鸡胚胎干细胞诱导为雄性生殖细胞及转基因鸡的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生殖干细胞在有性繁殖的生物中肩负着将遗传信息在世代中传递的重要任务,即通过精卵结合产生新的个体。生殖细胞的种系传递特性使得它成为动物胚胎学、发育生物学和细胞生物学等学科关注的研究对象之一。生殖细胞的可塑性使其能代替胚胎干细胞(Embryonic stem cell, ESC)用于治疗和遗传修饰,而不涉及伦理和免疫排斥问题,故引起生物学界极大关注。因此,如何迅速开展诱导来源于其他组织的干细胞分化成为雄性生殖细胞的研究显得很有必要和迫切。目前将ES细胞诱导为生殖细胞的研究已经开展,但诱导方法较多,效率较低。
     相对于人、鼠的ES细胞,使用鸡胚ES细胞可以克服伦理方面的限制,且取材方便,模拟临床治疗实验具有十分明显优势。因此本研究以家鸡做为实验动物模型,在比较ES和SSCs异同点的基础上,筛选适宜视黄酸(RA)浓度,比较不同基质蛋白、支持细胞、不同时期睾丸提取液和睾丸细胞条件培养液诱导ES向雄性生殖细胞方向分化的效果,为建立适宜的诱导体系和后来的临床研究提供参考。同时将诱变后有抗病毒活性的MMx蛋白通过SSCs体内介导法制备抗病转基因鸡,为制备转基因动物和培育新品种提供新的途径和思路。研究结果如下:
     (1)采用免疫荧光和碱性磷酸酶联合检测法鉴定鸡ES细胞和SSCs细胞的干细胞特性,RT-PCR方法检测两种细胞在Cvh、C-kit、DAZL、GDF3、integrin α6、integrin β1、 Nanog、Oct-4、Sox2、Stra8基因表达上的异同性,并通过免疫细胞化学和Western blot检测TRA-1-60、TRA-1-81、C-kit、DAZL、integrin a6、integrin β1、Sox2蛋白在两细胞上的表达差异情况。结果表明:ESC和SSCs基因表达存在差异,即未分化的ES细胞表达GDF3、Nanog、Sox2基因;SSCs表达C-kit、integrin α6、integrin β1、Cvh、Stra8、 Dazl基因,两种细胞mRNA均检测到Oct-4、β-actin基因的表达。蛋白水平上,免疫细胞化学方法和western blot方法检测的5个蛋白中ES细胞表达Sox2蛋白,SSCs表达C-kit、 integrina6、integrinβ1、Dazl蛋白。这两细胞的特异性标记物,可为ES与SSCs细胞的鉴定提供依据。
     (2)在鉴定鸡胚ES细胞性别的基础上,将雄性ES细胞接种到24孔板中,分别采用10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/LRA浓度进行诱导,通过细胞形态变化和上章获得的差异基因表达量变化,筛选适宜RA诱导浓度,同时探讨RA促进鸡ES向生殖细胞方向分化的潜能。结果显示:根据半定量PCR和诱导过程中细胞形态观察,确定了RA的适宜诱导浓度为10-5mol/L。在适宜浓度诱导过程中,诱导4天时类胚体出现,随后类胚体逐渐增大,8d时类胚体开始解体,随后变为单个小的圆形细胞,但10天时未观察到生殖细胞样细胞。诱导过程中相应基因表达量也发生变化:ES细胞特异基因Nanog、Sox2表达量下降,生殖细胞特异基因Stra8、Dazl、integrin α6、integrin β1、C-kit表达量上升。特别是Stra8基因,与自分化相比,显著升高。结果证明RA可启动生殖细胞相应基因的表达,对鸡胚ES细胞向雄性生殖细胞方向分化具有积极作用。
     (3)ES细胞在体内特定小生境中发育,其内各种基质蛋白与其他细胞相互作用影响ES细胞的增殖分化。本实验将ES细胞分别接种于胶原蛋白(collagen)、纤维连接蛋白(fibronectin)和层粘连蛋白(laminin)包被的培养皿中,在适宜RA浓度作用下研究ES细胞向生殖细胞方向发育的可能性。结果显示:三组诱导实验中,细胞水平上RA+fibronectin诱导4天时最早观察到类胚体的出现,随后细胞体积增大,在10天时观察到精原样细胞。层粘连蛋白和胶原蛋白组在诱导6天时观察到类胚体形态,而层粘连蛋白组在10天时观察到SSCs样细胞形态。相关基因表达量变化也较明显。三组中ES细胞特异基因Nanog和Sox2基因表达量均迅速下降,而纤维连接蛋白实验组中下降程度最高。Dazl表达量均有变化,RA+collagen组中在诱导2天时表达量开始升高,到第8d表达量最高,10天时表达量下降;RA+laminin组中在诱导4天时表达量为最高,随后表达量下降,到第10天表达量降到最低,显著低于SSCs本身表达量。RA+fibronectin组自第4天开始表达量一直维持高表达状态。Stra8、integrin β1、integrina6基因在三组中规律较一致,随着诱导时间的延长,表达量持续升高,但诱导10天时表达量未达到SSCs本身表达量。C-kit表达量规律不明显,RA+collagen组诱导4天时表达量最高,随后降低。RA+fibronectin组表达量变化不大。结论:ES特异基因表达量为下降趋势,C-kit、Stra8、integrinβ1、 integrina6表达量总体为上升趋势,其中RA+fibronectin和诱导组中基因变化明显。根据细胞形态变化情况和特异基因变化情况比较,三组试验诱导效果均比RA单独诱导效果好,且三种基质蛋白中RA+fibronectin诱导组效果较好。
