铝内胆纤维全缠绕高压氢气瓶耐火及抗疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能作为二次能源以其资源丰富、燃烧值高、经济性好、可再生等优点被认为是21世纪最具发展潜力的清洁能源。其在轿车、客车、摩托车和商业船等交通工具上的应用已经成为焦点,对解决国际上所面临的“能源短缺”和“环境污染”这两大难题具有重要意义。
     在氢能利用系统中,安全有效的储氢方法是关键。铝内胆纤维全缠绕高压氢气瓶具有承压能力高、质量轻、耐腐蚀性强等优良性能,成为当前车用储氢气瓶的首选。由于车用铝内胆纤维全缠绕高压氢气瓶的储存介质为易燃易爆的氢气,其安全性能是氢燃料电池汽车暂未被公众广泛接受的关键因素之一。
     为了加速我国车用铝内胆纤维全缠绕高压氢气瓶的发展和应用,本文在国家重点基础研究发展计划(“973”计划)课题“高密度车载储氢新体系及其安全性预测理论研究”(项目编号:2007CB209706)和国家质量监督检验检疫总局公益性行业科研专项经费项目“车用纤维缠绕高压氢气瓶标准基础研究”(项目编号:10-131)的支持下,对车用铝内胆纤维全缠绕高压氢气瓶的耐火和抗疲劳性能进行了研究。本文的主要研究内容和取得的创新成果为:
     (1)对车用铝内胆纤维全缠绕高压氢气瓶进行了火烧试验研究,获得了气瓶外表面温度分布及气瓶内部压力变化的相关数据。试验数据为进一步系统地研究铝内胆纤维全缠绕高压氢气瓶的耐火性能奠定了基础。
     (2)建立了火烧试验全过程模型,通过与试验结果的比较,验证了该传热模型的准确性。然后利用该模型进行模拟研究,揭示了燃料种类、燃料流量、气瓶充装介质以及充装压力等因素对气瓶内气体温升的影响规律。针对74L、40MPa储氢气瓶火烧试验中燃料种类及相应燃料流量的选择,提出以下建议:当使用甲烷气体为燃料时,其流量需要达到400 NL/min以上,而使用丙烷气体为燃料时,其流量需达到150NL/min以上。此外,研究结果表明气瓶内充装介质对PRD打开前气瓶内气体温升及压力升高的影响非常小,因此认为可使用空气代替氢气作为气瓶的充装介质进行火烧试验,此建议已经被《氢燃料电池汽车全球技术法规》(HFCV-GTR)所采纳。
     (3)针对气瓶PRD打开后高压氢气泄放的过程,建立了仿真模型,对氢气高压泄放形成的喷射流场的特性进行了研究,结果表明高压氢气泄放时形成了欠膨胀喷射流。在此基础上建立了氢气高压喷射火焰的计算模型,对喷射火焰的危害距离进行了研究,提出了敞开空间气瓶火烧试验时的安全距离。研究了不同类型挡板对氢气高压泄放和喷射火焰的影响规律,并初步提出了有限空间高压氢气泄放及喷射火焰的防范措施。
     (4)对自行研制的车用铝内胆纤维全缠绕高压氢气瓶进行了常温压力循环试验和极端温度压力循环试验。以连续损伤力学理论为基础,推导出氢气瓶疲劳寿命计算式,并利用有限元方法对气瓶直筒段的应力分布进行了模拟。最后结合应力分析结果与疲劳寿命计算式对气瓶的疲劳寿命进行预测,通过对比预测结果与试验结果,证明了所建立的车用铝内胆纤维全缠绕高压氢气瓶疲劳寿命预测方法的合理性。
As a secondary energy, hydrogen is considered to be the most development potential energy carrier in the 21st century because of its excellent properties such as high conversion efficiency, clean combustion product, low storage cost and renewable, etc.. Its applications in cars, trucks, buses, taxis, motorcycles and commercial ships have become the focus of many hydrogen energy research institutions. Hydrogen is a good choice to solve the two problems of the international community, which are "energy shortage"and "environmental pollution".
