沁南煤储层渗透率动态变化效应及气井产能响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨开发过程中煤储层渗透性的动态变化及产能的动态响应,论文通过大量的测试数据、煤层气井工程数据及开发数据分析、各种煤层气地质与开发理论知识的运用,分别探讨了煤储层物性对煤储层渗透率的贡献、影响气井产能和渗透率动态变化的地质、工程因素,定量—半定量化主要因素对渗透率的影响程度,建立了地质、工程因素→渗透率动态变化→产能动态响应的评价模型,最后在此基础上提出了与研究区相适应的开发建议。主要取得如下认识:
     沁南煤储层孔隙以吸附孔为主,孔裂隙之间的连通性较差;裂隙以C、D类较小裂隙发育为主,裂隙彼此间的连通性较差且多被矿物质充填。这种孔裂隙发育特征决定了沁南煤储层渗透率整体偏低。
     影响沁南煤层气井产能高低的地质因素主要包括煤层埋深、含气量、临储比、地下水动力条件及气井所处的构造部位,主要工程因素包括煤层气井的排采制度、压裂效果及井网部署等。同时通过耦合分析煤储层渗透率动态变化与地质条件及开发制度的关系,阐明影响开发过程中渗透率动态变化的地质及工程影响因素,最终建立了地质、工程因素→渗透率动态变化→产能动态响应的评价模型。
     经过计算,得出开发过程中沁南地区煤储层绝对渗透率由于煤基质自身的弹性模量平均下降10.0%;500m埋深的煤层在开发过程中,绝对渗透率降低8.8%;1000m埋深的煤层在开发过程中,绝对渗透率降低11.5%。通过驱替压差实验得出在驱替压差未到达压降临界值之前,煤岩渗透率不发生变化,当驱替压差大于压降临界值时,煤岩渗透率降低,降低幅度与驱替压差之间呈明显的指数关系。
     针对沁南地区煤储层地质特征,建议首选顶板埋深500-700m、含气量大于15 m3/t、远离断层、临储比大于0.6煤层作为煤层气开发目标层;采用欠平衡钻井技术并在施工前对钻井液进行改善;采用地面垂直井、水平井及多分支水平井开发。对于连片开发地质条件较好的区域,可以采取丛式井网形式开发;开发期间,在早期排水期,建议采取比较大的降压幅度和比较大的排采冲次,分别为0.022MPa/d和3.0次/min;出现产气高峰后,开始缓慢降压和降低冲次,分别为0.002MPa/d和0.4次/min。
In order to investgate the dynamic variation of coal reservoir permeability and the dynamic response of productivity during the development process, this thesis discusses the contribution to coal reservoir permeability from physical properties, the geological and engineering factors that influence the dynamic variation of gas wells productivity and permeability, semiquantitative to quantitative characterization of changes in coal bed permeability caused by main factors on the basis of massive test datas, engineering datas and development datas analysis, various theoretical knowledge application of coalbed methane (CBM) geology and development. Then this work builds an evaluation model of the geological and engineering factors that drive dynamic changes in permeability, which in turn drive the dynamic response in terms of productivity. Finally, development proposals which are suitable to the southern Qinshui Basin are proposed. Main conclusions are listed as follows:
     Pore types of coal reservoir in southern Qinshui Basin are main absorption pores, and the connectivity among them is relatively poor. Meanwhile, fractures are main small ones as C and D types, and the connectivity among them is relatively poor and infilling of minerals. The development features of pores and fractures decide that the permeability of coal reservoir is generally low in southern Qinshui Basin.
     Main geological factors determine whether CBM wells achieve a high and stable yield, which include buried depth, gas content, critical desorption/reservoir pressure, hydrodynamic conditions, and tectonic positions that CBM wells are in. Main engineering factors include drainage system, fracturing effect, well pattern arrangement and so on. Meanwhile, by the coupling analysis of the relationship between dynamic variation of coal reservoir permeability and geological conditions and development system, it clarifies the geological and engineering factors which influence the dynamic variation of permeability during the development process of CBM. Finally, it builds an evaluation model of the geological and engineering factors that drive dynamic changes in permeability, which in turn drive the dynamic response in terms of productivity.
     After calculation, the absolute permeability of the coal reservoir decreases by about 10.0% during the development process due to elastic modulus, and decreases 5.5% and 14.3% at buried depths of 500m and 1000m respectively. In displacement pressure experiment, when the displacement pressure is not reach the critical value of pressure drop, coal permeability will not change. But when it reaches, coal permeability drops, and it has an exponential relationship between the pressure drop range and the displacement pressure drop.
     According to geological features of coal reservoir in southern Qinshui Basin, this paper recommends that the development reservoir should contain some conditions, which include buried depth at 500~700 m, gas content greater than 15 m3/t, critical desorption/reservoir pressure greater than 0.6, and far away from faults. In engineering aspect, we should use under-balanced drilling technology and improvement the drilling fluid before construction; adopt development styles of surface vertical well, horizontal well and multi-branch horizontal well, and for a whole area which has a great geological condition, we can use cluster well pattern form. During the development, this study suggest that a larger pressure drop (about 0.022MPa/d) and stroke (3.0/min) are favorable in the early drainage period, and a smaller pressure drop (0.002MPa/d) and stroke (0.4/min) should be applied when the gas peak appears.