     (4)研究表明支持细胞是精原细胞小境的关键因子,可能会通过分泌一些生长因子或者通过与细胞接触来调节生殖细胞发育分化过程。本实验在适宜RA浓度条件下,不同时期睾丸提取液和睾丸组织条件培养基、鸡胚睾丸支持细胞共培养后及综合因素诱导,探讨不同方法对ES向雄性生殖细胞方向分化的影响。结果显示:RA+支持细胞实验组在诱导2天时类胚体出现,随后其体积增大,诱导10天观察到精原样细胞。基因变化过程中,Nanog基因表达量降低,而Sox2基因高表达。Dazl在诱导2天时表达量达到最高,随后逐渐降低。而Stra8、integrinβ1、integrina6基因表达量在诱导4天开始一直维持高水平表达,且在诱导10天时检测到Sox2、Daz1、integrinβ1、integrina6蛋白表达。在不同时期睾丸提取液和睾丸条件培养液实验组中,细胞形态变化差异较小,在诱导4天时类胚体出现,诱导10天时SSCs样细胞出现。在性成熟期睾丸提取液和条件培养液试验中8d出现SSCs样细胞。基因表达量上Nanog表达量逐渐上升,而Sox2表达量下降。性成熟睾丸提取液和条件培养液中,Dazl、Stra8、integrinβ1和integrina6表达量逐渐升高。而在RA+Fibronectin+支持细胞综合因素诱导过程中,诱导第2天即出现类胚体,同时ES特异基因Nanog、Sox2表达量下降明显。Dazl, Stra8,integrin(31, integrina6表达量逐渐升高。C-kit在诱导4天时表达量升高,随后保持相同水平,诱导10天时,检测到Dazl、C-kit蛋白的表达。结论:不同时期睾丸提取液和睾丸组织培养条件培养基诱导下,性成熟期睾丸提取液和睾丸组织条件培养液诱导效果较好。与单因素和双因素诱导相比,综合因素诱导效果并没有明显变化。几组实验中RA与支持细胞共诱导组效果最好。
     (5)利用精原干细胞介导的方法体内转染融合基因EGFP-MMx,制备抗病毒性疾病转基因鸡。采用脂质体包埋法,睾丸内注射EGFP-MMx融合基因,术后采集30d、40d、50d、60d、70d、80d睾丸组织进行冰冻切片、基因组PCR、点杂交实验,转染后60d公鸡精液人工授精于正常母鸡,对后代血液采用PCR检测技术、RT-PCR和Western blot方法检测外源基因EGFP-MMx的整合表达情况。结果显示:睾丸冰冻切片结果显示大部分实验鸡有绿色荧光,且在60d荧光数及亮度达到最高水平。提取18只实验公鸡睾丸组织基因组,分别以EFGP和MMx基因序列设计引物进行PCR检测和点杂交,阳性率分别为77.8%和72.2%。提取4只实验公鸡7个不同时期的精液基因组进行PCR检测,阳性率为25%。对于38只F1代进行血液DNA.RNA和蛋白水平检测,阳性率分别为10.53%(4/38)、10.53%(4/38)、7.89%(3/38)。结果证明外源基因通过睾丸注射法可整合到基因组上,可作为培育抗病转基因鸡的新途径。
     综上,本实验探索了不同方法对家鸡ES细胞向雄性生殖细胞的诱导效果及SSCs细胞体内介导制备转基因鸡的可行性,得出以下结论:RA作用下,将ES细胞和支持细胞共培养效果较好,可较好的诱导ES向雄性生殖细胞方向分化;通过SSCs体内介导法,获得3只携带抗病基因的转基因鸡。这些结果一方面能为雄性生殖细胞的临床应用提供理论基础,另一方面可为培育新品种提供新的思路。
In the sexual reproduction of organisms, germ cells undertake the genetic information passed in generations and generate new individuals by sperm-egg binding. The characteristic of the germ cells make it become one of the research objects of animal embryology, developmental biology and cell biology. Male germ cells could be used to replace embryonic stem cells for disease therapy and genetic modification since it has the merits of pluripotency and do not involve in ethical and immune rejection problem, therefore, it caused great concern in the biological community. It's necessary and urgent to begin the research of how to induce stem cells from other tissues differentiated into spermatogonial stem cells. Recently, the research on ESCs differentiated into male germ cells has already been done. But the efficiency is still low.
