; 147: 1940-1946
    [84] Wenzel-Seifert K, Seifert R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L-leucyl-L-pheny- lalanine and cycl-osporins A, B, C, D, and E. J. Immunol. 1993; 150: 4591-4599
    [85]Yan PK, Nanamor M , Sun ML, Zhou CH, Cheng N, Li N, Zheng W,Xiao LH, Xie X, Ye RD, Wang MW. The immunosuppressant Cyclosporin A antagonizes human formyl peptide receptor through inhibition of cognate ligand binding. J. Immunol. 2006, 177: 7050-7058
    [86] Higgins JD 3rd, Bridger GJ, Derian CK, Beblavy MJ, Hernandez PE, Gaul FE, Abrams MJ, Pike MC, Solomon HF. N-terminus urea-substituted chemotactic peptides: new potent agonists and antagonists toward the neutrophil fMLF receptor. J Med Chem 1996;39:1013- 1015
    [87] Derian CK, Solomon HF, Higgins JD, 3rd, Beblavy MJ, Santulli RJ, Bridger GJ, et al. Selective inhibition of N formyl peptide-induced neutrophil activation by carbamate modified peptide analogues. Biochemistry 1996;35:1265-1269
    [88] Chen X, Mellon RD, Yang L, Dong H, Oppenheim JJ, Howard OM. Regulatory effects of deoxycholic acid, a component of the anti-inflammatory traditional Chinese medicine Niu huang, on human leukocyte response to chemoattractants. Biochem Pharmacol, 2002; 63: 533-541
    [89]Chen X, Yang D, Shen W, Dong HF, Wang JM, Oppenheim JJ, Howard MZ. Characterization ofchenodeoxycholic acid as an endogenous antagonist of the g-coupled formyl peptide receptors. Inflammation Res. 2000;49(12):744-755
    [90] Selvatici R, Falzarano S, Mollica A, Spisani S. Signal transduction pathways triggered by selective formylpeptide analogues in human neutrophils. European Journal of Pharmacology. 2006; 534: 1-11
    [91] Cavicchioni G, Fraulini A, Turchetti M, Varani K, Falzarano S, Pavan B, Spisani S. 2005. Biological activity of for-Met-Leu-Phe-OMe analogs: relevant substitutions specifically trigger killing mechanisms in human neutrophils. Eur. J. Pharmacol. 2005; 512: 1-8
    [92] Niggli V.Signalling to migration in neutrophils: importance of localized pathways. Int. J. Biochem. Cell Biol. 2003;35:1619-1638
    [93] Spisani S, Pareschi MC, Buzzi M, Colamussi ML, Biondi C, Traniello S, Pagani Zecchini G, Paglialunga Paradisi M, Torrini I, Ferretti ME. Effect of cyclic AMP level reduction on human neutrophil responses to formylated peptides. Cell. Signal. 1996; 8: 269-277
    [94] Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol.Rev. 2001;81: 153-208
    [95] Feig LA. Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol. 2003; 13: 419-425
    [96] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001; 8: 807-869
    [97] Allen LAH, Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 1995;182: 829- 840
    [98] Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science 2003;302: 1704-1709
    [99] Nixon JB, McPhail LC. Protein Kinase C (PKC) isoforms translocate to triton- insoluble fractions in stimulated human neutrophils: correlation of conventional PKC with activation of NADPH oxidase. J. Immunol. 1999; 163: 4574-4582
    [100] Owen PJ, Johnson GD, Lord JM. Protein kinase C-associates with vimentin intermediate filaments in differentiated HL60 cells. Exp. Cell Res. 1996;225: 366-373
    [101] Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roes J, Segal WA. Protein kinase C-ζcontributes to NADPH oxidase activation in neutrophils. Biochem. J. 2000;347: 285- 289
    [102] Zu YL, Qi J, Gilchrist A, Fernandez GA, Vazquez-Abad D, Kreutzer DL, Huang Chi K, Sha'afi RI. p38 Mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-αor FMLP stimulation. J. Immunol. 1998;160: 1982–1989
    [103] Cantley LC. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655–1657
    [104] Welch HC, Coadwell WJ, Stephens LR, Hawkins PT. Phosphoinositide 3-kinase- dependent activation of Rac. FEBS Lett. 2003; 546: 93-97
    [105] Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89: 1089-1106.