     Safe and efficient storage technique has become bottleneck of the further application of hydrogen energy. Nowadays, fully wrapped fiber reinforced high-pressure hydrogen vessel is excellent in high-pressure-resistant ability, light weight and corrosion resistance. It has currently become the preferred container for hydrogen storage in vehicles. The medium within the vessel is hydrogen which is flammable and explosive, and the safety performances of hydrogen storage vessels have become one of the most important factors for that hydrogen fuel cell vehicles are not yet widely accepted by the public.
     In order to accelerate the development and application of on board fully wrapped fiber reinforced Al-lined high-pressure hydrogen vessel in our country, researches on fire resistance and fatigue performance of fully wrapped fiber reinforced high-pressure hydrogen vessels are conducted in this paper. This research is supported by the key project of national programs for fundamental research and development of China (973 program, Number:2007CB209706) and the nonprofit industry research project of General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (Number:10-131). The main contents and conclusions of this paper are as follows:
     (1) In order to verify the safety performance of fully wrapped fiber reinforced Al-lined high-pressure hydrogen vessels under fire conditions, bonfire test was carried out. The temperature distribution on the outer surface of the tested vessel and the rising of the pressure of hydrogen were obtained in the bonfire experiment. The experimental data provide support for the further systematic studies on the bonfire test methods of fully wrapped fiber reinforced high-pressure hydrogen vessels.
     (2) A 3D numerical model was established to simulate the heat transfer process of vessel wall during bonfire with the CFD software FLUENT. It is revealed that the temperature inside the vessel was far lower than the temperature at the vavle when the PRD was activated. Then a 3D numerical model for simulating the process of the bonfire test was developed based on the heat transfer model. The accuracy of the model was verified by the comparison between the experimental and simulation results. The model was employed to analyze the influences of test parameters on the temperature rising, such as fuel type, fuel flow, filling medium and filling pressure. Some proposals were presented on the basis of the simulation results. For the 74L,40MPa fully wrapped fiber reinforced Al-lined high-pressure hydrogen vessel, the flow should be larger than 400 NL/min if methane gas is used as fuel or larger than 150 NL/min when propane gas is applied. And the results show that the filling medium has little influence on the rising of temperature and pressure. So it is firstly proposed that air is suitable and acceptable to instead of hydrogen to pressure the vessel in bonfire test. The proposal has been accepted by " Hydrogen Fuel Cell Vehicle-Global Technical Regulations"(HFCV-GTR) and other relevant international standards (draft).
     (3) In order to study the high-pressure hydrogen jet flow, a 3D numerical model was established based on the species transfer model and SSTκ-ωturbulence model. It is revealed that under-expanded jets were formed after the high-pressure hydrogen discharging from the vessel. Then the mathematical methods were adopted to study the high-pressure hydrogen jet flames. The damage region of hydrogen jet flames were analysed and the safety distances for bonfire test of hydrogen storage vessels in open space were put forward. The effects of barrier walls on the distribution of jet flames were also studied. The results show that the barrier walls can greatly reduce the damage from hydrogen jet flames to testers and properties around. Based on the simulation results, precautions of hydrogen jet flames in limited space were proposed.
     (4) The ambient temperature pressure cycling test and extreme temperature pressure cycling test for fully wrapped fiber reinforced Al-lined high-pressure hydrogen vessels were carried out. According to the continuum damage mechanics (CDM) theory, a fatigue evaluation model was established. The stress of the vessel was simulated by finite element method. The fatigue lifetime can be predicted combining the fatigue evaluation model and the finite element method. By the comparison of the predicted fatigue lifetime and the experimental results, the proposed fatigue lifetime evaluation method is proved to be rational.
引文
[1]毛宗强.关注氢能源——21世纪最具发展潜力的能源[J].科技中国.2004(11):28-33.