     Poultry embryonic stem cells has no restricted within ethics as to human embryonic stem cells(hES) and mouse embryonic stem cells(mES), and can easily be obtained, holding an dominant advantage in simulation clinical treatment. Hence, in this study, poultry species were used as animal model in this study. On the basis of the difference between ES and SSCs, retinoic acid(RA) concentration wes initially screened, in combination with three matrix proteins, sertoli cells, testicular abstracts and testicular cell conditioned medium obtained from different periods, to identify the efficiency of germ cell differentiation derived from chicken ESCs. The study provides conference for build appropriate induction system and clinical research. Meanwhile used in vivo SSCs-mediated way transfer active-antiviral MMx protein to generate antiviral transgenic chicken, and provided new ways and thinking for prepared transgenic animals and cultivated new species. The results addressed as follows:
     (1)To identify the two stem cells, the similarities and differences between the chicken embryonic stem cell (ESC) and spermatogonial stem cell (SSCs) were studied. The characteristics of ESC and SSCs were analyzed with the expression of alkaline phosphatase (AKP), immunologic markers and pluripotency markers. Reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence and western blotting were used on the two cells. Of the ten genes we detected, Oct4was detected in both of the two cells, while GDF3、Nanog、 Sox2genes only expressed in undifferentiated ES and Dazl, Cvh, Stra8, integrina6, integrinβ1and C-kit genes were found in SSCs, which showed there are differences in ES and SSCs at the level of mRNA. Immunofluorescence and western blotting showed that Sox2protein expressed in ES while C-kit, integrina6, integrinβ1and Dazl proteins were found in SSCs. Our result showed chicken ES and SSCs had common characteristics of stem cell, but exhibited significant discrepancy at the level of mRNA and protein. The different specific markers between the two cells not only suggested the differentiation potential of the two cells but also offered theoretical and practical basis for identifying the two cells.
     (2) In this part, On the basis of identifying the chicken ES cells sex, the ZZ ES cells were transferred onto24-well plates. For screening the suitable concentration of RA, both cell morphologic and genes expression were detected under different concentration (10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L). The results showed10-5mol/L was the best. Under this concentration, embryonic body was observed on induced4days. With the prolongation of induction time, EB became large gradually. Until induced8d, EB began to disintegrate and became single round cells. SSCs-like cells did not be observed on the induced10days. On this induction process, expression of many genes changed gradually. ES specific genes Nanog and Sox2expression descended while germ cell specific genes Stra8、Dazl、integrina6、intrgrinβ1、C-kit ascended especially Stra8. we supposed RA was in charge of notable heighten of Stra8expression. In conclusion, RA can promote ES differentiation into germ cell.
     (3)ES cells developed in the specific niche. The proliferation and differentiation of ES cells are affected by the interaction between variety of matrix proteins and other cells. This experiment studied the possibility of ES cells differentiated to germ cells when ES directly contacted with collagen, fibronectin and laminin under the RA medium. The results showed:on the RA+fibronectin group, embryonic body was observed at induced4days while on the other two groups were induced6days. On RA+fibronectin and RA+laminin groups, SSCs-like cells were seen on induced10days while RA+collagen group did not been observed on induced10days. Related gene expression changes were more significantly. The expression of Nanog and Sox2genes gradually descended especially RA+fibronectin group. We found distinctive difference on Dazl expression between the three groups. On the RA+collagen group, the expression of Dazl gene rising from induced2days, and reached the peak at8days, then descended on10days. On RA+laminin group, Dazl expression reached the peak at induced4days, then gradually descent. On RA+fibronectin group, the expression of Dazl gene began to express from the2st day and expressed significantly at the4th day, then maintained a higher level at the6th,8th and10th. The expression of Stra8、integrinβ1、integrina6genes increased as induced time prolonging. Conclusion:as the induced time prolonging, the expression of Nanog and Sox2genes descent and C-kit, Stra8, integrin(31, integrina6ascend. Compared on cell morphologic change and specific genes expression, the RA+marix protein groups had better induce effection than RA especially RA+fibronectin.
     (4) Research suggested sertoli cells are the key factor on SSCs niche, which can secrete some growth factors to regulate the progress of germ cell development. In this experiment, different methods were used to induce ES differentiation into germ cell, which were testes abstract and testes medium from different periods, chichen embryonic sertoli cells co-culture with ES and comprehend factors.The results were:On the chicken embryonic sertoli cells group, embryonic body was observed on the induced2days and SSCs-like cells on the induced10days less. Nanog gene expressed lower as time going induced by RA. The expression of Dazl was seen at the peak on induced2days and gradually descent following. Stra8, integrin(31and integrina6genes began to express from the2st day and expressed significantly at the4th day, then maintained a higher level at the6th,8th and10th. On the groups of RA+testes abstract and testes medium from different periods, embryoid was observed on the induced4days and SSCs-like cells on the8d at sexual maturity testes abstract and testes medium groups while on the10days on the other groups. Nanog gene expressed higher as time going induced by RA while Sox2is lower. Dazl、Stra8、integrinβ1、and integrina6expression were gradually ascend. On the comprehend group, embryoid was seen on induced2days and SSCs-like cells on the8d. Nanog and Sox2genes expressed lower than RA group as time going and Dazl, Stra8, integrinp1, integrina6and C-kit higher. Conclusion:under RA+testes abstract and testes medium from different periods, sexual maturity testes abstract and testes medium induced effect was better than the other groups. The induction effect of comprehend group (RA+fibronectin+sertoli cells) was almost same as the sertoli cells group. Between those groups, RA+sertoli group is the best induced methods.