    [106]Katanaev VL. Signal transduction in neutrophil chemotaxis. Biochemistry. 2001;66: 351-368
    [107] Evers EE, Zondag GC, Malliri AL. Price S J, ten Klooster P, van der Kammen RA, Collard JG. Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 2000;36: 1269-1274
    [108]Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16: 1587-1609
    [109]Miettinen HM, Gripentrog JM, Jesaitis AJ. Chemotaxis of chinese hamster ovary cells expressing the human neutrophil formyl peptide receptor: role of signal transduction molecules and alpha5beta1 integrin. J Cell Sci. 1998;111 ( Pt 14):1921-1928
    [110]Cui Y, Hou X, Chen J, Xie L, Yang L, Le Y. Sesamin inhibits bacterial formylpeptide- induced inflammatory responses in a murine air-pouch model and in THP-1 human monocytes. J Nutr.2010;140(2):377-381
    [111] Le Y, Shen W, Li B, Gong W, Dunlop NM, Wang JM. A new insight into the role of "old" chemotactic peptide receptors FPR and FPRL1: down-regulation of chemokine receptors CCR5 and CXCR4. Forum (Genova). 1999;9(4):299-314
    [112] Zhu J, Wang O, Ruan L, Hou X, Cui Y, Wang JM, Le Y. The green tea polyphenol (-)- epigallocatechin-3-gallate inhibits leukocyte activation by bacterial formylpeptide through the receptor FPR. Int Immunopharmacol. 2009;9(9):1126-1130
    [113] Lee HY, Bae YS. The anti-infective peptide, innate defense-regulator peptide, stimulates neutrophil chemotaxis via a formyl peptide receptor. Biochem Biophys Res Commun. 2008; 369 (2):573-578
    [114] Lee HY, Lee SY, Shin EH, HKim SD, Kim JM, Lee MS, Ryu SH, Bae YS. F2L, a peptide derived from heme-binding protein, inhibits formyl peptide receptor-mediated signaling. Biochem Biophys Res Commun. 2007;359(4):985-990
    [115] Makino A, Prossnitz ER, Bünemann M, Wang JM, Yao W, Schmid-Sch?nbein GW. G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol. 2006;290(6):C1633-1639
    [116] Svensson L, Redvall E, Johnsson M, Stenfeldt AL, Dahlgren C, Wenner?s C. Interplay between signaling via the formyl peptide receptor (FPR) and chemokine receptor 3 (CCR3) in human eosinophils. J Leukoc Biol. 2009:327-336
    [117] Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, Stoppelli MP, Pavone V, Carriero MV. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Lett. 2008;582 (7): 1141-1146
    [118]Le Y, Wang JM, Liu X, Kong Y, Hou X, Ruan L, Mou H. Biologically active peptides interacting with the G protein-coupled formylpeptide receptor. Protein Pept Lett. 2007; 14(9): 846-853
    [119] Viswanathan A, Painter RG, Lanson NA Jr, Wang G. Functional expression of N-formyl peptide receptors in human bone marrow-derived mesenchymal stem cells. Stem Cells. 2007; 25 (5):1263- 1269
    [120] Selleri C, Montuori N, Ricci P, Visconte V, Carriero MV, Sidenius N, Serio B, Blasi F, Rotoli B, Rossi G, Ragno P. Involvement of the urokinase-type plasminogen activator receptor in hematopoietic stem cell mobilization. Blood. 2005;105(5):2198-2205
    [121] de Paulis A, Prevete N, Rossi FW, Rivellese F, Salerno F, Delfino G, Liccardo B, Avilla E, Montuori N, Mascolo M, Staibano S, Melillo RM, D'Argenio G, Ricci V, Romano M, Marone G. Helicobacter pylori Hp(2-20) promotes migration and proliferation of gastric epithelial cells by interacting with formyl peptide receptors in vitro and accelerates gastric mucosal healing in vivo. J Immunol. 2009; 183(6):3761- 3769