引文
Brace WF, Walsh JB, Frangos WT. Permeability of granite under high pressure. J Geophysical Research, 1968, 73 (6):2225~2236.
    Chatterjee R, Pal PK. Estimation of stress magnitude and physical properties for coal seam of Rangamati area, Raniganj coalfield, India. International Journal of Geology Coal, 2010, 81(1):25-36.
    Chikatamarla L, Cui X, Bustin RM. Implications of volumetric swelling/shrinkage of coal in sequestration of acid gases; in: Proc. Int Coalbed Methane Symp., Tuscaloosa, Alabama, 2004.
    Clarkson CR, Bustin RM. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology. 2000, 42(4): 241~272.
    Clarkson CR, Jordan CL, Gierhart RR, et al. Production data analysis of CBM wells. Society ofpetroleum engineers. rockymountain oil and gas technology symposium 2007. 2007.137~153.
    Clarkson, CR. Production-data analysis of single-phase (gas) coalbed-methane wells. SPE Reservoir Evaluation and Engineering, 2007, 10 (3): 312~330.
    Cui X, Bustin RM, Chikatamarla L. Adsorption-induced coal swelling and stress: implications for methane production and acid gas sequestration into coal seams. J Geophys. Res. 2007.
    Cui X, Bustin RM. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. American Association of Petroleum Geologists bulletin, 2005, 89 (9): 1181~1202.
    De Bruin RH, Lyman RM. Coalbed Methane in Wyoming, in WR Miller, ed., Coalbed Methane and the Tertiary Geology of the Powder River Basin, Wyoming and Montana: Wyoming Geological Association Guidebook 50, 1999: 61~72.
    Enever JRE, Henning A. The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methaneexploration and reservoir modeling. Proceedings of the 1997 International Coalbed Methane Symposium.1997, 13~22.
    Fu XH, Qin Y, Wang GGX, Rudolph V. Evaluation of coal structure and permeability with the aid of geophysical logging technology. Fuel, 2009,88(11): 2278-2285 Gan H, Nandi S P, Walker P L. Nature of porosity in American coals . Fuel,1972,51: 272~277.
    Gangi AF. Variation of whole and fractured porous rock permeability with confining pressure. Int J RockMech Min Sci & Geomech Abstr, 1978, 15(3): 249~257.
    George, J.D., Barakat, M.A.. The change in effective stress associated with shrinkage from gas deportation in coal. International Journal of Coal Geology, 2001, 45: 105-113.
    Gray I. Reservoir engineering in coal seams: Part 1—the physical process of gas storage and movement in coal seams. SPE, 1987, 28~34.
    Greaves M, Ren SR, Rathbone RR, et al. Improved residual lightoil recovery by air injection(LTO process) JCPT,2000,39(1):57~61.
    Greaves M, Ren SR, Xia TX. New air injection technology for IOR operations in light and heavy oil reservoirs.SPE57295,1999.
    Gunter WD, Mavor MJ. Process for Predicting Porosity and Permeability of a Coalbed. US Patent No. 6, 860, 147, 2005.
    Harpalani S, Chen G. Estimation of changes in fracture porosity of coal with gas emission. Fuel, 1995,74:1491~1498.
    Harpalani S, Schraufnagel RA. Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel, 1990, 69(5): 551~556.
    Huy PQ, Sasaki K, Sugai Y, et al. Effects of SO2 and pH concentration on CO2 adsorption capacity in coal seams for CO2 sequestration with considerations for ?ue gas from coal-fired power plants. Journal of Canadian Petroleum and Technology, 2009, 48 (10):58~63.
    Jaeger JC, Cook NG. In fundamentals of rock mechanics (3rd Ed.), Chapman and Hall (London), 1979.
    Jr Ayers WB. Coalbed gas systems, resources, and production and a review ofcontrasting cases from the San Juan and Powder River Basins. Am. Assoc. Petrol. Geol. Bull. 2002, 86: 1853~1890.
    Kaiser WR, Hamilton DS, Scott AR, et al. Geological and hydrological controls on the producibility of coalbed methane. J. Geol. Soc. (London),1994,151:417~420.
    Karacan T, Okandan E. Fracture/cleat analysis of coals from Zongu1dak Basin(northwestern Turkey) relative to the potential of coalbed methane production. International Journal of Coal Geology, 2000, 44(2):109~125.
    Karl-Heinz AAW, Frank VB, Ephraim R, et al. Determination of the cleat angle distribution of the RECOPOL coal seams, using CT-scans and image analysis on drilling cuttings and coal blocks. Int. J. Coal Geol., 2008, 73: 259~272.
    Kenyon WE. Nuclear magnetic resonance as a petrophysical measurement. Nuclear Geophysics, 1992, 6 (2): 153~171.
    King GR, Ertekin TM, Schwerer FC. Numerical simulation of the transient behavior of coal-seam degasification wells. SPE Form. Eval. 1986, 165~183.