     (5)In order to generate anti-viral transgenic chickens through transfected spermatogonial stem cell with fusion gene EGFP-MMx. After injecting fusion gene EGFP-MMx into testes, tissues frozen section, PCR and dot blot of testes was performed at the30d,40d,50d,60d,70d and80d, a few of normal hen were inseminated artificially with cock semen of60d. Finally PCR, reverse transcription-PCR and Western Blot were used to detect the integration of exogenous gene EGFP-MMx of the offspring. Tissues frozen section results showed18experimental chickens have the green fluorescence and the number and brightness of fluorescence was at the highest level. DNA was extracted from18experimental chicken and PCR and dot blot were preformed to detect the EGFP and MMx gene. The positive rate was77.8%and72.2%respectively. The four experimental chickens' sperm were collected and DNA was abstracted for PCR performing. The PCR positive rate was25%(1/4). PCR and RT-PCR positive rate was10.53%(438) in F1blood genome and RNA respectively, while Western Blot positive rate of F1blood was7.89%(3/38). Taken together, it was proved the possibility of cultivating anti-viral transgenic chickens by the method of testes injection method which could integrate foreign genes into the genome
     In conclusion, we compared different methods effect on chicken ES differentiation to male germ cell and explored the possibility of cultivating anti-viral transgenic chickens by the method of testes injection method:under the RA medium, the group of ES cells cocultured with sertoli cells group has the best effect on chicken ES differentiation to male germ cell; by SSCs-mediated in vivo, we obtained3transgenic chickens with antiviral gene. The results can provide the theoretical basis for SSCs clinical application and provide an idea for breeding new variety
引文
[1]Martin GR, Evan MJ. Differentiation of clonal lines of teratocarcinoma cells:formation of embryoid bodies in vitro. Proc.Natl Acad. Sci. USA.1975,72(4):1441-1445
    [2]Martin GR. Teratocarcinomas and mammalian embryogenesis. Science.1980,209(4458), 768-776
    [3]Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc.Natl Acad. Sci. USA.1976,73(2):549-553
    [4]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature.1981,292(5819):154-156
    [5]Bradley A, Evans M, Kaufman MH, et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature.1984,309(5965):255-256
    [6]Capecchi MR. Altering the genome by homologous recombination. Science.1989, 244(4910),1288-1292
    [7]Capecchi MR. Generating mice with targeted mutations. Nat Med.2001,7(10):1086-1090
    [8]Prelle K, Zink N, Wolf E. Pluripotent stem cells-model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol.2002,31(3):169-186
    [9]Thomson JA, Marshall VS. Primate embryonic stem cells. Curr Top Dev Biol.1998,38: 133-165.
    [10]Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA.1998,95:13726-13731.
    [11]Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science.1998,282(5291):1145-1147.
    [12]高舒平,王太一.哺乳动物胚胎干细胞研究进展.中国实验动物学杂志.1999,9(2): 106-9
    [13]郑瑞珍.胚胎干细胞研究进展.生物工程进展.1994,14(2):18-27
    [14]Petitte JN, Clark ME, Liu G, et al. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development.1990,108(1):185-189.
    [15]Pain B, Clark ME, Shen M, et al. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Developmen.1996,122(8): 2339-2348.
    [16]邹清雁,张淑莲,郑曲波等.鸡胚胎干细胞饲养层培养体系的建立.上海实验动物科学.2000,20(4):206-209
    [17]安静,杜立新.鸡胚胎干细胞的分离、培养与鉴定[J].动物学报,2003,49(5):698-703
    [18]Horiuchi H, Tategaki A, Yamashita Y, et al. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state. J Biol Chem.2004, 279(23):24514-24520
    [19]Lavial F, Pain B. Chicken embryonic stem cells as a non-mammalian embryonic stem cell model. Dev Growth Differ.2010,52(1):101-114
    [20]Nichols J, Evans EP, Smith AG. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development.1990,110(4):1341-1348
    [21]Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol.1987, 121(1):1-9.
    [22]Conover JC, Ip NY, Poueymirou WT, et al. Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells. Development.1993,119(3):559-565.
    [23]Nichols J, Chambers I, Smith A. Derivation of germline competent embryonic stem cells with a combination of interleukin-6 and soluble interleukin-6 receptor. Exp Cell Res.1994, 215(1):237-239.