    [2]Kennedy D. The hydrogen solution[J].2004,305:917.
    [3]毛宗强.氢能离我们还有多远——我国燃料电池现状、差距及对策[J].电源技术.2003,27(S1):179-182.
    [4]Llc T. California Hydrogen Fueling Station Guide lines[R]. Consultant Report for the California Energy Commission,1999.
    [5]California Releases Hydrogen Highway Network Blueprint[J]. Fuel Cell Bulletin. 2005.
    [6]毛宗强.无限的氢能——未来的能源[J].自然杂志.2006,28(1):14-18.
    [7]李平,谌海霞.现代汽车环保与节能技术的发展[J].公路与汽运.2006(2):5-7.
    [8]毛宗强.氢能,最理想的车用能源[J].绿叶.2009(6):80-85.
    [9]毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2005.
    [10]中国国家发展计划委员会基础产业发展司.中国新能源与可再生能源1999白皮书[R].北京:中国计划出版社,2000.
    [11]毛宗强.我国发展氢能的战略建议——从“浅绿”到“深绿”(上)[J].太阳能.2009(1):6-8.
    [12]毛宗强.我国发展氢能的战略建议——从“浅绿”到“深绿”(下)[J].太阳能.2009(2):6-9.
    [13]Andreas Z. Materials for hydrogen storage[J]. Materials Today.2003(6):24-33.
    [14]Appleby A. Fuel cell and hydrogen fuel[J]. International Journal of Hydrogen Energy. 1994,19(2):175-180.
    [15]Schlapbach L, Zuttel A. Hydrogen-storage Materials for Mobile Applications[J]. Nature.2001,414:353-358.
    [16]詹亮,李开喜,朱星朋,等.超级活性炭储氢性能研究[J].材料科学与工程.2002, 20(1):31-34.
    [17]Scherer G W H, Newson E. Analysis of the Seasonal Energy Storage of Hydrogen in Liquid Organic Hydrides[J]. International Journal of Hydrogen Energy.1998,23(1): 19-25.
    [18]Scherer G W H, Newson E, Wokaun A. Economic Analysis of the Seasonal Storage of Electricity with Liquid Organic Hydrides[J]. International Journal of Hydrogen Energy.1999,24(12):1157-1169.
    [19]郑津洋,开方明,刘仲强,等.高压氢气储运设备及其风险评价[J].太阳能学报.2006,27(11):1168-1174.
    [20]ISO 11439:Gas cylinders-High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles[S].2000.
    [21]Tero H. Technical Review and Economic Aspects of Hydrogen Storage Technologies[D]. Helsinki University of Technology,2001.
    [22]Sirosh N. Hydrogen Composite Tank Program[C]. Colorado:2002.
    [23]Fuel Cell Bulletin[C].2002.
    [24]webpage of Dynetek Industries Ltd.[Z].
    [25]袁成.本田公司的FCX-V4型氢燃料电池车[J].城市公用事业.2002(16):40-42.
    [26]傅强.轻质高压储氢容器整体优化设计[D].浙江大学,2004.
    [27]刘鹏飞,开方明,郑津洋.70MPa车用轻质高压储氢容器自增强过程理论建模[J].武汉理工大学学报.2006(28):350-354.
    [28]Zheng JY, Liu PF. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber epoxy composite cylindercal laminates[J]. Computational Materials Science.2008,42(3):453-461.
    [29]Liu YL, Zheng JY, Xu P, et al. Numerical simulation on fast filling of hydrogen for composite storage cylinders[J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP.2008(1):473-479.
    [30]Bie HY, Xu P, Zheng JY, et al. Influence of stress ratio on the reliability of Al/Carbon-fiber composite hydrogen tanks[J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP.2009(1):503-508.
    [31]Schulz R, Huot J. Liang G, et al. Recent developments in the applications of nanocrystalline materials to hydrogen technologies[J]. Materials Science and Engineering A.1999,267(2):240-245.