    King GR, Ertekin TM. A survey of mathematical models related to methane production from coal seams, part I: empirical & equilibrium sorption models. Proceedings of 1989 Coalbed Methane Symposium, Tuscaloosa, April, 1989a, 17~20.
    King GR, Ertekin TM. A survey of mathematical models related to methane production from coal seams, part II: non-equilibrium sorption models. Proceedings of 1989 Coalbed Methane Symposium, Tuscaloosa, April, 1989b 17~20.
    King GR, Ertekin TM. State-of-the-Art for Unconventional Gas Recovery, Part II: Recent Developments (1989-1994). SPE 29575, 1995, 289~312.
    Kleinberg RL, Straley C, Kenyon WE, et al. Nuclear Magnetic Resonance of Rocks: T1 Vs. T2. 68th Annu SPE Tech Conf, Houston , 1993.
    Kross BM, Van Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal of Coal Geology, 2002, 51: 69~92.
    Kulander, Stuart L. Coal-cleat domains and domain boundaries in the Allegheny Plateau of West Virginia J . AAPG Bull, 1993, 77: 1374~1388.
    Laubach SE, Marrett RA, Olson JE, et al. Characteristics and origins of coal cleat a review. Internal Journal of Coal Geology, 1998,35(1~2): 175~207.
    Law BE. The relationship between coal rank and cleat spacing: Implication for the predict ion of permeability in coal. Proceedings of the International Coalbed Mathane Symposium, 1993,435~442.
    Levine JR. Coalification: the evolution of coal as source rock and reservoir rock for oil and gas. Am. Assoc. Petrol. Geol. Stud. Geol. 1993, 38:39~77.
    Levine JR. Model study of the influence of matrix shrinkage on absolute permeability of coalbed reservoirs. Geological Society Publication, 1996, 197~212.
    Liu HH, Rutqvist J. A new coal-permeability model: internal swelling stress and fracture–matrix interaction. Transp Porous Med, 2010, 82:157~172.
    Maricic N, Mohaghegh SD, Artun E. A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs. Proc. 2005 SPE
    Annual Conference and Exhibition in Dallas, Texas. Paper SPE 96018, 2005. Mavor MJ, Gunter WD. Secondary porosity and permeability of coal vs. gas composition and pressure. Annual Technical Conference and Exhibition.
    Houston, Texas. SPE 90255, 2004.
    Mavor MJ, Gunter WD. Secondary porosity and permeability of coal vs. gas composition and pressure. Soc. Petr. Eng. Reservior Eval. Eng. 2006, 9:114~125.
    Mavor MJ, Owen LB, Pratt TJ. Measurement and evaluation of coal sorption isotherm data. SPE 20728, 1990, 1~14.
    Mazumder S, Wolf KH. Differential swelling and permeability change of coal in response to CO2 injection for ECBM. International Journal of Coal Geology, 2008, 74: 123~138.
    Mckee CR, Bumb AC, Koenig RA. Stress-dependent permeability and porosity of coal and other geologic formations.SPE Formation Evaluation,1988,3(1):81~91.
    McKee K, Bumb A C, Way S C, et al.应用渗透率与深度关系评价煤层天然气的潜力.张胜利译.见:华北石油地质局编.煤层气译文集.郑州:河南科学技术出版社, 1986
    McKeeC R, Bumb AC, Koenig RA. Stress dependent permeability and porosity of Coal. Rocky Mountain Association of Geologist, 1998, 143~153
    Mitra A, Harpalani S. Modeling incremental swelling of coal matrix with CO2 injection in coalbed methane reservoirs. SPE paper 111184, 2007.
    Moffat DH, Weale KE. Sorption by coal of methane at high pressures. Fuel, 1955,34:449~462.
    Palmer I, Mansoori J. How permeability depends on stress and pore pressure in Coalbeds: A New Model. SPE 36737, 1996: 557~563.
    Palmer I, Mansoori J. How permeability depends upon stress and pore pressure in coal bed: a new model. SPE REE, 1998, 539~544.
    Palmer ID, Cameron JC, Moschovidis ZA. Looking for permeability loss or gain during coalbedmethane production. Proceedings of the 2005 International Coalbed Methane Symposium. University of Alabama, Tuscaloosa, Alabama. Paper 0515, 2005.
    Palmer ID, Cameron JC, Moschovidis ZA. Permeability changes affect CBM production predictions. Oil and Gas Journal, 2006, 104(28): 43~50.
    Palmer ID, Mavor M, Gunter B. Permeability changes in coal seams during production and injection. Intl. Coalbed Methane Symposium. University of Alabama, Tuscaloosa, Alabama. Paper 0713, 2007.
    Pashin JC, Jr Groshong RH. Structural control of coalbed methane production in Alabama. International Journal of Coal Geology,1998, 38:89~113.
    Pashin JC. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview. Int. J. Coal Geol. 1998, 35: 207~238.
    Pekot LJ, Reeves SR. Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon sequestration. Proceedings of the 2003 International Coalbed Methane Symposium. University of Alabama,Tuscaloosa, Alabama. Paper 0328, 2003.