    [24]Rose TM, Weiford DM, Gunderson NL, et al. Oncostatin M (OSM) inhibits the differentiation of pluripotent embryonic stem cells in vitro. Cytokine.1994,6(1):48-54.
    [25]Wolf E, Kramer R, Polejaeva I, et al. Efficient generation of chimaeric mice using embryonic stem cells after long-term culture in the presence of ciliary neurotrophic factor. Transgenic Res.1994,3(3):152-158.
    [26]戴建明.鸡胚胎干细胞的分离培养及其诱导分化[D].江苏:扬州大学,2007
    [27]Keller G. Embryonic stem cell differentiation:emergence of a new era in biology and medicine. Genes dev.2005,19(10):1129-1155
    [28]Ideguchi M, Palmer TD, Recht LD, et al. Murine Embryonic Stem Cell-Derived Pyramidal Neurons Integrate into the Cerebral Cortex and Appropriately Project Axons to Subcortical Targets. J Neurosci.2010,30(3):894-904
    [29]van Haaften T, Byrne R, Bonnet S, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009,180(11):1131-1142
    [30]Guenou H, Nissan X, Larcher F, et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis:a preclinical study. Lancet.2009,374(9703): 1745-1753
    [31]Sharp J, Frame J, Siegenthaler M, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells.2010,28(1):152-163
    [32]Brinster RL. Germline stem cell transplantation and transgenesis. Science.2002, 296(5576):2174-2176
    [33]吴洪.鸡精原细胞分离纯化与体外初步培养[D].江苏:扬州大学,2006
    [34]Meng X, Lindahl M, Hyvonen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science.2000,287(5457):1489-1493.
    [35]Aubry F, Satie AP, Rioux-Leclercq N, et al. MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer.2001,92(11):2778-2785.
    [36]Giuili G, Tomljenovic A, Labrecque N, et al. Murine spermatogonial stem cells targeted transgene expression and purification in an active state. EMBO Rep.2002,3(8):753-759.
    [37]Shinohara T, Avarbock MR, Brinster RL. Betal-and alpha6-integrin are surface markers on mouse spermatogonial stem cells.Proc Natl Acad Sci U S A.1999,96(10):5504-5509.
    [38]Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 2003,100(11):6487-6492.
    [39]Kanatsu-Shinohara M, Toyokuni S, Shinohara T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod.2004,70(1):70-75.
    [40]Naughton CK, Jain S, Strickland AM, et al. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 2006, 74(2):314-321.
    [41]Izadyar F, Wong J, Maki C, et al. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod.2011,26(6):1296-1306
    [42]Maki CB, Pacchiarotti J, Ramos T, et al. Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes. Hum Reprod.2009,24(6):1480-1491.
    [43]Oatley MJ, Kaucher AV, Racicot KE, et al. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod.2011,85(2):347-356
    [44]Yoshinaga K, Nishikawa S, Ogawa M, et al. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development. 1991,113(2):689-699.
    [45]Ning L, Goossens E, Geens M, et al. Spermatogonial stem cells as a source for regenerative medicine. Middle East Fertility Society Journal.2012,17(1):1-7
    [46]Hofmann MC, Narisawa S, Hess RA, et al. Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp Cell Res.1992,201(2):417-435.
    [47]Ohata H, Seito N, Aizawa H, et al. Sensitizing effect of lysophosphatidic acid on mechanoreceptor-linked response in cytosolic free Ca2+ concentration in cultured smooth muscle cells. Biochem Biophys Res Commun.1995,208(1):19-25.
    [48]孙思宇,鸡精原干细胞体外培养及不同细胞因子的影响[D],江苏:扬州大学,2006
    [49]毕聪明,王坤,周铁忠等GDNF和SCF促进小鼠精原于细胞增殖与分化的研究[J].辽宁医学院学报.2009,30(3):193-195
    [50]张鑫,苗向阳,尹逊河等.利用精原干细胞建立转基因动物的研究进展.中国农业科技导报.2009.11(1):40-44
    [51]Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA.1994,91(24):11298-11302.
    [52]Kalina J, Senigl F, Micakova A, et al. Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction.2007,134(3):445-453.
    [53]李碧春,孙国波,孙怀昌等.体内外精原干细胞介导大群生产转基因鸡[J].中国科学C辑:生命科学.2008,38(7):626-634
    [54]Kanatsu-Shinohara M, Kato M, Takehashi M, et al. Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of spermatogonial stem cells. Biol Reprod.2008,79(6):1121-1128.
    [55]Honaramooz A, Behboodi E, Megee SO, et al. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetentgoats. Biol Reprod.2003, 69(4):1260-1264.
    [56]于海涛,岳丽玲.Y染色体微缺失与男性不育的研究现状[J].中国优生与遗传杂志.2006,14(2):1-4
    [57]Nagano M, Shinohara T, Avarbock M, et al. Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Lett.2002,475(1):7-10.