    [122] Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OM, Wang JM. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. 2007;67 (12): 5906-5913
    [123] Miura Y, Yanagihara N, Imamura H, Kaida M, Moriwaki M, Shiraki K, Miki T. Hepatocyte growth factor stimulates proliferation and migration during wound healing of retinal pigment epithelial cells in vitro. Jpn J Ophthalmol. 2003;47(3):268-275
    [124] Grierson I, Heathcote L, Hiscott P, Hogg P, Briggs M, Hagan S. Hepatocyte growth factor / scatter factor in the eye. Prog Retin Eye Res. 2000;19(6):779-802
    [125] Zhang XG, Hui YN, Han QH, Hou X, Chen LJ, Ma JX. Effects of mechanical stress on expressions of monocyte chemoattractant protein-1 and interleukin-8 of cultured human retinal pigment epithelial cells. Zhonghua Yi Xue Za Zhi. 2005;85(32): 2264-2268
    [126] Li R, Maminishkis A, Wang FE, Miller SS. PDGF-C and -D induced proliferation/ migration of human RPE is abolished by inflammatory cytokines. Invest Ophthalmol Vis Sci. 2007;48 (12): 5722-5732
    [127] Mitsuhiro MR, Eguchi S, Yamashita H. Regulation mechanisms of retinal pigment epithelial cell migration by the TGF-beta superfamily. Acta Ophthalmol Scand. 2003; 81 (6): 630-638
    [128] Zeng AP, Zeng SQ, Li PC, Cheng Y. [Matrix metalloproteinases inhibitor doxycycline inhibits TGF-beta 1-induced RPE cell migration] Zhonghua Yan Ke Za Zhi. 2007;43 (8):734-738
    [129] Spraul CW, Kaven C, Lang GK, Lang GE. Effect of growth factors on bovine retinal pigment epithelial cell migration and proliferation. Ophthalmic Res. 2004;36(3):166- 171
    [130] Arimura N, Ki-i Y, Hashiguchi T, Kawahara K, Biswas KK, Nakamura M, Sonoda Y, Yamakiri K, Okubo A, Sakamoto T, Maruyama I. Intraocular expression and release of high-mobility group box 1 protein in retinal detachment. Lab Invest. 2009; 89 (3): 278- 289
    [131] Guo CM, Wang YS, Hu D, Han QH, Wang JB, Hou X, Hui YN. Modulation of migration and Ca2+ signaling in retinal pigment epithelium cells by recombinant human CTGF. Curr Eye Res. 2009;34(10):852-862
    [132] Han QH, Hui YN, Du HJ, Zhang WJ, Ma JX, Wang SY. Migration of retinal pigment epithelial cells invitro modulated by monocyte chemotactic protein-1: enhancement and inhibition. Graefes Arch Clin Exp Ophthalmol. 2001;239(7): 531-538
    [133] Naduk-Kik J, Hrabec E. The role of matrix metalloproteinases in the pathogenesis of diabetes mellitus and progression of diabetes retinopathy. Postepy Hig Med Dosw (Online). 2008; 62:442-450
    [134] Kim YH, He S, Kase S, Kitamura M, Ryan SJ, Hinton DR. Regulated secretion of complement factor H by RPE and its role in RPE migration. Graefes Arch Clin Exp Ophthalmol. 2009; 247(5):651-659
    [135] Lee H, O'Meara SJ, O'Brien C, Kane R. The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2007; 48 (9): 4291-4299
    [136] Hoffmann S, He S, Jin M, Ehren M, Wiedemann P, Ryan SJ, Hinton DR. A selective cyclic integrin antagonist blocks the integrin receptors alphavbeta3 and alphavbeta5 and inhibits retinal pigment epithelium cell attachment, migration and invasion. BMC Ophthalmol. 2005;5: 16
    [137] Yan F, Hui YN, Li YJ, Guo CM, Meng H. Epidermal growth factor receptor in cultured human retinal pigment epithelial cells. .Ophthalmologica. 2007;221(4): 244-250
    [138] Lashkari K, Rahimi N, Kazlauskas A. Hepatocyte growth factor receptor in human RPE cells: implications in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci.1999:40(1): 149- 156