    Pitman JK, Pashin JC, Hatch JR, et al. Origin of minerals in joint and cleat systems of the Pottsville Formation, Black Warrior basin, Alabama: Implications for coalbed methane generation and production. AAPG Bulletin, 2003, 87(5): 713~731.
    Pone, JDN, Hile M, Halleck PM,等. Three-dimensional carbon dioxide induced strain distributionwithin a confined bituminous coal. International Journal of Coal Geology, 2009, 77:103~108.
    Qin Y, Fu XH, Wu CF, et al. Self-adjusted elastic action and its CBM pool-forming effect of the high rank coal reservoir. Chinese Science Bulletin, 2005, 50:99~103.
    Reeves S, Taillefert A, Pekot L, et al. The Allison unit CO2-ECBM pilot: a reservoir modelling study. U.S. Department of Energy. Topical Report DE-FC26-0NT40924.2003.
    Reucroft PJ, Patel H. Gas induced swelling in coal. Fuel, 1986,65:816~820.
    Runelbart D, Meclelland J. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge: Bradford Books, MIT Press, 1986.
    Sams WN, Bromhal GS, Jikich SA, et al. Using horizontal wells to sequester CO2 and enhance coalbed methane recovery: a simulation study of operating procedure. Proceedings of the 2004 SPE Annual Technical Conference and Exhibition, Houston, Texas. Paper SPE 90145, 2004.
    Sang Shuxun, Liu Huihu, Li Yangmin, et al. Geological controls over coal-bed methane well production in southern Qinshui basin. ScienceDirect, 2009, 1(1): 917~922.
    Sang SX, Liu HH, Li YM, et al. Geological controls over coal-bed methane well production in southern Qinshui basin. The 6th International Conference on Mining Science & Technology. Procedia Earth and Planetary Science, 2009, 1:917~922
    Sawyer WK, Paul GW, Schraufnagle RA. Development and application of 3D coalbed simulator. CIM /SPE, 1990, 90~119.
    Scott AR, Kaiser WR. Hydrogeologic factor affecting dynamic open-hole cavitycomplections in the San Juan Basin, U.S.A. Proceedings of the 1995 Coalbed Methane Symposium, the University of Alabama/Tuscaloosa, 1995, 139~147.
    Scott AR. Hydrogeologic factors affecting gas content distribution in coal beds. Int. J. Coal Geol. 2002, 50, 363~387.
    Seidle JP, Huitt LG. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat matrix increases, SPE 30010, 1995.
    Seidle JP, Jeansonne MW, Erickson DJ. Application of matchstick geometry to stress dependent permeability in coals. SPE Rocky Mountain Regional Meeting, SPE 24361, 1992, Casper, Wyoming.
    Shi JQ, Durucan S. A model for changes in coalbed permeability during primary and enhanced methane recovery. SPE Reservoir Evaluation and Engineering 291, 2005.
    Siebrits E,纪宝均,鞠海澜.利用二次压裂中裂缝方位的改变提高气井产量.国外油气田工程, 2001,17(7) :16~17
    Siriwardane HJ, Gondle RK, Smith DH. Shrinkage and swelling of coal induced by desorption and sorption of ?uids: theoretical model and interpretation of a field project. International Journal of Coal Geology, 2009, 77:188~202.
    Soto-Acosta W, Schimmelmann A, Mastalerz M, et al. Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for cleat origin and coalbed methane generation. International Journal of Coal Geology, 2008, 73, (3-4):219~236.
    St. George JD, Barakat MA. The change in effective stress associated with shrinkage from gas deportation in coal. International Journal of Coal Geology, 2001, 45: 105~113.
    St. George JD, Barakat MA. The change in effective stress with shrinkage from gas desorption in coal. International Journal of Coal Geology, 2001, 45:105~113.
    Stevens SH, Kuuskra VA, Gale J, et al. CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: world wide potentials and costs. Environ. Geosci, 2001, 8(3):200~209.
    Su XB, Tang YY, Sheng JH. Coalbed methane drainage technology in Henan Province.The 4th International Symposium on Mining Science and Technology, 1999, 231~233.
    Sukkar YK, Cornell D. Direct calculation of bottom-hole pressures in natural gas wells.Trans AIME, 1955: 43~48.
    Tremain CM, Whitehead NH. Natural fracture (cleat and joint) characteristics and pattern in upper Cretaceous and Tertiary roaks of San Juan basin. Gas Research Institute GRI90/0014, 1990, 1:73~84.
    Wang GX, Massarotto P, Rudolph V. An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration. International Journal of Coal Geology, 2009, 77: 127~136.
    Wang GX, Wei XR, Wang K, et al. Sorption-induced swelling/shrinkage and permeability of coal under stressed adsorption/desorption conditions. International Journal of Coal Geology, 2010, 83: 46~54.
    Wong S, Law F, Deng X, et al. Enhanced coalbedmethane and CO2 storage in anthracite coals—micro-pilot test at South Qinshui, Shanxi, China. International Journal of Greenhouse Gas Control 1, 2007, 215~222.
