基于断裂力学的机械零件寿命预测的模糊可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断裂力学是固体力学近代发展的一个分支,它将裂纹作为损伤,建立起描述含裂纹构件的应力应变场的方法,给出了构件的断裂准则和裂纹扩展规律。上个世纪80年代,人们开始将断裂力学理论用于构件的寿命预测,使寿命预测理论得到了迅速的发展,但也遇到了许多有待解决的问题,例如,对缺陷和裂纹的定量描述,目前广泛采用的无损检测技术还不能提供很准确的信息;还没有一套完整的理论描述裂纹扩展行为的不确定性;人们对裂纹扩展行为认识的也不够完善等。
     为了描述裂纹扩展行为的不确定性,人们开始将可靠性理论引入到断裂力学的研究中,用概率模型描述各参数和裂纹扩展行为的随机特性,并取得了一定的成果。然而,随着人们对断裂力学研究的不断深入,发现构件的断裂行为不仅存在随机性,而且还存在着广泛的模糊性,尤其是初始裂纹的确定更是如此,这就促进了模糊概率断裂力学的发展。用随机理论描述不确定性,用模糊理论描述由于人的参与而引起的不精确性,目前,这方面的研究还不多。木文基于现有这方面的研究成果,探讨了将模糊可靠性与断裂力学相结合进行寿命预测的可能性以及一般方法,其主要工作如下:
     (1) 从总体拟合效果出发,利用数值模拟方法,定量的指出了传统确定数据分布函数方法的不足,提出了一种新的用于确定裂纹扩展数据分布类型的方法,这种方法将通过中位秩或平均秩计算得到的概率值模糊化,采用模糊线性凹归技术,比较了7中概率分布类型函数对样本数据的拟合效果,并以2024-T351材料的CT试样的裂纹扩展数据为例,验证了这种方法的有效性。结果表明,一定载荷循环次数下的裂纹扩展尺寸和一定应力强度因子变程下的裂纹扩展速率较好地服从对数正态分布。
     (2) 在现有文献的基础上,深入探讨了加权函数法在确定应力强度因子中的应用。利用曲线拟合有限元分析结果获得了各种长宽比的有限尺寸平板2维直线边缘穿透裂纹和中心穿透裂纹的应力强度因子表达式,并将计算结果与有关文献比较,表明这种方法是行之有效的。
     (3) 总结并发展了有关文献中关于确定初始裂纹尺寸和临界裂纹尺寸模糊随机特性的方法。给出了初始裂纹检测尺寸的隶属函数的确定方法。
     (4) 提出了一种模糊随机加权回归办法,这种方法可以有效地消除试验数据异常点对直线回归的影响,并将其用于裂纹扩展速率曲线的确定中。
     (5) 介绍了随机过程在进行裂纹扩展寿命可靠性分析中的应用,并探讨了模糊随机过程在这方面应用的可行性。
     (6) 利用本文得到的概率裂纹扩展速率曲线和模糊概率裂纹扩展速率曲线,综合各种不确定性因素,通过模糊线性回归,得到模糊概率—裂纹扩展速率—应力强度因子变程曲线,并在此曲线的基础上,提出了一种裂纹扩展寿命模糊可靠性分析方法,并给出了计算公式。扩展了极大似然法在确定裂纹扩展分散特性中的应用。
     模糊概率断裂力学的研究只是刚刚起步,本文仅从上述几个方面对其进行了研究。模糊概率断裂力学理论的发展和完善还需要更多学者的不断努力。
Fracture mechanics is an embranchment of solid meehanies in its recent development. It established a method to describe cracked bodies' fields of stress and strain regarding crack as damage, and it also proposed the fracture criteria of the component and the rules of crack growth. Since the 1980s, researchers have used fracture mechanics to predict component's life, which has made the theory of life prediction develop quickly. However, there are many problems to be solved in the process of using fracture mechanics to predict components' life. For example, the technology of the nondestructive inspection used widely to describe defects of crack quantitatively can not provide enough exact information. There isn't a set of integrated theories to describe stochastic properties of crack growth, and people have not known the crack growth fully, etc.