    [32]DOT-CFFC:Basic requirements for fully wrapped carbon-fiber reinforced aluminum lined cylinders[S].2007.
    [33]EN 12245:Transportable gas cylinders-Fully wrapped composite cylinders[S]. 2002.
    [34]ISO/TS 15869:Gaseous hydrogen and hydrogen blends-Land vehicle fuel tanks[S]. 2009.
    [35]JIGA-T-S压缩水素运送自动车用容器の技术基准[S].2004.
    [36]CGH2R Draft Revision 12b, Hydrogen Vehicles:On-board Storage Systems Draft ECE Compressed Gaseous Hydrogen Regulation [S].2003.
    [37]SAE J2579, Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles[S].2008.
    [38]HFCV-GTR, Globe Technical Report for Hydrogen Fuel Cell Vehicles (draft)[S].
    [39]Dale B, Tiller P. Development of an integrated storage system for a mid-size automobile[R]. Cologne, Germany, NGV,1998.
    [40]Tamura Y, Kakihara K, Iijima T, et al. Survey of the bonfire testing method of high pressure hydrogen gas cylinders (Phase 1)-A comparison of the testing labs results of the bonfire tests[J]. JARI Research Journal.2004,26(6):299-302.
    [41]Tamura Y, Suzuki J, Watanabe S. Survey of the bonfire testing method using high-pressure hydrogen gas cylinders:Part 2-Effect of flame scales and fuels for fire source[J]. JARI Research Journal.2005,27(7):331-334.
    [42]Tamura Y. Bonfire Test of Automotive Hydrogen Gas Cylinders with High Reliability and accuracy [C]自动车技术会学术讲演会前刷集,2005.
    [43]Zalosh R, Weyandt N. Hydrogen fuel tank fire exposure burst test[C]. SAE paper 2005-01-1886,2005.
    [44]Zalosh R. Blast waves and fireballs generated by hydrogen fuel tank rupture during fire exposure[C]. Edinburgh, UK:2007.
    [45]Tamura Y. Evaluation of the High-Pressure Hydrogen Gas Cylinders in Simulated FCEV Fires[J]自动车研究2002,24(10):443-446.
    [46]Kennerly H, Digges R. Research in Fire Safety for Hydrogen-fueled vehicles[J].
    [47]Stephenson R R. Fire Safety of Hydrogen-Fueled Vehicles:System-Level Bonfire Test[Z].Piza Italy:2005.
    [48]Stephenson R R. Crash-Induced Fire Safety Issues with Hydrogen-Fueled Vehicles[R]. National Hydrogen Association,2003.
    [49]Stephenson R R. Proposed Vehicle-Level bonfire Test for Hydrogen-Fueled Vehicles[R]. National Hydrogen Association,2005.
    [50]Safety T. Hydrogen Vehicle Fuel Systems-Localized Fire Protection Considerations Milestone 4:Cylinder Test Validation Report[R].,2008.
    [51]Tamura Y, Suzuki J, Watanabe S. Experimental and simulation study on bonfire test for automotive hydrogen gas cylinders[J]. Transaction of Society of Automotive Engineers of Japan.2005,36(6):39-44.
    [52]Tamura Y, Suzuki J, Watanabe S. CFD Analysis of Fire Testing of Automotive Hydrogen Gas Cylinders with Substitutive Gases[J]. SAE transactions.2005,114(6): 2344-2357.
    [53]Hu J, Chen J, Sundararaman S, et al. Analysis of composite hydrogen storage cylinders subjected to localized flame impingements[J]. International Journal of Hydrogen Energy.2008,33(11):2738-2746.
    [54]Adamson K, Pearson P. Hydrogen and methanol:a comparison of safety, economics, efficiencies and emissions[J]. Journal of Power Sources.2000,86(1-2):548-555.
    [55]Rosyid O A, Jablonski D, Hauptmanns U. Risk analysis for the infrastructure of a hydrogen economy[J]. International Journal of Hydrogen Energy.2007,32(15): 3194-3200.
