太原东山黄土动力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对太原东山黄土的动三轴试验研究,探讨了太原黄土的动力特性参数、动强度和振陷随含水量的变化规律和其它的一些变化规律。试验研究表明,含水量对太原黄土动力特性有重要的影响。对于自然界处于不饱和状态的原状黄土,将含水量的影响放在首要位置来研究其动力特性无疑是正确的。
     总的趋势是,动力特性参数和动强度随含水量增加而减小;随固结压力的增大而增大。振陷与之相反。阻尼比随含水量的变化规律不明显,其最大值不超过0.2,一般为0~0.05。动摩擦角几乎不受含水量的影响。
     其它条件不变时,等效动弹性模量、最大动模量、破坏动应力、动粘聚力和振陷临界动应力均随含水量增加而减小;而振陷随含水量增加而增大。以塑限含水量为界,小于塑限的含水量变化对等效动弹性模量、最大动模量、振陷临界动应力和动粘聚力的影响显著,大于塑限的含水量变化对其影响减弱。
     其它条件不变时,等效动弹性模量、最大动模量、破坏动应力、和振陷临界动应力均随固结压力增大而增大。
     对最大动模量与含水量关系的归一性分析表明,黄土的结构性对干型黄土最大动模量的影响是不容忽视的。太原黄土在含水量小于5%时为非振陷性黄土,大于5%时为振陷性黄土。本文定义的“振陷率”是指增加单位动应力所引起的残余应变增量,它
    
     太原理工大学硕士研究生学位论文
    可以定量说明土样破坏以前振陷发生的剧烈程度;一振陷率越大,
    振陷发生得越剧烈。振陷率的变化趋势为:含水量越大、固结应
    力越小,达到振陷临界动应力时的振陷率越大。
Dynamic properties of Dongshan loess in Taiyuan are studied .through laboratory.dynamic triaxial tests; and variations with water contents are discussed of its dynamic parameters, dynamic shear strength and dynamic subsidence. Besides, other, laws are also discussed. Test results show that water content has a major influence on the dynamic properties of Taiyuan loess. For unsaturated intact loess, it is undoubtedly correct that the influence of water content is of the first importance on the study of its dynamic properties.
    The general tendency is that dynamic parameters and dynamic shear strength decrease with an increase of water content, but increase with an increase of consolidation pressure. Dynamic subsidence goes by contraries. Variation of dumping ratio with water content is not obvious; and the value range is generally from 0 to 0.05, with a maximum value smaller than 0.2. Little influence has variation of water content on dynamic friction angle.
    Other conditions being constant, secant dynamic elastic modulus, maximum secant dynamic elastic modulus, dynamic failure
    
    
    