    To describe the stochastic characters of the crack growth, researchers introduced the theory of the reliability to fracture mechanics and obtained lots of achievements. But, with the development of the research on fracture mechanics, people found that there are two uncertainties in the fracture of the component-both stochastic and fuzzy, especially in the inspection of the initial crack, which promoted the emergence and development of fuzzy probability fracture mechanics. Stochastic theory can be used to describe uncertainty, and fuzzy theory can be used to describe the imprecise property caused by the participation of the people. Currently, there is little research on this. This paper discusses the possibility and the general method of combining the theory of fuzzy reliability with fracture mechanics to predict the life of the component based on the current research achievements.
    (1) From the purpose of fit on whole sample, defect of the traditional method for determining distribution function of data is pointed out through numerical simulation. With the help of the fuzzy linear regression method, a novel method for determining the distribution kinds is proposed, and this method is validated to be effective taking 2024-T351 CT sample's crack growth data as example. One can see from results that crack growth size under the certain load cycles and crack growth rate under the certain stress intensity factor range can be fitted with the log-normal distribution.
    (2) Application of the weight function for determining the stress intensity factor based on the current literature is discussed in detail. Stress intensity factor expressions of 2D edge through crack and center through crack in the finite rectangle plate were obtained. This method are validated to be effective by comparing results with those proposed in other literatures.
    (3) Method for determining the fuzzy stochastic property of the initial crack size and the critical crack size is summarized and developed.
    (4) This paper proposes a novel linear regression with fuzzy weight method, which can eliminate the effect of the abnormal test data on the linear regression and is used to determine crack growth rate curve.
    (5) Application of the stochastic process in the reliability analysis of crack growth life is introduced, as well as the application possibility of the fuzzy stochastic process in this aspect.
    (6) Integrating various stochastic and fuzzy factors and using probability crack growth rate curve and
    
    
    fuzzy probability crack growth rate curve proposed in this paper, a novel method and its formula for analyzing fuzzy reliability of crack life is proposed. The application of the maximum likelihood method for determining the stochastic and fuzzy properties of crack growth.
引文
[1].张祖明.机械零件强度的现代设计方法.北京:航空工业出版社,1990
    [2].高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望.机械强度,1995,17(3):61~80
    [3].孙占全.模糊可靠性研究.硕士学位论文,大连理工大学,2003
    [4].佟欣.基于可能性理论的模糊可靠性设计.硕士学位论文,大连理工大学,2004
