小样本条件下风电齿轮传动系统动态可靠性预测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电齿轮传动系统是风力发电设备中关键部件之一,区别于通用齿轮传动系统,风电齿轮传动具有几个特点:1.输入载荷具有低转速大扭矩特点;2.由于风速变化导致齿轮载荷非恒定;3.用于可靠性推断的齿轮样本数据十分缺少。因此,风电齿轮传动系统可靠性研究具有较大理论价值及实际意义。为此本文紧密围绕其传动特点,在国内外相关研究基础上,以风电齿轮传动系统为研究对象,重点研究风电齿轮的可靠性并对整个齿轮传动体系的动态可靠性预测展开深入探讨。主要内容如下:
     1)针对变风速特点建立非恒定风速条件下齿轮应力概率计算模型。从测风数据入手建立叶片受力概率模型,推导非恒定外载荷条件下齿轮应力波动和风速波动之间的概率特性关系。该模型充分考虑风速稳定波动及突变两种情况下系统输入载荷的随机特性,为齿轮应力验前数据提供计算依据。
     2)针对小样本条件下齿轮失效数据缺乏的特点建立多源齿轮数据转换模型。从历史测试数据中选取参数、结构、工况、材料4个因素相似的齿轮数据,改进灰色关联理论并计算各因素对数据转换的影响权重。该模型克服了小样本条件下不能进行可靠性推断的瓶颈限制,为齿轮强度的验前数据提供计算依据。
     3)为计算风电齿轮应力及强度时变轨迹建立Bayes数据融合模型。在获取应力、强度验前值及理论计算值的前提下建立数据融合模型以估计应力、强度轨迹参数,在此基础上,建立齿轮应力-强度干涉模型,进而求解其动态可靠性曲线。Bayes数据融合模型综合了验前信息以及理论计算信息,实现了齿轮数据扩容及更新,同时,假设检验准则的提出确保了验前数据的有效性。
     4)为求解系统动态可靠性,综合本文齿轮可靠性研究及其他传动部件可靠性研究成果,建立系统动态故障树模型。为简化动态故障树模型,将故障树划分子单元,定义基本特征事件以表征所有底事件的概率特征,由此确定故障树求解策略并求解系统动态可靠度曲线,并通过对比验证了该策略的客观性。
     5)最后,为说明本文方法的客观性、科学性、系统性,用工程实例—1.5MW风电齿轮传动系统为计算对象贯穿全文所有理论与方法。从风速统计、应力特性分析、强度数据转换到数据融合,建立系统动态故障树模型并进行求解,得到齿轮传动系统动态可靠性曲线并对计算结果进行分析。实例表明该方法体系既可在设计初期提供设计参考,也可对齿轮传动系统可靠性进行动态预测和跟踪。
Gear transmission system is one of the key components of the wind power generation equipment. Different from the common gear drive, the wind power gear drive has three significant features:firstly, the input load is in characteristic of low speed and large torque; secondly, unsteady gear load caused by the fluctuation of wind speed; thirdly, very scarce effective gear samples for the statistical inference of reliability. So, the research on its dynamic reliability is of great theoretical value and practical significance. For this reason, this dissertation takes the gear transmission system in a wind turbine for an example. In order to form a complete research system and carry out further explorer with consideration of their own characteristics, reliability of the transmission gear is focused on and research results of other transmission parts are combinedthe on basis of domestic and foreign researches. Here are the main works:
     1) For the characteristic of variable wind speed, a probability model is presented for the gear stress under the condition of variable wind speed. The probability model of the blade load is studied. In addition, the probability relationship between the fluctuation characteristic of gear stress and the disturbance of wind speed is deduced under the condition of non-constant external load. This model fully considers the random feature of mutational wind speed and provides basis for the calculating of the prior data of gear stress.