    [56]刘延雷,郑津洋,赵永志,等.障碍物对管道天然气泄漏扩散影响的数值模拟[J].石油化工高等学校学报.2007,20(4):81-84.
    [57]Venetsanos A G, Baraldi D, Adams P, et al. CFD modelling of hydrogen release,dispersion and combustion for automotive scenarios[J]. Journal of loss provetion in the process industries.2008,21(2):162-184.
    [58]Sato Y, Iwabuchi H, Groethe M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources.2006,159(1):144-148.
    [59]Middha P, Hansen O R, Storvik I E. Validation of CFD-model for Hydrogen Dispersion[Z]. Gyeongju, Korea:2007.
    [60]Takeno K, Okabayashi K, Kouchi A, et al. Dispersion and explosion field tests for 40MPa pressurized hydrogen[J]. International Journal of Hydrogen Energy.2007, 32(13):2144-2153.
    [61]Swain M R. Hydrogen leakage into simple geometric enclosures[J]. International Journal of Hydrogen Energy.2003,28:229-248.
    [62]Swain M R, Grdhot E S, Swain M N. Experimental verification of a hydrogen risk assessment method[J]. Chemical Health & Safety.1999(29):28-32.
    [63]Shirvill L, Roberts P, Butler C, et al. Characterisation of the hazards from jet releases of hydrogen[Z]. Italy:2005.
    [64]Granovskiy E, Lyfar V, Skob Y, et al. Numerical modelling of hydrogen release, mixture and dispersion in atmosphere[Z]. Spain:2007.
    [65]Rigas F, Sklavounos S. Evaluation of hazard associated with hydrogen storage facilities[J]. International Journal of Hydrogen Energy.2005(30):1501-1510.
    [66]Schmidt D, Krause U, Schmidtchen U. Numerical simulation of hydrogen gas release betwen buildings[J]. International Journal of Hydrogen Energy.1999,24:479-488.
    [67]Olvera A, Choudhuri A. Numerical simulation simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres[J]. International Journal of Hydrogen Energy.2006,31(15):2356-2369.
    [68]Wilkening H, Baraldi D. CFD modelling of accidental hydrogen release from pipelines[J]. International Journal of Hydrogen Energy.2007,32(13):2206-2215.
    [69]Liu YL, Zheng JY, Xu P, et al. Numerical simulation on the diffusion of hydrogen due to high pressured storage tanks failure[J]. Journal of Loss Prevention in the Process Industry.2009,22(3):265-270.
    [70]刘延雷,郑津洋,徐平,等.环境温度对高压储氢罐泄漏扩散影响的数值模拟[J].工程热物理学报.2008,29(5):770-772.
    [71]郑津洋,刘延雷,徐平,等.障碍物对高压储氢罐泄漏扩散影响的数值模拟[J].浙江大学学报工学版.2008,42(12):2177-2180.
    [72]刘延雷,徐平,郑津洋,等.管道输运高压氢气与天然气的泄漏扩散数值模拟[J].太阳能学报.2008,29(10):1250-1253.
    [73]刘延雷,郑津洋.高压氢气泄漏扩散数值模拟[J].工厂动力.2007(4):34-38.
    [74]徐平,刘鹏飞,刘延雷,等.高压储氢罐不同位置泄漏扩散的数值模拟研究[J].高校化学工程学报.2008,29(12):921-926.
    [75]别海燕,刘延雷,郑津洋,等.环境风速对高压储氢罐泄漏扩散影响的数值模拟与分析[C].上海:2007.
    [76]Hottel H C, Cohen E S. Radiant heat exchange in a gas-filled enclosure:Allowance for nonuniformity of gas temperature[J]. AIChE Journal.1958,4(1):3-14.
    [77]Hottel H C. Hawthorne W R. Diffusion in laminar flame jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena.1949,3(1):254-266.