    [58]Choi YJ, Park JK, Lee MS, et al. Long-term follow-up of porcine male germ cells transplanted into mouse testes. Zygote.2007,15(4):325-335
    [59]Kim Y, Turner D, Nelson J, et al. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction.2008,136(6):823-831
    [60]Pan G, Pei D. The stem cell pluripotency factor nanog activates transcription with two unusually potent subdomains at its C-terminus. J Biol Chem.2005,280(2):1401-1407
    [61]Clark AT, Rodriguez RT, Bodnar MS, et al. Human STELLAR, NANOG and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hot spot for teratocarcinoma. Stem Cells.2004,22(2):169-179
    [62]Velkey JM, O'Shea KS. Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells. Genesis.2003,37(1):18-24
    [63]Hay DC, Sutherland L, Clark J, et al. Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers inhuman and mouse embryonic stem cells. Stem Cells.2004,22(2):225-235
    [64]Niwa H, Miyazaki J, Smith AG.. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet.2000,24(4),372-376
    [65]Morrison GM, Brickman JM. Conserved roles for Oct-4 homologues in maintaining multipotency during early vertebrate development. Development.2006,133(10):2011-2022
    [66]Avilion AA, Nicolis SK, Pevny LH, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.2003,17(1):126-140
    [67]Chen C, Ware SM, Sato A, et al. The Vgl-related Protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development.2006,133(2):319-329
    [68]Levine AJ, Brivanlou AH. GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development.2006,133(2):209-216
    [69]刘湘华.两个新的蛋白质结构域的鉴定暨生长分化因子3功能的初步探讨[D].复旦大学,2006
    [70]Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet.2004,13(7):727-739
    [71]Lanqe UC, Saitou M, Western PS, et al. The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol. 2003,3:1
    [72]Kito G, Aramaki S, Tanaka K, et al. Temporal and spatial differential expression of chicken germline-specific proteins cDAZL, CDH and CVH during gametogenesis. J Reprod Dev.2010, 56(3):341-346
    [73]Lin Y, Page DC. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev Biol.2005,288(2):309-316
    [74]Vogel T, Speed RM, Ross A, et al. Partial rescue of the DAZL knockout mouse by the human DAZL gene. Mol Hum Report.2002,8(9):797-804
    [75]崔光辉,张键荣,漆正宇等.诱导小鼠骨髓间充质干细胞向雄性生殖细胞的定向分化[J].中国男科学杂志.2008,22(12):1-9
    [76]米美玲,杨蓓,徐斯凡,等Stra8:生殖细胞有丝分裂转变为减数分裂前特异表达的基因[J].中国男科学杂志.2009,15(1):512-515
    [77]王芳,孙莹璞.小鼠胚胎干细胞分化为精子细胞的研究进展[J].生殖与避孕.2008,28:363-366
    [78]郭睿,崔慧林,赵虹等.SCP3在小鼠精母细胞核内的表达及定位[J].中国组织化学与细胞化学杂志.2008,17(1):84-88
    [79]Toyooka Y, Tsunekawa N, Akasu R, et al. Embryonic stem cells can form germ cells in vitro. Proc Nat1 Acad Sci USA.2003,100(20):11457-11462
    [80]Shinohara T, Avarbock MR, Brinster RL. Betal-and alpha6-integrin are surface markers on mouse spermatogonial stem cell. Proc Natl Acad Sci USA.1999,96 (10):5504-5509
    [81]李彦锋,郭应禄,李晓红等.人精原干细胞特异性标志的初步筛选[J].中国男科学杂志.2005,11(7):486-489
    [82]Lee ST, Yun JI, Jo YS, et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials.2010,31(6):1219-1226
    [83]Besmer P, Manova K, Duttlinger R, et al. The kit-ligand (steel factor) and its receptor c-kit/W:pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl.1993:125-137
    [84]Ohlstein B, Kai T, Decotto E, et al. The stem cell niche:theme and variations. Curr Opin Cell Biol.2004,16 (6):693-699
    [85]Moore KA, Lemischka IR. Stem cells and their niches. Science.2006,311 (5769): 1880-1885
    [86]Qing T, Shi Y, Qin H, et al. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulose cells. Differentiation.2007,75(10):902-911
    [87]米美玲,周玲,邹挺等.睾丸支持细胞和全反式视黄酸诱导骨髓干细胞向精原细胞分化的研究.江西医学院学报.2007,47(6):45-48
    [88]Tanentzapf G, Devenport D, Godt D, et al. Integrin-dependent anchoring of a stem cell niche. Nat Cell Biol.2007,9 (12):1413-1418
    [89]Tate MC, Garcia AJ, Keselowsky BG, et al. Specific betal integrins mediate adhesion, migration, and differentiation of neural progenitors derived from the embryonic striatum. Mol Cell Neurosci.2004,27 (1):22-31
    [90]Hayashi Y, Furue MK, Okamoto T, et al. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells.2007,25 (12):3005-3015
    [91]宋阳,许增禄.睾丸细胞外间质作用的研究.解剖学报.1997,28(2):221-223
    [92]Zhou J, Zhang Y, Lin Q, et al. Embryonic bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. J Genet Genomics.2010,37(7):451-460
    [93]Ma W, Tavakoli T, Derby E, et al. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol.2008,8:90
    [94]郭新,漆正宇,秦洁等.不同基质蛋白对小鼠胚胎干细胞生殖细胞分化相关基因表达的影响.中华男科学杂志.2009,15(11):967-973
    [95]Kee K, Angeles VT, Flores M, et al. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature.2009,462 (7270):222-225
    [96]Hiibner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science.2003,300(5623):1251-1256
    [97]Aflatoonian B, Moore H. Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol.2005,16(5):530-535
    [98]Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell.2008, 134(6):921-931
    [99]Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J.1996, 10(9):940-954.