     2) For the characteristic that the prior data of gear strength used for data fusing is lacking under the conditions of small samples, a model of multi-source data translation is presented. The gear strength data of4similar factors (parameters, structure, working condition, material) is selected from the historical test data. The gray correlation theory is improved and the weighing of each factor is taken into account. This model overcomes the bottleneck that the statistical inference of reliability can't be carried out on the condition of small samples and provides basis for the calculating of the prior data of gear strength.
     3) In order to establish the time-varying paths for wind power gear stress/strength, a Bayes data fuse model is presented. In the premise that prior values and theoretical values are acquired, the Bayes data fuse model is used to estimate the parameters of time-varying path for gear stress/strength. On this basis, a stress-strength interference model is established and the dynamic reliability curve of wind power gear is solved. The data fuse model combines the prior and observed information. It realizes update and expansion of the gear data. At the same time, the hypothesis testing guideline ensures equivalence of the prior data.
     4) In order to solve dynamic reliability of the whole gear transmission system, dynamic reliability researches of this dissertation and those of other transmission parts are combined to establish the dynamic fault tree model. For the purpose of simplifying the dynamic fault tree model, it is divided into several subunits and basic feature events are defined to generalize the probability characteristics of all basic events. So, the solution strategy is fixed on and the dynamic reliability curve of gear transmission system is solved. Meanwhile, the objectivity of this solution strategy is verified by comparing.
     5) In the end, in order to prove the objectivity, scientific, systematic of this work, an engineering case of1.5MW wind gear transmission system is selected to apply all the theory and methods of this dissertation. Establishing the statistic and analysis model for wind speed; establishing the data fusion model; establishing the dynamic fault tree model and solving it. Finally get the dynamic reliability curve of gear transmission system and make a deep analysis. The engineering case indicates that the methodology can not only provide the design reference early in the design, but also dynamically predict and track the reliability of gear transmission system.
引文
[1]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社,1993.
    [2]赵国蕃,曹居易,张宽权.工程结构可靠度[M].水利水电出版社,1984.
    [3]ANG A H-S, TANG W H. Probability concepts in engineering planning and design [M]. New York: John Wiley & Sons,1975,1.
    [4]PARRY G W. The characterization of uncertainty in probabilistic risk assessments of complex systems [J].Reliability Engineering and System Safety,1996,54(2-3):119-126.
    [5]郭书祥.非随机不确定结构的可靠性方法和优化设计研究[D].西安:西北工业大学,2002.
    [6]王梦.对我国开发利用风力发电的思考[J].中国国土资源经济,2005(2):19-20.
    [7]黄茁,苏春,许映秋.基于随机失效序列的制造系统动态可靠性分析[J].制造业自动化,2007,29(2),15-18.
    [8]余俊,寇新建,刘兴磊.考虑制造和安装误差的桁架结构可靠性计算[J].四川建筑科学研究,2007,33(1),8-12.
    [9]孙继文,奚立峰,潘尔顺,杜世昌.面向产品尺寸质量的制造系统可靠性建模与分析[J].上海交通大学学报,2008,42(7),1100-1104.
    [10]程诗叙,单联芬,陈谊,李健.预变形安装PCB的抗振可靠性研究[J].电子质量,2004,5,16-18。
    [11]Vintr, Zdenek, Valis, David. Accelerated test as tool for reliability comparison of systems [J]. Reliability Primary, Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety,2011,1151-1155.
    [12]Dnan, Jianquo, Li, Aiping, Xie, Nan, Xu, Liyun. Multi-state reliability modeling and analysis of reconfigurable manufacturing systems [J]. Jixie Gongcheng Xuebao,2011,47(17),2007, 104-111.
    [13]Huang, Yuanmao, Shiau, Chingshin. An optimal tolerance allocation model for assemblies with consideration of manufacturing cost, quality loss and reliability index. Assembly Automation, 2009,29(3),220-229.
    [14]董聪,杨庆雄.现代结构系统可靠性分析理论发展概括及若干应用[J].力学进展,1993,23(2),206-213.