    [78]Williams G C, Hottel H C, Scurlock A C. Flame stabilization and propagation in high velocity gas streams[J]. Symposium on Combustion and Flame, and Explosion Phenomena.1949,3(1):21-40.
    [79]Hawthorne W R, Weddell D S, Hottel H C. Mixing and combustion in turbulent gas jets [J]. Symposium on Combustion and Flame, and Explosion Phenomena.1949,3(1): 266-288.
    [80]Wohl K, Collaborators. On the structure of turbulent flames[J]. Symposium (International) on Combustion.1957,6(1):333-340.
    [81]Child E T, Wohl K. Spectrophotometric studies of laminar flames—Ⅰ the decay of radical radiation [J]. Symposium (International) on Combustion.1958,7(1):215-220.
    [82]Kushida R, Wohl K. Spectrophotometric studies of laminar flames-II the flame front [J]. Symposium (International) on Combustion.1958,7(1):221-228.
    [83]Becker H A, Liang D. Visible length of vertical free turbulent diffusion flames [J]. Combustion and Flame.1978,32:115-137.
    [84]Becker H A, Liang D, Downey C I. Effect of burner orientation and ambient airflow on geometry of turbulent free difussion flames [J]. Symposium (International) on Combustion.1981,18(1):1061-1071.
    [85]Becker H A, Liang D. Total emission of soot and thermal radiation by free turbulent diffusion flames[J]. Combustion and Flame.1982,44(1-3):305-318.
    [86]Becker H A, Liang D. Soot emission, thermal radiation, and laminar instability of acetylene diffusion flames[J]. Combustion and Flame.1983,52:247-256.
    [87]Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships [J]. Combustion and Flame.1993, 92(4):349-364.
    [88]Blake T R, Mcdonald M. Similitude and the interpretation of turbulent diffusion flames[J]. Combustion and Flame.1995,101(1-2):175-184.
    [89]Blake T R. Cote J B. Mass entrainment, momentum flux, and length of buoyant turbulent gas diffusion flames [J]. Combustion and Flame.1999.117(3):589-599.
    [90]Schefer R W, Houf W G, Williams T C. Investigation of small-scale unintended releases of hydrogen:Buoyancy effects[J]. International Journal of Hydrogen Energy. 2008,33:4702-4712.
    [91]Schefer R W, Houf W G, Williams T C. Investigation of small-scale unintended releases of hydrogen:momentum-dominated regime[J]. International Journal of Hydrogen Energy.2008,33:6373-6384.
    [92]Schefer R, Groethe M, Houf W, et al. Experimental evaluation of barrier walls for risk reduction of unintended hydrogen releases[Z]. Brisbane.Australia:2008.
    [93]Houf W G, Evans G H, Schefer R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy.2009, 34(14):5961-5969.
    [94]Schefer R, Houf W, Bourne B, et al. Experimental measurements to characterize the thermal and radiation properties of an open flame hydrogen plume[Z]. Los Angeles, CA.:2004.
    [95]Houf W, Schefer R. Analytical and experimental investigation of small-scale unintended releases of hydrogen [J]. International Journal of Hydrogen Energy.2008, 33(4):1435-1444.
    [96]Schefer R W, Houf W G, Marchi C S, et al. Characterization of leaks from compressed hydrogen dispensing systems and related components[J]. International Journal of Hydrogen Energy.2006,31(9):1247-1260.
    [97]Schefer R W, Houf W G, Williams T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Int J Hydrogen Energy.2007, 32(12):2081-2093.
    [98]Studer E, Jamois D, Jallais S, et al. Properties of large-scale methane/hydrogen jet fires[J]. International Journal of Hydrogen Energy.2009,34(23):9611-9619.
    [99]Sato Y, Iwabuchi H, Groethe M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources.2006,159:144-148.
    [100]Houf W, Schefer R, Evans G, et al. Evaluation of barrier walls for mitigation of unintended releases of hydrogen[J]. International Journal of Hydrogen Energy.2010, 35(10):4758-4775.