    [139] Xu KP, Yu FS. Cross talk between c-Met and epidermal growth factor receptor during retinal pigment epithelial wound healing. Invest Ophthalmol Vis Sci. 2007; 48 (5): 2242-2248
    [140] Hollborn M, Iandiev I, Seifert M, Schnurrbusch UE, Wolf S, Wiedemann P, Bringmann A, Kohen L. Expression of HB-EGF by retinal pigment epithelial cells in vitreoretinal proliferative disease. Curr Eye Res. 2006;31(10):863-874
    [141]Tsapara A, Luthert P, Greenwood J, Hill CS, Matter K, Balda MS. The RhoA activator GEF-H1/Lfc is a transforming growth factor-{beta} target gene and effector that regulates {alpha}-smooth muscle actin expression and cell migration. Mol Biol Cell. 2010;21(6): 860-870
    [142] Chan CM, Fang JY, Lin HH, Yang CY, Hung CF. Lycopene inhibits PDGF-BB -induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways. Biochem BiophysRes Commun. 2009;388(1):172-176
    [143] Hou X, Han QH, HHu D, Tian L, Guo CM, Du HJ, Zhang P, Wang YS, Hui YN. Mechanical force enhances MMP-2 activation via p38 signaling pathway in human retinal pigment epithelial cells.Graefes Arch Clin Exp Ophthalmol. 2009;247(11): 1477-1486
    [144] Hollborn M, Bringmann A, Faude F, Wiedemann P, Kohen L. Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells. Biochem Biophys Res Commun. 2006;344 (3): 912-919
    [145]王雨生,严密.可见光对原代培养人视网膜色素上皮细胞的光化学损伤.中华眼底病杂志.1996; 03: 174-176
    [146]王琳,惠延年,王雨生.人视网膜色素上皮细胞的冻存和复苏培养.中华眼底病杂志. 1997;13: 167-169
    [147] McCaig CD, Rajnicek AM, Song B, ZhaoM. Controlling cell behavior eledtrically: current views and future potential. Physiol Rev. 2005;85:943-978
    [148] Ammendola R, Lucia R, Felice DC, Esposito F, Russo T, Cimino F. Low-affinity receptor-mediated induction of superoxide by n-formyl-methionyl-leucyl- phenylalanine and wkymvm in IMR90 human fibroblasts. Free Radical Biology & Medicine, 2004;36(2):189-200
    [149] McCoy R, Haviland DL, Molmenti EP, Ziambaras T, Wetsel RA,Perlmutter DH. N- formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. J. Exp. Med. 1995; 182: 207-217
    [150] Zhao M, Agius-Fernandez A, Forrester JV, McCaig CD.Directed migtration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol. Vis. Sci. 1996;37: 2548-2558
    [151] Wang E, Zhao M, Forrester JV, McCaig CD.Bi-directional migration of lens epithelial cells in a physiological electrical field. Exp. Eye Res. 2003; 76: 29-37
    [152] Eugen?n EA, Branes MC, Berman JW, Saez JC. TNF-αplus IFN-γinduce connexin 43 expression and formation of gap junctions between human monocytes/ macrophages that enhance physiological responses. J Immunol. 2003;170: 1320-1328
    [153] Paredes J, Correia AL, Ribeiro AS, Schmitt F. Expression of p120-catenin isoforms correlates with genomic and transcriptional phenotype of breast cancer cell lines. Cell Oncol. 2007; 29(6): 467-476
    [154] Go M, Kojima T, Takano K, Murata M, Koizumi J, KuroseM, Kamekura R, Osanai M, Chiba H, Spray DC, Himi T, Sawada N. Connexin 26 expression prevents down- regulation of barrier and fence functions of tight junctions by Na+ / K+- ATP ase inhibitor ouabain in human airway epithelial cell line Calu-3. Exp Cell Res. 2006; 312 (19):3847-3856
    [155]Olk S, Zoidl G, Dermietzel R. Connexins, cell motility, and the cytoskeleton. Cell motil cytoskeleton. 2009;66 (11): 1000-1016
    [156] Gumbiner BM. Cell adhesion: themolecular basis of issue basis of tissue architecture and morphogenesis. Cell. 1996; 84: 345-357