    [15]WOODS J L, DANIEWICZ S R, NELLUMS R. Increasing the bending fatigue strength of carburized spur gear teeth by presetting [J]. International Journal of Fatigue,1999,21(6): 549-556.
    [16]TSENG R T, TSAY C B. Contact characteristics of cylindrical gears with curvilinear shaped teeth [J]. Mechanism and Machine Theory,2004,39(9):905-919.
    [17]ZHANG Y M, LIU Q L, WEN B C. Practical reliability-based design of gear pairs [J]. Mechanism and Machine Theory,2003,38(12):1363-1370.
    [18]CHONG G X, GERTNER G Z. Uncertainty and sensitivity analysis for models with correlated parameters [J]. Reliability Engineering and System Safety,2008,93(10):1563-1573.
    [19]ICHIKAWA M. Confidence limit of probability of failure based on stress-strength model [J]. Reliability Engineering,1984,8,75-83. [13] FREUDENTHAL A M. Safety and the probability of structural failure [J]. ASCE Trans.,1956,121:1337-1397.
    [20]RACKWITZ R. Reliability analysis-A review and some perspectives[J]. Structural Safety, 2001,23(4):365-395.
    [21]SCHUELLER G I. On the treatment of uncertainties in structural mechanics and analysis [J]. Computers & Structures,2007,85(5-6):235-243.
    [22]DITLEVSEN O, MADSEN H O. Structural reliability methods [M]. West Sussex:Wiley,1996.
    [23]CORNELL C A. Structural safety specification based on second-moment reliability [M]. London: Sym. Int, Assoc. of Bridge and Struct. Engr.,1969.
    [24]HASOFER A M, LIND N C. Exact and invariant second-moment code format [J]. J. Eng. Mech. Div.,ASCE,1974,100(1):111-121.
    [25]董聪.现代结构系统可靠性理论[D].1993.
    [26]CORNELL C A. Bounds on the reliability of structural systems [J]. J. Struct. Div., ASCE, 1967,93(ST1).
    [27]ANG A H-S, AMIN M. Reliability of structures and structural systems [J]. J. Eng. Mech. Div., ASCE,1968,94(2):671-691.
    [28]ANG A H-S, ABDELNOUR J, CHAKEr A A. Analysis of activity networks under uncertainty [J]. J. Eng. Mech. Div.,1975,101(4):373-387.
    [29]RACKWITZ R, FIESSLER B. Structural reliability under combined random load sequences [J]. Computers and Structures,1978,9: 489-494.
    [30]CHEN X, LIND N C. Fast probability integration by three parameter normal tail approximation [J]. Struct. Safety,1983,1:269-276.
    [31]HOBENBICHLER M, RACKWITZ R. Non-normal dependent vectors in structural safety [J]. ASCE, J. Eng. Mech. Div.,1981,107(6):1227-1238.
    [32]ROSENBLATT M. Remarks on a multivariate transformation [J]. Annals of Math. Statistics, 1952,23:470-472.
    [33]DITLEVEN 0. Narrow reliability bounds for structural systems [J]. J. Struct. Mech., 1979,7(4):453-472.
    [34]HOME M R, MORRIS L J. Plastic design of low-rise frame [M]. Williams Collins Sons & Co. Ltd,1981.
    [35]ANG A H-S, TANG W H. Probability concepts in engineering planning and design [M]. New York: John Wiley & Sons,1984,2.
    [36]MOSES F. Structural system reliability and optimization [J]. Computers and Structures,1977,7:283-290.
    [37]MOSES F. New directions and research needs in system reliability research [J]. Struct. Safety, 1990,7:93-100.
    [38]THOFT-CHRISTENSEN P, BAKER M J. Structural reliability theory and its applications [M]. Springer-Verlag, Berlin, Heidellberg, New York,1982.