    Xu Hao, Zhang Shanghu, Leng Xue, et al. Analysis of pore system model and physical property of coal reservoir in the Qinshui Basin. Chinese Science Bulletin, 2005,50(Supp.),52-58.
    Yao YB, Liu DM, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. International Journal of Coal Geology, 2009, 80: 113~123.
    Yao YB, Liu DM, Tang DZ, et al. A Comprehensive model for evaluating coalbed methane reservoirs in China. Acta Geologica Sinica, 2008, 82(6): 1253~1270.
    Yao YB, Liu DM, Tang DZ, et al. Fractal Characterization of Adsorption-pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 2008, 73: 27~42.
    Yee D, Seidle JP, Hanson WB. Gas Sorption on Coal and Measurement of Gas Content”, Chapter 9 in Hydrocarbons from Coal, AAPG Studies in Geology #38,edited by BE Law and DD Rice. AAPG, Tulsa, Oklahoma, 1993.
    Yuan H Y, Max P, Cloud T A, et al. Gas productivity related to cleat volumes derived from focused resistivity tools in Coalbed Methane(CBM) Fields. Petrophysics, 47(3):250~257.
    Zuber MD. Production characteristics and reservoir analysis of coalbed methane reservoirs. International Journal of Coal Geology, 1998, 38(1-2): 27~45.
    薄冬梅,赵永军,姜林,等.煤储层渗透性研究方法及主要影响因素.油气地质与采收率, 2008, 15(1): 18~21.
    曹代勇.沁水煤田东部构造特征研究-兼论资源勘探阶段地质构造综合研究方法.重庆大学出版社,1996
    陈彩红,刘洪林,王宪花.煤层气田数值模拟技术及应用.天然气工业, 2004, 24 (5): 97~99.
    陈家琅.石油气液两相管流.北京:石油工业出版社, 1989, 68~73.
    陈金刚,秦勇,傅雪海.高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟.中国矿业大学学报,2006, 35 (1): 49~53.
    陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报, 2001,26(5):552~556.
    陈贞龙,汤达祯,许浩,等.黔西滇东地区煤层气储层孔隙系统与可采性.煤炭学报,2010,35(增):158-163.
    陈振宏,王一兵,杨焦生,等.影响煤层气井产量的关键因素分析—以沁水盆地南部樊庄区块为例.石油学报, 2009, 30(3): 409~412.
    陈振宏,王一兵,郭凯,等.高煤阶煤层气藏储层应力敏感性研究.地质学报,2008,82(10): 1390~1395.
    程波,叶佩鑫,隆清明,等.煤基质收缩效应和有效应力对煤层渗透率影响的新数学模型.矿业安全与环保, 2010, 37(2): 1~3.
    单学军,张士诚,李安启,等.煤层气井压裂裂缝扩展规律分析.天然气工业,2005, 25(1): 130~132
    邓英尔,黄润秋,郭大浩,等.煤层气产量的影响因素及不稳定渗流产量预测.天然气工业, 2005; 25(1): 117~119.
    邓泽,康永尚,刘洪林,等.开发过程中煤储层渗透率动态变化特征.煤炭学报, 2009, 34(7): 947~951.
    董建辉,张宁生,李天太,等.樊庄区块煤层气羽状水平井钻井实践.天然气工业, 2007,27(3): 55~57.
    杜志敏,付玉,伍勇.低渗透煤层气产能影响因素评价.石油天然气地质,2007, 28(4):516~519
    段康廉,张文,胡耀青.应力与孔隙水压对煤体渗透性的影响.煤炭学报,1993,18(4): 43~50.
    樊明珠,王树华.煤层气勘探开发中的割理研究.煤田地质与勘探, 1997, 25(1): 29~32.
    付玉,郭肖,贾英,等.煤基质收缩对裂隙渗透率影响的新数学模型.天然气工业, 2005, 25(2): 143~145.
    傅雪海,秦勇,姜波,等.煤割理压缩实验及渗透率数值模拟.煤炭学报, 2001, 26(6): 573~577.
    傅雪海,秦勇,姜波,等.山西沁水盆地中-南部煤储层渗透率物理模拟与数值模拟.地质科学, 2003, 38(2) : 221~229.
    傅雪海,秦勇,姜波,等.高煤级煤储层煤层气产能“瓶颈”问题研究.地质论评, 2004, 50(5): 507~513.
    傅雪海,秦勇,李贵中,等.山西沁水盆地中、南部煤储层渗透率影响因素.地质力学学报, 2001, 7(1): 45~52.
    傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究.科学通报, 2005,50(增刊1):131~137.
    傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率藕合关系分析.高校地质学报, 2003, 9(3): 373~377.
    傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法.徐州:中国矿业大学出版社,2003,19~31
    傅雪海,王爱国,陈锁忠,等.寿阳-阳泉矿区控气水文地质条件分析.天然气工业,2005,25,1:47~50
    郝琦.煤的显微孔隙形态特征及其成因探讨.煤炭学报, 1987,4:51~57.
    何伟钢,唐书恒,谢晓东.地应力对煤层渗透性的影响.辽宁工程技术大学学报, 2000,19(4):353~355.