    [157] Haqe B, Meinel K, Baum I, Giehl K, Menke A. Rac1 activation inhibits E-cadherin- mediated adherens junction via binding to IQGAP1 in pancreatic acrcinoma cells. Cell Commun signal. 2009;7(23):1-13
    [158] Werning F, Xu QB. Mechanical stress-induced apotosis in the cardiovascular system. Progress in Biophysics and Molecular Biology. 2002; 78: 105-137
    [159] Zhang XG, Hui YN, Han QH, Hou X, Huang XF, Ma JX. Cytoskeleton changes of cultured human retinal pigment epithelial cells in a mechanical stress model. Zhonghua Yan Ke Za Zhi. 2006;42(2): 121- 126
    [160]Tabuchi K,Fukuyama K. Genetic alterations of gliomas. No To Shinkei. 1997;49;205- 213
    [161]Etlenne-manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629- 635
    [162]Alenghata FJ,Surya M. Global cytoskeletal control of mechano-transductin in kidney epithelial cells. Experimental Cell Research. 2004;301: 23-30
    [163]武忠弼.超微病理诊断学.上海:上海科学技术出版社. 2001;110-120
    [164] Sider JR, Mandato CA, Weber KL, et al. Direct observation of microtubule- f- actin interaction in cell free lysates. J Cell Sci. 1999,112: 1947-1956
    [165]Gargiulo L, Longanesi-Cattani I, Bifulco K, Franco P, Raiola R, Campiglia P, Grieco P, Peluso G,Stoppelli MP, Carriero MV. Cross-talk between fMLP and vitronectin receptors triggered by urokinase receptor-derived SRSRY peptide. J Biol Chem. 2005;280(26): 25225-25232
    [166] Han J, Yan XL, HanQH, Li Y, Zhu J, Hui YN. Electric fields contribute to directed migration of human retinal pigment epithelial cells via interaction between F-actin andβ1 integrin. Current Eye Research.2009; 34: 438-446
    [167]Turcotte S, Desrosiers RR, Béliveau R, HIF-1a mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. Journal of Cell Science 2003: 116: 2247-2260
    [168]Rao PV, Maddala R, John F, Jr Zigler JS. Expression of nonphagocytic NADPH oxidase system in the ocular Lens Molecular Vision 2004; 10:112-121
    [169]Hannigan MO, Huang CK, Wu DQ. Roles of PI3K in neutrophil function. Curr. Top. Mixrobiol. Immunol. 2004; 282: 165-175
    [170]Hannigan M, Zhan L, Li Z, Ai Y, Wu D, Huang CK. Neutrophils lacking hosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu -Phe-induced chemotaxis. Proc Natl Acad Sci U S A. 2002;99(6):3603-3608
    [171] Merlot S, Firtel RA. Leading the way:directional sensing through phosphatidylinositol 3-kinasd and other signaling pathways. J Cell Sic. 2003;116:3471-3478
    [172] Paruchuri S, Broom O, Dib K, Sjolander A. the pro-inflammatory mediator leukotriene D4 induces phosphatidylinosito 3-kinase and Rac-dependent migration of intestinal epithelial cells. J. Biol. Chem 2005; 280:13538-13544
    [173]Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase liquid products in cell function.J.Bio. Chem.1991;274: 8347-8350
    [174]Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ, Falasca M. Claa II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Bio. 2005; 169: 789-799
    [175] Coray S.The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival [J].J Gen Virol,2004;85(Pt 5): 1065-1076
    [176]周云,吕农华. PI3K/Akt信号转导通路与胃癌关系的研究进展.实用癌症杂志. 2009;3(24):208-210
    [177]Yu J, Li M, Qu Z, Yan D, Li D, Ruan Q. SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells towards areas of heart myocardial infarction via activation of PI3K/Akt. J Cardiovasc Pharmacol. 2010 . [Epub ahead of print].