    [39]THOFT-CHRISTENSEN P, MUROTSU Y. Application of structural systems reliability theory [M]. Springer-Verlag, Berlin, Heidellberg, New York, Tokyo,1986.
    [40]MUROTSU Y, OKADA H, NIWA K, et al. Reliability analysis of truss structures by using matrix method [J]. Trans. Asme, J. Mech. Design,1980,102(4):749-756.
    [41]MUROTSU Y, OKADA H, YONAZAWA M, et al. Automatic generation of stochastically dominant modes of structural failure in frame structure [J]. Struct. Safety,1984,2:17-25.
    [42]FREUDENTHAL A M. Safety of structures [J]. Transactions ACSE,1947,112.
    [43]FREUDENTHAL A M, GUMBEL E J. Minimum life in fatigue [J]. American Statistical Association Journal,1954,49.
    [44]FREUDENTHAL A M. The safety and probability of structural failures [J]. Proc. ASCE, 1954,80:408-563.
    [45]FREUDENTHAL A M. The analysis of structural safety [J]. Journal of the Structural Division, ASCE,1966,92:572.
    [46]WASSELL H J H工程产品的可靠性[M].牟致忠,谢秀玲译.上海:上海翻译出版公司,1986.
    [47]HAUGEN E B, WIRSCHING P. Probabilistic design [J]. Machine Design,1975.
    [48]BAHK, CHEON-JAE, PARKER, et al. Nonlinear dynamics of planetary gears with equal planet spacing [C].2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2008,(7):603-616.
    [49]PARKER, ROBERT G, AMBARISHA, et al. Nonlinear dynamics of planetary gears using analytical and finite element models [C].2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2008,(7):487-504.
    [50]AL-SHYYAB A, KAHRAMAN A. A non-linear dynamic model for planetary gear sets [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2007,(4):567-576.
    [51]AMBARISHA, VIJAYA KUMAR, PARKER, et al. Suppression of planet mode response in planetary gear dynamics through mesh phasing [J]. Journal of Vibration and Acoustics, Transactions of the ASME,2006,(2):133-142.
    [52]HAUGEN E B. Probabilistic approaches to design [M]. John wiley & sons,1968.
    [53]KECECIOGLU D. Reliability analysis of mechanical components and system [J]. Nuclear engineering and design,1977.
    [54]KECECIOGLU D. Probability design methods for reliability and their data and research requirements[C]. Failure prevention and reliability, ASME,1977.
    [55]HAUGEN E B汪一麟等译.机械概率设计[M].北京:机械工业出版社,1985.
    [56]HENLEY E J, KUMAMOTO H. Reliability engineering and risk assessment [M]. Printice-Hall, 1981.
    [57]ABDEL-WAHID A R, WINTERBOTTOM A. The approximation of system reliability posterior distribution [J]. Journal of Statistical planning and inference,1987(16):267-275.
    [58]VAPNIK V N. The nature of statistical of learning theory [M]. New York: Springer-Verlag,1995.
    [59]BURGES CJ C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge discovering,1998,2(2):121-167.
    [60]EFRON B, TIBSHIRANI R J. An introduction to the bootstrap [M]. London: Chapman and Hall, 1993.
    [61]KIJEWSKI T, KAREEM A. On the reliability of a class of system identification techniques: insights from Bootstrap theory [J]. Structural Safety,2002,24(4):261-280.
    [62]HECKELEI T, MITTELHAMMER R C. Bayesian bootstrap multivariate regression [J]. Journal of Econometrics,2003,112(2).
    [63]IGLESIAS M C, MANTEIGA W G. Bootstrap for conditional distribution function with truncated and censored data [J]. Annual Institute Statistic Math,2003,55(2):331-357.
    [64]NAIR V N, TANG B, XU L. Bayesian inference for some mixture problems in quality [J]. Journal of Quality Technology,2001,33(1):16-27.