    何学秋,王恩元,林海燕.孔隙气体对煤体变形及蚀损作用机理[J].中国矿业大学学报, 1996, 25(1): 6~11.
    胡国艺,李谨,马成华,等.沁水煤层气田高阶煤解吸气碳同位素分馏特征及意义.地学前缘, 2007, 14(6): 267~271.
    胡国艺,关辉,蒋登文,等.山西沁水煤层气田煤层气成藏条件分析.中国地质, 2004, 31(2):213~217.
    黄炜,杨蔚.气井井流动能分析及考虑动能项的井底流压计算方法.天然气工业,2001,21(4): 75~77.
    霍多特BB著.宋士钊,王佑安译.煤与瓦斯突出.北京:中国工业出版社. 1966.
    晋香兰,张泓.基于多元回归分析的煤储层高渗区预测—以沁水盆地为例.煤田地质与勘探, 2006, 34(2): 22~25.
    康永尚,邓泽,刘洪林.我国煤层气井排采工作制度探讨.天然气地球科学, 2008,19(3):423~426.
    康永尚,赵群,王红岩,等.煤层气井开发效率及排采制度的研究.天然气工业,2007,27(7):79~82.
    李安启,姜海,陈彩虹.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析. 天然气工业, 2004, 24(5) : 91~94.
    李明宅,孙晗森.煤层气采收率预测技术.天然气工业,2008,28(3):25~29.
    李志强,鲜学福,隆晴明,等.不同温度应力条件下煤体渗透率实验研究.中国矿业大学学报, 2009, 38(4): 523~527.
    连承波,赵永军,李汉林等.煤层含气量的主控因素及定量预测.煤炭学报, 2005, 30(6): 726~729.
    连承波,钟建华,赵永军,等.基于试井资料分析的煤储层渗透率定量预测模型. 辽宁工程技术大学学报(自然科学版),2008, 27(4): 481~484.
    刘大锰,姚艳斌,蔡益栋,等.华北石炭—二叠系煤的孔渗特征及主控因素.现代地质,2010a,24(6):1198-1204.
    刘大锰,姚艳斌,蔡益栋,等.煤层气储层地质与动态评价研究进展.煤炭科学技术,2010b,38(11):10-16.
    刘大锰,姚艳斌,刘志华,等.华北安鹤煤田煤储层特征与煤层气有利区分布.现代地质,2008,22(5):787-793.
    刘洪林.中国高煤阶地区的煤层气勘探理论与实践.石油实验地质,2004,26(5):411~414.
    刘静,王亚娟,吕海燕,等.利用固氮酶提高煤层气采收率技术.国外油田工程, 2009, 25(11): 13~15.
    刘人和,刘飞,周文,等.沁水盆地煤岩储层单井产能影响因素.天然气工业,2008,28(7):30~33.
    刘人和,刘飞,周文,等.沁水盆地煤岩储层特征及有利区预测.油气地质与采收率, 2008,15(4): 16~19.
    刘贻军.应用新技术促进煤层气的开发.地质通报,2007,26(5): 625~629.
    刘贻军.中国中阶煤和高阶煤的储层特性及提高单井产量主要对策.天然气工业, 2005; 25(6): 72~74
    孟召平,田永东,雷旸.煤层含气量预测的BP神经网络模型与应用.中国矿业大学学报, 2008, 37(4): 456~461.
    孟召平,田永东,李国富.沁水盆地南部煤储层渗透性与地应力之间关系和控制机理.自然科学进展, 2009, 19(10): 1142~1148.
    倪小明,陈鹏,李广生,等.恩村井田煤体结构与煤层气垂直井产能关系.天然气地球科学, 2010, 21(3): 508~512.
    倪小明,苏现波,魏庆喜,等.煤储层渗透率与煤层气垂直井排采曲线关系.煤炭学报, 2009, 34(9): 1194~1198. 倪小明,王延斌,接铭训,等.不同构造部位地应力对压裂裂缝形态的控制.煤炭学报, 2008, 33 (5):505~508.
    倪小明,王延斌,接铭训,等.煤层气井排采初期合理排采强度的确定方法.西南石油大学学报,2007,29(6):101~104.
    潘军,杨陆武,孟英峰.欠平衡钻井技术在煤层气勘探开发中的应用.探矿工程,2001,4:9~12.
    彭金宁,傅雪海.铁法矿区煤储层裂缝系统评价与渗透率预测研究.中国煤田地质,2005,17(5):40~43.
    彭永伟,齐庆新,邓志刚,等.考虑尺度效应的煤样渗透率对围压敏感性试验研究.煤炭学报, 2008, 33(5): 509~513.
    秦勇,傅雪海,吴财芳,等.高煤级煤储层弹性自调节作用及其成藏效应.科学通报,2005,50(增刊1): 82~86.
    秦勇,宋党育,王超.山西南部晚古生代煤的煤化作用及其控气特征.煤炭学报.1997,22(3): 230~235.
    秦勇,叶建平,林大扬,等.煤储层厚度与其渗透性及含气性关系初步探讨.煤田地质与勘探, 2000, 28(1): 24~27.