    [178] Park JH, Han HJ. Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol. 2009; 297(4): C935-C944
    [179] Kim SJ, Kim SY, Kwon CH, Kim YK. Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors. 2007;25(2):77-86
    [180] Srivastava RK, Unterman TG, Shankar S. FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem. 2009. [Epub ahead of print]
    [181]Yu X, Song M, Chen J, Zhu G, Zhao G, Wang H, Hunag L. Hepatocyte growth factor protects endothelial progenitor cell from damage of low-density lipoprotein cholesterol via the PI3K/Akt signaling pathway. 2009. [Epub ahead of print]
    [182] Moolenaar WH. LPA: anovel lipid mediator with diverse biological actions. Trends Cell Biol.1994;4: 213-219
    [183] Nobes CD, Hall A. Rho,Rac and Cdc42 GTP ases regulators of actin structures, cell adhesion and motility. Biochem. Soc. Trans. 1995; 23: 456-459
    [184] Ridley AJ, Hall A.The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin atress fibers in response to growth factors. Cell.1992; 70: 389-399
    [185] Fenteany G, Janmey PA, Stossel TP. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr. Biol. 2000; 10: 831-838
    [186] Miyamoto Y, Yamauchi J. Cellular signaling of Dock family proteins in neural function. Cell Signal. 2010;22(2):175-182
    [187]Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res. 2009; 29(1):119-123
    [188]Nore BF, Vargas L ,Mohamed AJ, Branden LJ, Backesjo CM, Islm TC, Mattsson PT, Hultenby K. Christensson B , Smith CI. Redistribution of Bruton `s tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTP ases. Eur. J. Immunol. 2000; 30: 145-154
    [189]Yamazaki D , Kurisu S , Takenawa T. Regulation of cancer cell motility through actin reorganization.Cancer Sci.2005;96: 379-386
    [190] Wang J, Ohara N, Wang Z, Chen W, Morikawa A, Sasaki H, DeManno DA, Chwalisz K, Maruo T. A novel selective progesterone receptor modulator asoprisnil (J867) down- regulates the expression of EGF, IGF-I, TGFbeta3 and their receptors in cultured uterine leiomyoma cells. Hum Reprod. 2006; 21(7): 1869-1877
    [191]Kohut E, Hajdu M, Gergely P, Gopcsa L, Kilián K, Pálóczi K, Kopper L, Sebestyén A. Expression of TGFbeta1 and its signaling components by peripheral lymphocytes in systemic lupus erythematosus. Pathol Oncol Res. 2009;15(2):251-256
    [192] Falasca M. PI3K/Akt Signalling Pathway Specific Inhibitors: A Novel Strategy to Sensitize Cancer Cells to Anti-Cancer Drugs. Curr Pharm Des. 2010. [Epub ahead of print]
    [193]Deng B, Yang X, Liu J, He F, Zhu Z, Zhang C. Focal adhesion kinase mediates TGF-beta1-induced renal tubular epithelial-to-mesenchymal transition in vitro. Mol Cell Biochem. 2010. [Epub ahead of print]
    [194]Dise RS, Frey MR, Whitehead RH, Polk DB. Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration. Am J Physiol Gastrointest Liver Physiol. 2008; 294(1): G276-G285
    [195] Heit B, Liu L, Colarusso P, Puri KD, Kubes P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci. 2008;121(Pt 2):205-214
    [196] Arefieva TI, Kukhtina NB, Antonova OA, Krasnikova TL. MCP-1-stimulated chemotaxis of monocytic and endothelial cells is dependent on activation of different signaling cascades. Cytokine. 2005; 31(6):439-446
    [197] Lin CI, Chen CN, Chen JH, Lee H. Lysophospholipids increase IL-8 and MCP-1 expressions in human umbilical cord vein endothelial cells through an IL-1-dependent mechanism. J Cell Biochem.2006; 99(4):1216-1232
    [198] Kim JS, Kim JG, Moon MY, Jeon CY, Won HY, Kim HJ, Jeon YJ, Seo JY, Kim JI, Kim J, Lee JY, Kim PH, Park JB. Transforming growth factor-beta1 regulates macrophage migration via RhoA. Blood. 2006; 108(6):1821-1829
    [199]Itoh RE, Kiyokawa E, Aoki K, Nishioka T, Akiyama T, Matsuda M. Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF. J Cell Sci. 2008;121:2635- 2642
    [200] Cain RJ, Ridley AJ. Phosphoinositide 3-kinases in cell migration. Biol Cell. 2009; 101(1): 13-29.
    [201] Li W, Fan J, Chen M, Woodley DT. Mechanisms of human skin cell motility. Histol. Histopathol. 2004; 19: 1311-1324
    [202]Schneider IC, Hays CK, Waterman CM. Epidermal growth factor-induced contraction regulates paxillin phosphorylation to temporally separate traction generation from de- adhesionMol Biol Cell. 2009;20 (13): 3155-3167
    [203] Enzmann V, Kaufann A, Hollbron M, Wiedmann P,Gemsa D, Kohen L. Effective chemokines and cytokines in the rejuction of human retinal pigment epithelium(RPE)cell grafts. Transpl Immunol. 1999; 7(1):9-14