    stress, dynamic cohesion or dynamic critical stress decrease with an
    increase of water content, while dynamic subsidence increase with an increase of water content. When taking plastic limit as a bound, variation of water content smaller, than plastic limit has major influence on secant dynamic elastic modulus, maximum secant dynamic elastic modulus, dynamic failure stress, dynamic cohesion or dynamic critical stress; while variation of water content greater than plastic limit has very minor influence on them.
    Other conditions being constant, Secant dynamic elastic modulus, maximum secant dynamic elastic modulus, dynamic failure stress or dynamic critical stress increase with an increase of consolidation pressure.
    Structure of loess is not to be ignored as for its influence on the maximum secant dynamic elastic modulus, according to the analysis of normalized relation between maximum secant dynamic elastic modules and water contents. Taiyuan loess with water content smaller than 5% can be classified into non-dynamic-subsidence loess, and that greater than 5% can be classified into dynamic-subsidence loess. 'Dynamic subsidence rate' defined in this thesis refers to an increment of residual strain caused by a unit increment of dynamic stress, and can quantitatively express the intensity of dynamic subsidence for loess samples prior to failure. The larger the dynamic subsidence rate, the more intense the dynamic subsidence is. The variation of the dynamic subsidence rate is that when reaching dynamic critical stress, the larger the water content or the smaller the consolidation pressure, the larger the dynamic subsidence rate is.
引文
[1] BAI Xiao-hong, Peter Smart. Engineering Properties of Lu Cheng loess in ShanXi.Chinese Journal of Geotechnical Engineering, 2002, 24(4):515~518.
    [2] 谢定义。试论我国黄土力学研究中的若干新趋向。岩土工程学报,2001,23(1):3-13。
    [3] 刘祖典。黄土力学与工程。西安:陕西科技出版社,1996。
    [4] Ishihara k, Okusa S, Oyagi N, etc.. Liquefaction-induced flow slide in the collapsive loess deposit in Soviet Tajik. Soils and Foundations, 1990, 30(4): 73-89.
    [5] 张振中,王兰民。1920年海源地震时的黄土地质灾害。全国黄土学术会议论文集。新疆科技卫生出版社,1994。
    [6] 谢定义。黄土动力特性研究的现状与发展趋向。全国黄土学术会议论文集。新疆科技卫生出版社,1994。
    [7] Wu.Z.H, Xie.D.Y. Further research of dynamic characteristics of intact loess.International Conference on Loess, 1985.
    [8] 巫志辉,谢定义,方彦,余雄飞。洛川黄土动变形强度特性的研究。水利学报,1994,12:67~71。
    [9] 谢定义。黄土力学特性与应用研究的过去、现在与未来。地下空间,1999,19(4):273~284。
    [10] Wu.Z H., Xie.D Y.etc.Dynamic characteristics of intact loess. Geotechnical Special Publication, ASCE, 1987(1): 148~167.
    [11] 巫志辉,刘保健。黄土地基抗震承载力调整系数的试验论证。见:岩土工程研究(文集)。陕西机械学院岩土工程研究所,1993,284~289。
    [12] 张炜,张苏民。我国黄土工程性质研究的发展。岩土工程学报,1995,17(6):81~88。
    [13] Wang Lanmin, Zhang Zhengzhong, Li Lan, etc. Laboratory study on loess liquefaction. Eleventh world conference on Earthquake Engineering, Mexico, 1996.
    [14] Hwang H, Wang Lanmin, Yuan Zhongxia. Comparison in liquefaction
    
    potential of loess between Lanzhou, Chain and Memphis, USA. The 9th International Conference on Soil Dynamics and Earthquake Engineering, Norway, 1999.
    [15] Wang Lanmin. etc. Some Progresses in Loess Dynamic and Its Application in Prediction of Earthquake-induced Disasters in china. Proceeding of the special Sino-Japanese Forum on Performance and Evaluation of Soil Slopes under Earthquakes and Rainstorms, 1998.
    [16] 王兰民,刘红玫,李兰等。饱和黄土液化机理与特性的试验研究。岩土工程学报,2000,22(1):89~94。
    [17] 骆亚生,谢定义,陈存礼。黄土不同湿度状态下破坏动强度的试验分析[J]。西安理工大学学报,2001,17(4):403~407。
    [18] 骆亚生。中国典型黄土动力特性及其参数的试验分析[硕士学位论文]。西安:西安理工大学,2000。
    [19] 王兰民,袁中夏,王峻等。干密度对击实黄土震陷性影响的试验研究。地震工程与工程振动,2000,20(1):75~80。
    [20] 巫志辉,方彦。原状黄土在增湿时的震陷特性。见:岩土工程研究(文集)。陕西机械学院岩土工程研究所,1993,278~283。
    [21] Wu Z H, Xie DY. Dynamic deformation research of intact loess, Proc.of intem.Conf.on Engineering Problem of Regional Soils. Beijing, 1988, 336~339.
    [22] 余雄飞,谢定义。原状黄土的增湿结构弱化特性对动荷下变形特性的影.响,全国土工建筑物及地基抗震学术讨论会论文汇编,西安,1986.11
    [23] Wang Lanmin,Wang Jun,Li Lan.Dynamic behaviors of loess under irregular seismic loadings.The Second International Conference on Earthquake Resistant Construction and Design,Vol 1, Berlin Germany, 1994,398~401.
    [24] 王兰民,张振中,王峻,李兰。随机地震荷载作用下黄土动本构关系的试验研究。西北地震学报,1992,14(4)。
    [25] 王兰民,张振中等。随机地震荷载作用下黄土动强度的试验方法。西北地震学报,1991,13(3)。
    [26] Wang Lanmin, Zhang Zhengzhong, Wang Jun. The method of predicting ground earthquake disaster in urban arrears by irregular seismic loading test. The
    