    秦勇,张德民,傅雪海,等.山西沁水盆地中、南部现代构造应力场与煤储层物性关系之探讨.地质论评,1999,45(6):576~582.
    桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理(Ⅰ).天然气工业,2005,25(1):13~15.
    邵维志,王志勇,张杰,等.利用测井资料评价低孔隙度低渗透率气层产能方法研究.测井技术,2007,31(6):541-545.
    苏现波,陈江峰,孙俊民,等.煤层气地质学与勘探开发.北京:科学出版社, 2001.
    孙立东,赵永军.沁水盆地煤储层渗透性影响因素研究.煤炭科学技术, 2006, 34(10): 74~78.
    孙培德.变形过程中煤样渗透率变化规律的实验研究.岩石力学与工程学报, 2001, 20(增刊): 1801~1804.
    谈慕华,黄蕴元.表面物理化学.北京:中国建筑工业出版社, 1985.
    汤达祯,林善园,王激流,等.鄂尔多斯盆地东缘晚古生代煤的生烃反应动力学特征.石油实验地质,1999,21(4):328-335
    汤达祯,秦勇,胡爱梅.煤层气地质研究进展与趋势.石油实验地质,2000,25(6):644-647
    汤达祯,王激流,林善园,等.煤二次生烃作用程序热解模拟试验研究.石油实验地质,2000,22(1):9-15
    汤达祯,杨起,潘治贵.河东煤田地史—热史模拟与煤变质演化.现代地质,1992,6(3):328-337
    汤达祯,杨起,周春光,等.华北晚古生代成煤沼泽微环境与煤中硫的成因关系研究.中国科学(D)辑,2000,30(6):584-591
    唐巨鹏,潘一山,张佐刚.煤层气赋存和运移规律的NMRI研究.辽宁工程技术大学学报. 2005, 24(5):674~676.
    唐书恒,马彩霞,叶建平,等.注二氧化碳提高煤层甲烷采收率的实验模拟.中国矿业大学学报, 2006, 35(5): 607~611.
    唐书恒,杨起,汤达祯,等.注气提高煤层甲烷采收率机理及实验研究.石油实验地质, 2002, 24(6): 545~549.
    唐书恒.煤储层渗透性影响因素探讨.中国煤田地质, 2001, 13(1): 28~30.
    陶树,汤达祯,许浩,吕玉民,赵兴龙.沁南煤层气井产能影响因素分析及开发建议.煤炭学报. 2011,36(2):194-198.
    陶树,汤达祯,吕玉民.基于产能变化的煤储层渗透率动态变化定量—半定量化表征.见:孙粉锦,冯三利,赵庆波,等.煤层气勘探开发理论与技术—2010年全国煤层气学术研讨会论文集.北京:石油工业出版社,2010,411-416.
    陶树,汤达祯,秦勇,许浩,李松,蔡佳丽.黔西滇东典型矿区煤系地层热演化史分析.煤田地质与勘探,2010,38(6):17-21.
    童敏,齐明明,马培新,等.高气液比气井井底流压计算方法研究.石油钻采工艺,2006,28(4): 71~74.
    万玉金,曹雯.煤层气单井产量影响因素分析.天然气工业, 2005, 25(1): 124~126
    王勃,姜波,王红岩,等.煤层气储层渗透率变化规律的物理模拟实验研究.天然气地球科学,2005,16(5):684~686.
    王红岩,张建博,刘洪林,等.沁水盆地南部煤层气藏水文地质特征.煤田地质与勘探, 2001, 29(5): 33~36.
    王兴隆,赵益忠,吴桐.沁南高煤阶煤层气井排采机理与生产特征.煤田地质与勘探, 2009, 37(5): 19~22.
    王延斌,韩德馨,艾天杰,等.煤中主要有机显微组分热解-气相色谱研究—以渤海湾盆地C-P煤为例.中国矿业大学学报,2000,29(5):449-453. 王延斌,韩德馨,刘咸卫.渤海湾盆地C-P煤有机组分~(13)C NMR研究.中国矿业大学学报,1999,28(1):37-40.
    魏书宏,韩少明.沁水煤田南部煤层气构造控气特征研究.煤田地质与勘探,2003,31(3): 30~31.
    吴建光,叶建平,唐书恒.注入CO2提高煤层气产能的可行性研究.高校地质学报, 2004,10(3): 463~467.
    吴世跃,郭勇义.注气开采煤层气增产机制的研究.煤炭学报, 2001,26(2):199~203.
    吴晓东,席长丰,王国强.煤层气井复杂水力压裂裂缝模型研究.天然气工业, 2006, 26(12): 124~126.
    鲜保安,高德利,陈彩红,等.煤层气高效开发技术.特种油气藏,2004,11(4):63~66.
    许浩,汤达祯,唐书恒,等.鄂尔多斯盆地西部侏罗系煤储层特征及有利区预测.煤田地质与勘探,2010,38(1):26-28
    许浩,汤达祯,唐书恒.几种关键压力的控制因素及其对煤层气井产能的影响.见:
    孙粉锦,冯三利,赵庆波,等.煤层气勘探开发理论与技术—2010年全国煤层气学术研讨会论文集.北京:石油工业出版社,2010,53-58.