    [5].宋保维.系统可靠性设计与分析.西安:西北工业大学出版社.2000
    [6].周源泉,翁朝曦.可靠性评定.北京:科学出版社,1990
    [7].高镇同,熊峻江.疲劳可靠性.北京:北京航空航天大学出版社,2000
    [8].牟致忠.机械可靠性设计.北京:机械工业出版社,1993
    [9].黄洪钟.机械传动可靠性理论与应用.北京:中国科学技术出版社,1995
    [10].杨为民,盛一兴.系统可靠性数字仿真.北京:北京航空航天大学出版社,1990
    [11].郭志坚.可靠性工程技术.机械电子工业部科技司,1992
    [12].董玉革.机械模糊可靠性设计.北京:机械工业出版社.2000
    [13].刘惟信.机械可靠性设计.北京:清华大学出版社,1996
    [14].朱文予.机械概率设计与模糊设计.北京:高等教育出版社,2001
    [15].黄洪钟.对常规可靠性理论的批判性评述——兼论模糊可靠性理论的产生、发展和应用前景.机械设计.1994,11(3).1~5,47
    [16]. Cai K -Y. System failure engineering and fuzzy methodology: an introductory overview. Fuzzy Sets and Systems, 1996, 83(2): 113~133
    [17].黄洪钟.机械模糊可靠性设计.北京:高等教育出版社(待出版)
    [18]. Kaufmann A. Introduction to the Fuzzy Subsets. New York: Academic Press, 1975
    [19].Tanaka H, Fan L T, Lai F S, Toguchi K. Fault-tree analysis by fuzzy probability. IEEE Transactions on Reliability 1983, 32(5): 453~457
    [20]. Kandel A, Byatt W J. Fuzzy processes. Fuzzy Sets and Systems, 1980, 4(2): 117~152
    [21]. Li Bing, Zhu Meilin, Xu Kai. A practical engineering method for fuzzy reliability analysis of mechanical structures. Reliability Engineering and System Safety, 2000, 67(3): 311~315
    [22]. Jiang Qimi, Chen Chun-Hsien. A numerical algorithm of fuzzy reliability. Reliability Engineering and System Safety, 2003, 80(3): 299~307
    [23].赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996
    [24].董安正,赵国藩.建筑结构模糊可靠度置信区间的确定方法.建筑结构学报,2003,24(2):83~85
    [25].黄洪钟.关于模糊可靠性若干问题的讨论(一)——将清晰工作时间拓广到模糊工作时间.机械科学与技术,1993,9(4):1~8
    [26].凌树森.可靠性在机械强度设计和寿命估计中的应用.北京:宇航出版社,1988
    [27].徐灏.概率疲劳.沈阳:东北大学出版社,1994
    [28].赵少汴,王忠保.抗疲劳设计—方法与数据.北京:机械工业出版社,1997
    [29].刘文珽,郑旻仲,费斌军等.概率断裂力学与概率损伤容限/耐久性.北京:北京航空航天大学出版社.2000
    [30].石来德.机械的优先寿命设计和试验.上海:同济大学出版社,1992
    
    
    [31].余天庆,钱济成.损伤理论及应用.北京:国防工业出版社.1993
    [32].楼志文.损伤力学基础.西安交通大学出版社,1991
    [33].谢里阳,于凡.疲劳损伤临界值分析.应用力学学报,1994.11(3):57~60
    [34]. Kornel. K, Laszlo D. Fracture mechanics based fatigue analysis of steel bridge decks by two-level ctacked models. Computer and Structures, 2002, 80(27~30): 2321~2331
    [35]. Ostash O P, Panasyuk V V. A unified approach to fatigue macrocrack initiation and propagation. Int J fatigue, 2003, 25(8):703~708
    [36]. Scott C. F, James C. N, Royce G. F. On generating fatigue crack growth thresholds. Int J fatigue, 2003, 25(1): 9~15
    [37]. Miranda A C O, Meggiolaro M A, Castro J T P. Fatigue life and crack path predictions in generic 2D structural components. Engng Frac Mech, 2003, 70(10): 1259~1279
    [38].杨清文.提升机主轴抗断裂疲劳寿命可靠性预测与设计.煤矿机械,1996(6):5~7
    [39].程文明,王金诺.桥门式起重机疲劳裂纹扩展寿命的模拟估算.起重运输机械,2001(2):1~4
    [40].熊峻江,可靠性设计中的疲劳裂纹扩展随机模型.应用力学学报,1998,15(4):82~86
    [41].熊峻江,刘文珽,高镇同.疲劳裂纹扩展速率试验数据的可靠性分析模型.强度于环境,1997(4):6~10
    [42].金星,钟群鹏,洪延姬.熊飞龙.随机疲劳裂纹扩展新模型.力学学报,2000,32(3):300~307
    [43].吕海波,姚卫星.结构元件疲劳裂纹可靠性估算方法.力学进展,2000,30(4):538~545
    [44].张钰,王丹,张风和,孙志礼,丁津原.一种新的疲劳可靠寿命计算方法.东北大学学报,2000,21(1):42~45
    [45].张钰,王丹,孙志礼,丁津原.截尾分布的应力寿命模型.东北大学学报,2000,21(1):165~169
    [46].邹嵘,倪侃,张圣坤.用模糊 Bayes法确定疲劳寿命分布.中国海洋平台,2001,16(1):4~8
    [47].邹嵘,倪侃,张圣坤.疲劳寿命的随机-模糊估计方法.船舶力学,2001,5(5):43~49