    [65]PERETTI C D. Bilateral Bootstrap test for long memory. An application to the silver market [J]. Computational Economics,2003,22(2):187-212.
    [66]冯蕴雯,黄玮,吕震庙,等.极小子样试验的半经验评估方法[J].航空学报,2004,25(5):456-459.
    [67]黄玮,冯蕴雯,吕震庙.极小子样试验的虚拟增广子样评估方法[J].西北工业大学学报,2005,23(4).
    [68]THOMAS J. Decision and bradley efron bootstrap confidence intervals [J]. Statistical Science, 1996,11(3):189-228.
    [69]DMATWALD, BOHME J F. Multiple testing for small sample data using bootstrap [C]// Proceedings ICASSP, IEEE, Adelaide,1994:189-192.
    [70]MIKOSCH T, VERE JONES D, WANG Q. A bootstrap approach to estimating fractal dimensions [C]//Proceedings ICASSP, IEEE, Adelaide,1994:185-188.
    [71]ZOUBIR A M, BOASHASH B. The bootstrap and and its applications in Signal Processing [J]. Signal Processing Magazine,1998(1):56-76.
    [72]REID D C, ZOUBIR A M, BOASHASH B. The bootstrap Applied to Passive acoustic Aircraft Parameter estimation [C]//Proceedings ICASSP, Atlanta,1996:3154-3157.
    [73]ASTM Standard E739. Standard practice for statistical analysis of liner or linearized stress-life(S-N) and strain-life(ε-N) fatigue data [S]. Philadelphia: The American Society for Testing and Materials,1991.
    [74]NAKAZAWA H, KODAMA S. Statistical research on fatigue and fracture [M]. New York: Elsevier Applied Science,1987:59-69.
    [75]茆诗松,王静龙,濮晓龙.高等数理统计[M].北京:高等教育出版社,1988.
    [76]吴旭明,宁宣熙.机匣包容性的贝叶斯评论方法[J].航空学报,1998,19(2):200-204.
    [77]张守钰Bayes方法在武器射程评定中的应用研究[J].弹道学报,1998,10(2):46-49.
    [78]张应福,何惠民,黎观生,等.确定复合材料许用值的高精度小样本方法[J].航空学报,1999,20(4):299-302.
    [79]梁庆卫,宋保维.小子样产品的可靠性评定[J].机械设计与制造,2004(3):1-3.
    [80]刘炳章.航天火工装置可靠性的优化试验法——最大熵试验法[J].导弹火工技术,2001(1):23-38.
    [81]刘炳章.小子样验证高可靠性的可靠性评估方法及其应用[J].质量与可靠性,2004(1):19-22.
    [82]李荣,王惠频,蔡洪.最大熵方法在系统可靠性Bayes评估中的应用[J].航天控制,1999(1):75-80.
    [83]RICHARD L L, BYRON J F. Development of operating characteristics (OC) curves for acceptance sampling plans [J]. International Journal of Quality & Reliability management, 1992,9(6):126-130.
    [84]HAILEY W A. Minimum sample size single sampling plans:a computerized approach [J]. Journal of Quality Technology,1980,12(4):230-235.
    [85]宋保维,徐德民.小子样产品可靠性一次抽样方法研究[J].机械科学与技术,1999,18(2):218-220.
    [86]李晓阳,姜同敏,肖良华.成败型一次抽样检验方案算法的等价变形[J].北京航空航天大学学报,2005,31(8):904-907.
    [87]林元烈,梁宗霞随机数学引论[M].北京:清华大学出版社,2003.
    [88]方洋旺,潘进.随机系统分析及应用[M].西北工业大学出版社,2006.
    [89]何书元.概率论[M].北京:北京大学出版社,2006.
    [90]刘筱萍.概率统计[M].冶金工业出版社,2005.
    [91]李排昌,熊允发.概率统计[M].中国人民公安大学出版社,2007.