    [100]Mark M, Ghyselinck N B, Chambon P. Function of retinoid nuclear receptors:lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol.2006,46:451-480.
    [101]Bowles J, Koopman P. Retinoci acid, meiosis and germ cell fate in mammals. Development.2007,134(19):3401-3411
    [102]Bowles J, Knight D, Smith C, et al. Sex-specific regulation of retinoic acid levels in developing mouse gonads determines germ cell fate. Science.2006,312:596-600.
    [103]Koubova J, Menke DB, Zhou Q, et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA.2006,103(8):2474-2479.
    [104]Chuma S, Nakatsuji N. Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol.2001,229(2):468-479.
    [105]Nakatsuji N, Chuma S. Differentiation of mouse primoridial germ cells into female or male germ cells. Int J Dev Biol.2001,45(3):541-548.
    [106]Oulad-Abdelghani M, Bouillet P, Decimo D, et al. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol.1996,135(2):469-477.
    [107]Menke DB, Koubova J, Page DC. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev Biol.2003,262(2):303-312.
    [108]Livera G., Rouiller-Fabre V, Valla J, et al. Effects of retinoids on the meiosis in the fetal rat ovary in culture. Mol Cell Endocrinol.2000,165(1-2):225-231.
    [109]Zhou Q, Li Y, Nie R, et al. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod.2008,78(3):537-545
    [110]Ohta K, Lin Y, Hogg N, et al. Direct effects of retinoic acid on entry of fetal germ cells into meiosis in mice. Biol Reprod.2010,83(6):1056-1063
    [111]葛楚天,邹文贤,王伟等.视黄酸直接诱导鸡原始生殖细胞启动并完成减数分裂.中国科学:生命科学.2011,41(12):1167-1176
    [112]Childs AJ, Cowan G, Kinnell HL, et al. Retinoic acid signaling and the control of meiotic entry in the human fetal gonad. PloS One.2011,6(6):e20249
    [113]Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem cells. 2006,24(2):266-273
    [114]朱海鲸.奶山羊雄性生殖干细胞的分离培养及向精子细胞的诱导分化[D].西北农林科技大学.2011
    [115]Hua J, Tuch BE, Sidhu KS. Coaxing HESC to form oocyte-like structures by co-culture with testicular extract and hormones. The open stem cell journal,2011,3:34-45
    [116]潘少辉.小鼠胚胎干细胞向雄性生殖细胞诱导分化的研究[D].西北农林科技大学.2011
    [117]Bowles KM, Vallier L, Smith JR, et al. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells.2006,24(5):1359-1369
    [118]Chan KM, Bonde S, Klump H, et al. Hematopoiesis and immunity of HOXB4-transduced embryonic stem cell-derived hematopoietic progenitor cells. Blood.2008,111(6):2953-2961.
    [119]Lavial F, Acloque H, Bachelard E, et al. Ectopic expression of Cvh(Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev Bio.2009,330(1):73-82
    [120]Yu Z, Ji P, Cao J, et al. Dazl promotes germ cell differentiation from embryonic stem cells. J Mol Cell Bio.2009,1(2):93-103
    [121]Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010,467(7313):285-290
    [122]Lue Y, Erkkila K, Liu PY, et al. Fate of bone marrow stem cells transplanted into the testis: Potential implication for men with testicular failure. Am J Pathol.2007,170(3):899-908
    [123]Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature.2004,427(6970):148-54
    [124]Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet.2004,13(7):727-39
    [125]Nayernia K, Nolte J, Michelmann HW, et al. In vitro-differentiated embryonic stem cell give rise to male gametes that can generate offspring mice. Dev Cell.2006,11(1):125-32
    [126]Kerkis A, Fonseca SA, Serafim RC, et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning and Stem Cells. 2007,9(4):535-48
    [127]Yamano N, Kimura T, Watanabe-Kushima S, et al. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by AKT activation. Biochem Biophys Res Commun,2010,392(3):311-6
    [128]Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell.2011,146(4):519-532
    [1]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature,1981,292:154-156
    [2]Matsui Y, Zsebo K and Hogan BLM. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell.1992,70:841-847
    [3]Brinster R L. Germline stem cell transplantation and transgenesis. Reproductive Biology. 2002,296(2):2174-2176.