    [48].王优强,韩翠花.连续油管模糊可靠性寿命的预测.青岛建筑工程学院学报,2001,22(2):42~46
    [49].陶峰,欧眼祖行,刘正埙.用模糊综合评判法评估薄壁容器的寿命.南京航空航天大学学报,2000,32(3):299~304
    [50].付丽强,林桐,吴维青.神经网络在材料低周疲劳寿命预测中的应用.福州大学学报,2001,29(5):57~60
    [51].吕文阁,谢里阳,徐灏.随机强度退化过程.广东工业大学学报,2001,18(2):9~14
    [52].邓扬晨,章怡宁,郦正能.近似函数用于疲劳寿命曲线的数学建.航空学报,2001,22(4):351~354
    [53]. Lambert Ronald G. Mechanical durability predication methods. IEEE 1989 Proceeding Annual Reliability Maintainability Symposium, 1989, 119~127
    [54]. Wang J H. Equipment life estimation using fuzzy set theory. Amsterdam: Elsevier, 1989:197~211
    [55].杨广里等.断裂力学及应用.北京:中国铁道出版社,1990
    [56].曾春华,邹十践.疲劳分析方法及应用.北京:国防工业出版社.1991
    [57].Suresh S著,王光中译.材料的疲劳.北京:国防工业出版社,1993
    [58]. IbsΦ J B, Agerskov H. A analytical model for fatigue life prediction based on fracture mechanics
    
    and crack closure.J Construct Steel Research, 1996, 37(3): 229~261
    [59].刘爱学等.一种基于语言变量的MCDM问题的决策方法.系统工程.2001.19(5):28~32
    [60]. Hwang C J. Fixed-time life test using the fuzzy.theory. Proceedings of 3rd IEEE Conference on Fuzzy Systems, 1994:2025~2030
    [61]. Kyung S P. Fnzzy Weighted-checklist with linguistic variables. IEEE Transaction on Reliability. 1990, 39(3): 389~393
    [62]. Akihiro Kanagawa. Fuzzy design for fixed-number life tests. IEEE Transaction on Reliability, 1990, 39(3): 394~398
    [63]. Akihiro Kanagawa. Fixed-timed life tests based on fuzzy life characteristics. IEEE Transaction on Reliability, 1992, 41(2): 317~320
    [64].秦英孝,徐维新.可靠性数学基础.北京:电子工业出版社,1988
    [65]. Ng S W, Lau K J. A new weight function expression for through cracks. Engng Fract Mech, 1999, 64(3): 515~537
    [66]. Wu X R. Approximate weight function for center and edge cracks in finite bodies. Engng Frac Mech., 1984: 20:35~49
    [67]. Petroski N J, Achenbach J D. Computation of the weight function from a stress intensity factor. Engng Frac Mech., 1978, 10(3): 257~266
    [68]. Paris P C, McMeeking R M. Efficient finite element methods for stress intensity factors using weight function. Int J Fract., 1975, 11(5): 354~358.
    [69]. Paris P C, McMecking R M, Tada H. The weight function method for determining stress intensity factors. In: Cracks and Fracture, ASTM STP 601, American Society for Testing and Material, 1976, 471~489
    [70]. Vanderglas M L. A stiffness derivative finite element technique for determination of influence function. Int J Fract., 1978, 14(4): 291~295
    [71]. Ferahi M, Meguid S A. A novel approach for evaluating weight functions for cracks in finite bodies. Engng Fract Mech, 1998, 59(3): 343~352
    [72]. Zheng X J, Glinka G, Dubey R N. Stress intensity factors and weight functions for a corner crack in a finite thickness plate. Engng Fract Mech, 1996, 54(1): 49~61
    [73]. Fett T, Mattheck C, Munz D. On the calculation of crack opening displacement from the stress intensity factors. Engng Fract Mech., 1987, 27(6): 697~715
    [74]. Ojdrovic R P, Petroski H J. Weight functions from multiple reference states and crack profile derivatives. Engng Fract Mech., 1991,39(1): 105~111