    [92]何国伟.可靠性工程概论[M].国防工业出版社,1989.
    [93]金伟娅,张康达.可靠性工程[M].北京:化学工业出版社,2005.
    [94]冯允.离散系统仿真[M].北京:机械工业出版社,1998.
    [95]金星,工程系统可靠性数值分析方法[M].北京:国防工业出版社,2002.
    [96]宋保维,系统可靠性设计与分析,西北工业大学出版社,2008
    [97]高社生,张玲霞.可靠性理论与工程应用[M].北京:国防工业出版社,2002.
    [98]BAHK, CHEON-JAE, PARKER, et al. Analytical solution for the nonlinear dynamics of planetary gears [J]. Journal of Computational and Nonlinear Dynamics,2011,6(2).
    [99]COOLEY, CHRISTOPHER G, PARKER, et al. A frequency domain finite element approach for three-dimensional gear dynamics [C]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009,2010,6:205-215.
    [100]GUO YI, PARKER, ROBERT G. Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity [J]. European Journal of Mechanics, A/Solids,2010,29(6):1022-1033.
    [101]GUO YI, PARKER, ROBERT G. Dynamic modeling and analysis of a planetary gear involving tooth wedging and bearing clearance nonlinearity [C]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference2009, DETC2009,2010,6:217-231.
    [102]STARZHINSKY, VICTOR E. Reliability prediction of gear transmissions [J]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2007 (7):165-172.
    [103]孙志礼,袁哲.齿轮随机参数系统非线性振动响应可靠性分析[J].东北大学学报(自然科学版),2011,32(6):838-842.
    [104]熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册[M].北京:中国科技文化出版社,2005.
    [105]尹炼,刘文洲编著.风力发电[M].北京:中国电力出版社,2001.
    [106]刘万琨,张志英,李银凤,等.风能与风力发电[M].北京:化学工业出版社,2006.
    [107]成大先主编.机械设计手册第四版第三卷[M].北京,化学工业出版社,2002.
    [108]GOLDSTEIN M, BEDFORD T. The bayes linear approach to inference and decision-making for a reliability programme [J]. Reliability Engineering & System Safety,2007,92(10):1344-1352.
    [109]MAHADEVAN S, REBBA R. Validation of reliability computational models using bayes networks [J]. Reliability Engineering & System Safety,2005,87(2):223-232.
    [110]CHANG Y C, CHANG K H, LIAW C S. Innovative reliability allocation using the maximal entropy ordered weighted averaging method [J].Computers & Industrial Engineering, 2009,57(4):1274-1281.
    [111]SUNG Y H. Reliability bound based on the maximum entropy principle with respect to the first truncated moment [J]. Mechanical Science and Technology,2010,24 (9):1891-1900.
    [112]KRISHNAMOORTHY K, LEE M. Inference for functions of parameters in discrete distributions based on fiducial approach:Binomial and Poisson Cases [J]. Journal of Statistical Planning and Inference,2010,140(5):1182-1192.
    [113]AHMED H, MAWAZINY E. Exact fiducial bounds for the reliability of series systems with components having exponential time to failure distributions [J]. Microelectronics and Reliability, 1992,37(12):1667-1673.
    [114]NIU G, YANG B S, PECHT M. Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance [J]. Reliability Engineering & System Safety,2010,95(7):786-796.
    [115]CUADRADO, JAVIER. Real-time state observers based on multibody models and the extended kalman filter [J]. Journal of Mechanical Science and Technology,2009,23(4):894-900.
    [116]GAO S S, ZHONG Y M, SHIRINZADEH B J. Random weighting estimation for fusion of multi-dimensional position data [J]. Information Sciences,2010,180(24):4999-5007.
    [117]OTMAN B, YUAN X H. Engine fault diagnosis based on multi-sensor information fusion using dempster-shafer evidence theory [J]. Information Fusion,2007,8(4):379-386.