    许浩,汤达祯,张君峰,等.潜水面对储层压力的作用机制.煤田地质与勘探,2008,36(5):31-33
    闫宝珍,王延斌,丰庆泰,等.基于地质主控因素的沁水盆地煤层气富集划分.煤炭学报, 2008, 33(10): 1102~1106.
    杨焦生,王一兵,王宪花.煤层气井井底流压分析及计算.天然气工业, 2010, 30(2):66~68.
    杨满平,王正茂,李冶平.影响变形介质气藏储层渗透率变化的主要因素.天然气地球科学,2003,14(5):386~388.
    杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响.地球科学,2005, 25(3): 273~277.
    杨胜来,杨思松,高旺来.应力敏感及液锁对煤层气储层伤害程度实验研究.天然气工业, 2006, 26(3): 90~92.
    杨涛,杨栋,康志勤,等.注入超临界CO2对提高煤层渗透性的影响.煤炭科学技术, 2010, 38(4): 108~110.
    杨秀春,李明宅.煤层气排采动态参数及其相互关系.煤田地质与勘探,2008,36(2):20~27.
    杨永国,秦勇.煤层气产能预测随机动态模型及应用研究.煤炭学报, 2001, 26 (2): 122~125.
    杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法.石油学报,2006,27(2):64-67.
    姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报,2006,31(2):163~168.
    姚艳斌.煤层气储层精细定量表征与综合评价模型:[博士学位论文].北京:中国地质大学,2008.
    叶建平,秦勇,林大扬,等.中国煤层气资源.徐州,中国矿业大学出版社,1999.
    叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素.煤炭学报,1999,24(2):118~122.
    叶建平,武强,王子和.水文地质条件对煤层气赋存的控制作用.煤炭学报,2001,26 (5):459~462.
    张广洋,胡耀华,姜德义,等.煤的渗透性实验研究.贵州工学院学报, 1995, 24(4): 65~68.
    张泓,王绳祖,郑玉柱,等.古构造应力场与低渗煤储层的相对高渗区预测.煤炭学报, 2004, 29(6): 708~711.
    张慧,王晓刚,员争荣,等.煤中显微裂隙的成因类型及其研究意义.岩石矿物学杂志, 2002 , 21 (3) : 278~284 .
    张慧.煤孔隙的成因类型及其研究.煤炭学报,2001,26(1):40~44. 张健,汪志明,王开龙.煤层几何参数和渗透率对水平井开采煤层气的影响.石油钻探技术, 2009, 37(4): 80~83.
    张健,汪志明.煤层应力对裂缝渗透率的影响.中国石油大学学报(自然科学版),2008,32(6):92~95.
    张培河,李贵红,李建武.煤层气采收率预测方法评述.煤田地质与勘探,2006,34(5): 26~30.
    张培河.煤层气井产能分级方案研究.中国煤层气, 2007, 4(1): 28~30.
    张胜利,李宝芳.煤层割理的形成机理及在煤层气勘探开发评价中的意义.煤田地质与勘探,1996: 8(1):72~77.
    张先敏,同登科.顶板含水层对煤层气井网产能的影响.煤炭学报, 2009, 34(5): 645~649.
    张先敏,同登科.考虑基质收缩影响的煤层气流动模型及应用.中国科学E,2008,38(5):790~796.
    张义,鲜保安,孙粉锦,等.煤层气低产井低产原因及增产改造技术.天然气工业,2010,30(6):55 ~59.
    赵群,王红岩,李景明,等.快速排采对低渗透煤层气井产能伤害的机理研究.山东科技大学学报,2008,27(3):27~31.
    赵群,王红岩,李景明.快速排采对低渗透煤层气井产能伤害的机理研究.山东科技大学学报,2008,27(3):27~31.
    赵伟伟.沁水盆地南部地质条件及其煤层气成藏优势分析.中国煤炭地质,2009,21(增1):19~21.
    赵阳升,杨栋,胡耀青,等.低渗透煤储层煤层气开采有效技术途径的研究.煤炭学报,2001, 26(5):455~458.
    郑玉柱,韩宝山.煤层气采收率的影响因素及确定方法研究.天然气工业,2005, 25(1): 120~123.
    中国石油天然气总公司. SY/ T 6154-1995.中华人民共和国石油天然气行业标准-岩石比表面和孔径分布测定静态氮吸附容量法.石油勘探开发科学研究院廊坊分院, 1999-06-30.
    钟孚勋.气藏工程.北京:石油工业出版社, 2001: 54~57.
    钟玲文.煤内生裂隙的成因.中国煤田地质, 2004, 16(3): 6~9.
    周世宁.瓦斯在煤层中的流动机理.煤炭学报, 1990,15(1): 15~24.
    朱凯,王正林.精通matlab神经网络.北京,电子工业出版社, 2010.
    邹艳荣,杨起.煤中的孔隙和裂隙.中国煤田地质,1998, 11(4): 39~41.