    [101]Schefer R W, Houf W G, Bourne B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy.2006, 31(10):1332-1340.
    [102]Branley N, Jones W P. Large Eddy Simulation of a Turbulent Non-premixed Flame[J]. Combustion and flame.2001,127(1-2):1914-1934.
    [103]Liu Y, Sato H, Tsuboi N, et al. Direct Numerical Simulation on Hydrogen Fuel Jetting from High Pressure Tank[J]. Sci Technol Energ Mater.2006,67(1):7-11.
    [104]Galletti C, Lenzi M, Parente A, et al. Numerical Modeling of Hydrogen Diffusion Jet Flame:the Role of the Combustion Model[Z]. Italy.
    [105]毛宗强.通向氢能经济的桥梁——从”浅氢”到”全氢”[J].武汉理工大学学报.2006,28(z1):6-10.
    [106]Liu PF, Zheng JY. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics[J]. Materials Science and Engineering A.2008,485(1-2):711-717.
    [107]Xu P, Zheng JY, Liu PF. Finite element analysis of burst pressure of composite hydrogen storage vessels[J]. Materials & Design.2009,30(7):2295-2301.
    [108]Tamura M, Shibata K. Evaluation of mechanical properties of metals at 45 MPa hydrogen[J]. Journal of the Japan Institute of Metals.2005,69(12):1039-1048.
    [109]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,1989.
    [110]王栓柱.金属疲劳[M].福建:福建科学技术出版社,1985.
    [111]Paris P. Fatigue[J]. An Interdisciplinary Approach.1964:107-118.
    [112]Garrett G, Knott J. On the influence of fracture mechanisms on fatigue crack propagation in aluminum alloys[J]. Metallurgical and Materials Transactions A.1975, 6A(8):1663-1665.
    [113]Paris P. Fracture mechanics and fatigue:a historical perspective[J]. Fatigue & Fracture of Engineering Materials & Structures.1998,21(5):535-540.
    [114]Gurson A. Continuum theory of ductile rupture by void nucleation and growth:Part Ⅰ yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology.1977,99(1):2-15.
    [115]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of Mechanics and Physics of Solids.1984,32(6):461-490.
    [116]Tvergaard V, Needleman A. Analysis of cup-cone fracture in a round tensile bar[J]. Acta Metallica.1984,32(1):157-169.
    [117]Kachanov L. Time of the rupture process under creep conditions[J]. IVZ Akad. Nauk S.S.R. Otd Tech Nauk.1958(8):26-31.
    [118]Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology.1985,107(1):83-89.
    [119]Lemaitre J. A Course on Damage Mechanics[M]. New York:Springer,1992.
    [120]沈为.复合材料损伤-破坏机制与模型[J].力学与实践.1991,13(3).
    [121]塔尔瑞加瑞麦施.复合材料疲劳[Z].北京:航空工业出版社,1990.
    [122]Maimi P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates:Part Ⅰ-Constitutive model[J]. Mechanics of Materials.2007, 39(10):897-908.
    [123]Smith B W. Fractography for Continuous Fiber Composites[J]. Engineered Materials Handbook.1987,1:787-793.
    [124]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [125]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [126]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991.
    [127]Perrone N, Kao R. A general finite difference method for arbitrary meshes[J]. Computers & Structures.1975,5(1):45-58.
    [128]Jensen P S. Finite difference technique for variable grids[J]. Computers & Structures. 1972,2(1-2):17-29.
    [129]Wyatt M J, Davies G, Snell C. A new difference based finite element method[J].59. 1975,3(395-409).
    [130]Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers & Structures.1982,11(1-2):83-95.
    [131]Wang Y, Lan X. Higher-order monotone iterative methods for finite difference systems of nonlinear reaction-diffusion-convection equations[J]. Applied Numerical Mathematics.2009,59(10):2677-2693.