    [118]NIU G, LEE S S, YANG B S, et al. Decision fusion system for fault diagnosis of elevator traction machine [J]. Journal of Mechanical Science and Technology.2008,22(1):85-95.
    [119]马彦辉,何桢,赵有.基于熵权理论和渴求函数法的多响应优化设计研究.管理技术,2007,32(2):99-102.
    [120]杜丽,刘宇,黄洪钟,彭伟.基于模糊相似比例与综合评判的发动机可靠性分配[J].航空动力学报,2009,24(2):385-389.
    [121]刘明贵,张国华,刘绍波,李祺.大帽山小净距隧道群中夹岩累计损伤效应研究[J].岩石力学与工程学报,2009,28(7):1363-1369.
    [122]曾春华,邹十践.疲劳分析方法与应用[M].北京:国防工业出版社,1991.
    [123]GERTSBACKH I B, KORDONSKIY K B. Models of failure [M]. New York: Springer2Verlag, 1969.
    [124]MEEKER W Q, HAMADA M. Statistical tools for the rapid development & evaluation of high-reliability products [J]. IEEE Trans on Reliability,1995,44(2):187-198.
    [125]PUTIC S, RAKIN M, BOSNJAK S. Application of the residual strength degradation model to carbon-epoxy composite [J]. Materials Science,2008,44(3):446-450.
    [126]顾怡.复合材料拉伸剩余强度及其分布[J].南京航空航天大学学报,1999,31(2):164-170.
    [127]朱顺鹏,黄洪钟,谢里阳.基于二元疲劳失效判据的非线性疲劳损伤累积模型及其强度退化研究[J].中国机械工程,2008,22(19):2753-2757.
    [128]李莉,谢里阳,何雪浤,等.35CrMo钢强度退化规律的试验研究[J].中国机械工程,2009,23(20):2890-2892.
    [129]XIE LIYANG, SONG WANLI, CHO CHONGDU. Residual strength degradation model for low-alloy steel in high cycle fatigue load [J]. Advanced Materials Research,2010, (118-120):474-478.
    [130]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [131]LUNDBERG G, PALMGREN A. Dynamic capacith of rolling bearings [M]. Acta Polytech. Mech. Eng., Ser.1, No.3,7, Royal Swedish Acad. Eng.,1947.
    [132]TALLIAN T. Weibull distribution of rolling contact fatigue life and deviations three from [J]. ASLE Trans.,1962,5(1).
    [133]URAKAMI S, TAKERMURA H. Development of new life equation program [J]. NSK ABLE Forecaster,2002:26-30.
    [134]NATSUMEDA S. Computer simulation technique for predicting performance of rolling bearings [J]. NSK Technical Journal,2002,673:31-35.
    [135]LEE Y L, MORRISSEY W. Uncertainties of experimental crankshaft fatigue strength assessment [J]. International Journal of Materials and Product Technology,2001,16(4,5):379-392.
    [136]CHOI K S, PAN J. Simulations of stress distributions in crankshaft sections under fillet rolling and bending fatigue tests [J]. International Journal of Fatigue,2009,31(3):544-557.
    [137]PAUL S, SIMON H, LEE Y L. Assessment of bending fatigue limit for crankshaft sections with inclusion of residual stresses [J]. International Journal of Fatigue,2007,29(2):318-329.
    [138]彭小平.紧螺栓连接可靠性设计方法[J].现代制造工程,2004(5):92-95.
    [139]郭杰.波音737飞机主轮毂连接螺栓维修可靠性分析[J].航空维修与工,2004(3):56-57.
    [140]孔丽,李红亮,戴宇进,等.固体导弹螺栓连接的可靠性研究[J].机械制造,2010(11):74-76.
    [141]陈顺祥,沈志辉.基于AIS MC数值仿真的飞行器螺栓连接件可靠性评估[J].中国西部科技,2008(158):9-10,29.