    First International Conference on Disaster Prevention in Urban Areas (Tehran Iran). 1992.
    [27] Wang Jun, Wang Lan-Min. Recent research on prediction of seismic subsidence of loess. See; 12th world conference on Earthquake Engineering(New Zealand), 2000, 1483.
    [28] 王峻.黄土震陷量试验与评价。甘肃科学学报,1999,11(1):6~9。
    [29] 王峻,李兰。俄罗斯伊尔库茨克地区黄土动力特性实验研究。西北地震学报,2001,23,(3):286~290。
    [30] 王峻,王兰民,李兰。黄土场地震陷量的试验预测。西北地震学报,1997,19(2):62~62。
    [31] 段汝文,李兰,王峻。不同性状黄土的震陷特性及震害评估。西北地震学报,1997,19,Supp。
    [32] 王建荣,王峻,李兰。不同频率动荷载作用下黄土的震陷特性。西北地震学报,1997,19,Supp。
    [33] 王建荣,张振中,王峻等。振动频率对原状黄土动本构关系的影响。西北地震学报,1999,21(3):310~314。
    [34] 谢定义,余雄飞。原状黄土动力特性研究中的一些问题的讨论。全国土工建筑物及地基抗震学术讨论会论文汇编,西安,1986。
    [35] 钱家欢,殷宗泽。土工原理与计算(第二版)。北京:中国水利水电出版社,1996。
    [36] 刘保健,谢定义。随机荷载下土动力特性测试分析法。北京:人民交通出版社,2001。
    [37] 谢定义。土动力学。西安:西安交通大学出版社,1988。
    [38] 张克绪,谢君雯。土动力学。北京:地震出版社,1989。
    [39] [印度]S.普拉卡什著,徐攸在等译。土动力学。北京:水利电力出版社,1984。
    [40] 王锺琦等。岩土工程测试技术.北京:中国建筑工业出版社,1986。
    [41] 曾春华。关于土在重复荷载下动态特性的综述。见:全国黄土学术会议论文集。新疆科技卫生出版社,1994。
    [42] 党进谦,李靖。非饱和黄土结构强度与抗剪强度。水利学报,2001,(7):
    
    79~83。
    [43] 胡在强,沈珠江,谢定义。非饱和黄土的结构性研究。岩石力学与工程学报,2000,19(6):775~779。
    [44] 谢定义,齐吉琳,张振中。考虑土结构性的本构关系。土木工程学报,2000,33(4):35~40。
    [45] 苗天德,王正贵。考虑微结构失稳的湿陷性黄土变形机理。中国科学(B辑),1990,(1):48~57。
    [46] Pierre Delage, Martine A, Cui Y J etc. Microstructure of compacted silt. Canadian Geotechnical Journal, 1996, 33: 150~158.
    [47] Nagaraj T S, Pandian N S, Narasirnha Raju P S R.Compressibility behavior of soft cemented soil.Geotechnique, 1998, 48(2):281~287.
    [48] 王兰民。黄土地震灾害及减轻技术研究[博士学位论文]。中国地震局工程力学研究所,2002。
    [49] 曾国红,裘以惠。含水量增加时湿陷性黄土变性特性研究。西部探矿工程,1996,8,Supp.:4~6。
    [50] 曾国红,孟宪,裘以惠。关于黄土湿陷起始压力、湿陷起始含水量的探讨[J]。太原工业大学学报,1997,28 Supp.:17~20。
    [51] 闫凤翔。太原东山黄土动静力特性相互关系的试验研究[硕士学位论文]。太原理工大学,2004。
    [52] 何光,朱鸿博。黄土震陷研究。岩土工程学报,1995,12(6):99~103。
    [53] 王兰民,张振中。地震时黄土震陷量的估算方法。自然灾害学报,1993,2(3):85~96。
    [54] 王峻。甘肃省永登地震区黄土的动力特性及其震害分析。西北地震学报,1997,19(增刊):100~103。
    [55] 水利电力部主编。土工试验方法标准GBJ123-88。北京:中国计划出版社,1996。