    [132]Wang Y, Zhang H. Higher-order compact finite difference method for systems of reaction-diffusion equations [J]. Journal of Computational and Applied Mathematics. 2009,233(2):502-518.
    [133]Ma Y, Ge Y. A high order finite difference method with Richardsonextrapolation for 3D convection diffusion equation [J]. Applied Mathematics and Computation.2010, 215(9):3408-3417.
    [134]Mattsson K, Nordstrom J. High order finite difference methods for wave propagation in discontinuous media[J]. Journal of Computational Physics.2006,220(1):249-269.
    [135]Dehghan M, Taleei A. A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients[J]. Computer Physics Communications.2010,181(1):43-51.
    [136]Weideman J A C, Herbst B M. Split-step methods for the solution of the nonlinear Schrodinger equation[J]. SIAM Journal on Numerical Analysis.1986,23(3):485-507.
    [137]Wang H. Numerical studies on the split-step finite difference method for nonlinear Schrodinger equations[J]. Applied Mathematics and Computation.2005,170(1): 17-35.
    [138]晏飞,戴德海,朱智春.纤维缠绕压力容器结构有限元分析技术[J].上海航天.2003,20(6):33-36.
    [139]Balya B. Design and Analysis of Filament Wound Composite Tubes[D]. Middle East Technical University,2004.
    [140]岳中第,马宁,刘彬.基于ISO11439标准及Ansys平台的CNG气瓶有限元应力分析[J].航空制造技术.2002:1-9.
    [141]Park J S, Hong C S, Kim C G, et al. Analysis of filament wound composite structures considering the change of winding angles through the thickness direction[J]. Composite Structures.2002,55(1):63-71.
    [142]杨福全,长天平,刘志栋,等.复合材料气瓶有限元建模与屈曲分析[J].真空与低温.2005,11(1):40-45.
    [143]Mohammad Z K. Finite element analysis of composite pressure vessels with a load sharing metallic liner[J]. Composite Structure.2000,49(3):247-255.
    [144]Gao J L, Wang X C, Li Z X. Mechanical Behaviour of Aluminum-Liner CNG Cylinder Full-Wrapped with Fiber-glass [J].2003:117-120.
    [145]郭志峰,郭丽敏,肖文刚,等.受内压复合材料压力容器应力状态数值模拟[C].2003.
    [146]Coelho P J. A hybrid finite volume/finite element discretization method for the solution of the radiative heat transfer equation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer.2005,93(1-3):89-101.
    [147]Nogueira X, Cueto-Felgueroso L, Colominas I, et al. Implicit Large Eddy Simulation of non-wall-bounded turbulent flows based on the multiscale properties of a high-order finite volume method[J]. Computer Methods in Applied Mechanics and Engineering.2010,199(9-12):615-624.
    [148]Soulis J V. Finite volume method for three-dimensional transonic potential flow through turbomachinery blade rows[J]. International Journal of Heat and Fluid Flow. 1983,4(2):85-96.
    [149]李磊.加氢站高压氢系统工艺参数研究[D].杭州:浙江大学,2007.
    [150]Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships [J]. Combustion and Flame.1993, 92(4):349-364.
    [151]苏长荪.高等工程热力学[M].北京:高等教育出版社,1987.
    [152]Chen H, Zheng J, Xu P, et al. Study on real-gas equations of high pressure hydrogen[J]. International Journal of Hydrogen Energy.2010,35(7):3100-3104.
    [153]Sivathanu Y R, Gore J P. Total radiative heat loss in jet flames from single point radiative flux measurements [J]. Combustion and Flame.1993,94(3):265-270.
    [154]Turns S R, Myhr F H. Oxides of nitrogen emissions from turbulent jet flames:Part I —Fuel effects and flame radiation[J]. Combustion and Flame.1991,87(3-4):319-335.
    [155]International Code Council I. International Fire Code[S].2006.
    [156]开方明.铝内衬轻质高压储氢容器强度和可靠性研究[D].浙江大学,2007.