    [142]舒服华.压缩机连杆螺栓连接模糊可靠性设计研究[J].制造技术与工艺,2007(5):80-83.
    [143]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [144]陈铁冰.基于神经网络重要抽样法的结构可靠度评估[J].深圳职业技术学院学,2009(3):38-41.
    [145]裴扬,宋笔锋.故障树分析的等效概率计算方法[J].机械工程学报,2007(9):207-210.
    [146]朱正福,李长福,何恩山,等.基于马尔代夫链的动态故障树分析方法[J].兵工学报,2008(9):1104-1107.
    [147]陈越洲,谭琳,邢维艳,等.一种新故障树定性分析方法[J].计算机工程,2008(7):67-69.
    [148]FUKUNAQA K, INOUE A. Bending strength of high-hardened gear material (fatigue test using CT specimens) [J]. Transactions of the Japan Society of Mechanical Engineers, Part C, 1989,55(512):980-985.
    [149]JASKOLA Z, ZABAQLO F. Testing the Breaking Strength of Gear Teeth [J]. Przeglad Mechaniczny,1976,35(24):833-836.
    [150]ANNO Y, HAYASHI K, AIUCHI S. Bending fatigue strength of gear teeth under random loading-2. program test under gamma distributed 16 steps loading [J]. Bulletin of the JSME, 1974,17(112):1340-1347.
    [151]杨慧香,董辉跃.激光淬火齿轮与渗碳淬火齿轮的接触疲劳强度对比实验研究[J].延边大学学报(自然科学版),2006,32(2):127-130.
    [152]谈嘉祯,张君彩,傅德明.25Cr2MoV离子渗氮齿轮轮齿弯曲疲劳强度的试验研究[J].物理测试,1991,(5):43-49.
    [153]FERREIRA J L A, BALTHAZAR J C, ARAUJO A P N. An investigation of rail bearing reliability under real conditions of use [J]. Engineering Failure Analysis,2003(10):745-758.
    [154]HAGIU G D, GAFITANU M D. Dynamic characteristics of high speed angular contact ball bearings [J]. Wear,1997(211):22-29.
    [155]HARSHA S P. Non-linear dynamic response of a balanced rotor supported on rolling element bearings [J]. Mechanical Systems and Signal Processing,2005(19):551-578.
    [156]石莹,江亲瑜,李宝良.圆柱滚子轴承磨损及可靠性寿命的数值仿真[J].润滑与密封,2011(2):30-34.
    [157]李松生,杨柳欣,张钢,等.高速轴系球轴承—转子系统动力学的研究与发展[J].轴承,2005(4):3437.
    [158]乔红兵,范迅,孟惠荣.重载车辆行星轮轴承模糊可靠性分析[J].轴承,2003(11):28-29.
    [159]吴先报.轴承可靠性计算若干问题的分析[J].轴承,1992(3):19-23.
    [160]Al-BEDOOR B O. Dynamic model of coupled shaft torsional and blade bending deformations in rotors [J]. Computer Methods in Applied Mechanics and Engineering,1999(169):177-190.
    [161]SU R K L, SIU W H. Nonlinear response of bolt groups under in-plane loading [J]. Engineering Structures,2007(29):626-634.
    [162]李松生,杨柳欣,王兵华.高速电主轴轴系转子动力学特性分析[J].轴承,2002(2):15-17.
    [163]吴震宇,袁惠群.随机载荷下内燃机轴系动力可靠性分析[J].振动、测试与诊断,2010(5):534-538.
    [164]凌玮,郑映烽,赵新文.基于模糊理论的船用连杆螺栓可靠性分析[J].船海工程,2008(1):58-60.
    [165]高旭,曾国英.螺栓法兰连接结构有限元建模及动力学分析[J].润滑与密封,2010(4):68-71.
    [166]李贵轩,建辉.定扭矩螺栓动力学及疲劳强度分析[J].煤矿机械,2004(7):35-36.