    [4]Toshiaki Noce, Germ Cell Differentiation in Culture. J.Mamm.Ova.Res.2003,20:69-73
    [5]Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature,2004,427:148-154
    [6]Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells fromhuman embryonic stem cells in vitro. Hum Mol Genet,2004,13:727-739.
    [7]Karim Nayernia, Jessica Nolte, Hans W.Michelmann, et al. In Vitro-Differentiated Embryonic Stem Cell Give Rise to Male Gametes that Can Generate Offspring Mice. Developmental Cell,2006,11,125-132
    [8]Kerkis A, Fonseca SAS, Serafim Rui C, et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning and Stem Cells, 2007,9:535-548.
    [9]Katarzyna Tilgner, Stuart P. Atkinson, Anna Golebiewska, et al. Isolation of Primordial Germ Cells from Differentiating Human Embryonic Stem Cells,2008,26(12):3075-3085
    [10]Kanatsu-Shinohara M, Lee J, Inoue K, et al. Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod,2008,78:681-687
    [11]Guan K, Nayernia, K, Maier, L S et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature.2006,440:1199-1203
    [12]Seandel M, James D, Shmelkov SV et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature.2007,449:346-350
    [13]戴建明,何先红,赵文明等.鸡胚胎干细胞的分离和培养[J].中国畜牧.2007,43(19):15-19
    [14]杨海燕,孙敏,田智泉等.鸡X期胚盘细胞分散培养与整胚培养比较初探[J].中国家禽.2010,32(7)14-17.
    [15]吴洪,李碧春,周冠月等.鸡睾丸细胞的分离、培养[J].中国兽医杂志.2007,43(3):11-16.
    [16]Constantinescu S.Sternness. Fusion and Renewal of Hematopoietic and Embryonic Stem Cells. Cell Mol Med.2003,7(2):103-112.
    [17]Pan G, Pei D. The stem cell pluripotency factor nanog activates transcription with two unusually potent subdomains at its C-terminus. Biol Chem.2004,280:1401-1407.
    [18]Clark A T, Rodriguez R T, Bodnar M S, et al. Human STELLAR, NANOG and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hot spot for teratocarcinoma. Stem Cells.2004,22(2):169-179.
    [19]Avilion AA, Nicolis SK, Pevny LH, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.2003.17(1):126-140.
    [20]C.Chen, S.M.Ware, A.Sato, et al. The Vgl-related Protein GDF3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development.2006,33:319-329.
    [21]A.J.uvine, and A.H.Brivanlou. GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development.2006,33:209-216.
    [22]Ezeh UI, TurekPJ, Reijo RA, et al. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer.2005, 104(10):2255-2265.
    [23]Guo X, Gui YT, Tang AF, et al. Significance and expression of VASA associated withSpermatogenesison spermatozoa of normal fertilemen and oligospermatism. Chinese Journal of Andrology.2006,20(5):4-9.
    [24]Gakushi KITO, Shinya ARAMAKI, Koji TANAKA, et al. Temporal and spatial differential expression of chicken germline specific proteins cDAZL, CDH and CVH during gametogenesis. Journal of reproduction and development.2010,56(3):341-346
    [25]崔光辉,张键荣,漆正宇等.诱导小鼠骨髓间充质干细胞向雄性生殖细胞的定向分化[J].中国男科学杂志.2008,22(12):1-9
    [26]Fabrice Lavial, Herve Acloque, Elodie Bachelard, et al. Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Developmental biology.2009,330:73-82
    [27]Zhuo Yu, Ping Ji, Jinping Cao, et al. Dazl Promotes Germ Cell Differentiation from Embryonic Stem Cells. Journal of molecular cell biology.2009,1:93-103
    [28]Shinohara T, Avarbock MR, Brinster RL. Betal2 and alpha62integrin are surface markers on mouse s permatogonial stem cell. Pro Natl Acad Sci USA.1999,96 (10):55042-55049.
    [29]李彦锋,郭应禄,李晓红等.人精原干细胞特异性标志的初步筛选[J].中国男科学杂志,2005,11(7):486-489
    [30]Lee ST, Yun JI, Jo YS, et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. BOMATERIALS.2010,31(6):1219-1226
    [31]Seandel M, James D, Shmelkov S V, et al. Generation of functional multipotent adult stem cells from GPR1251 germline progenitors. Nature,2007,499(7160):346-350.
    [32]李碧春,魏彩霞,余飞等.鸡精原干细胞定向诱导分化特性的研究[J].畜牧兽医学报.2008,39(10):1336-1342.
    [33]Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis, nature.2008,456:344-349
    [34]Golestaneh N, Gallicano GI, Kokkinaki M, et al. Pluripotent stem cell derived from adult human testes. Stem Cells Dev.2009,18:1115-1126
    [1]Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors:lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol.2006,46:451-480.
    [2]Ross SA, McCaffery PJ, Drager UC, et al. Retinoids in embryonal development. Physiol Rev.2000,80(3):1021-1054
    [3]Koshimizu U,Watanabe M, Nakatsuji N, et al. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro.Dev Biol.1995,168(2):683-685.
    [4]Koubova J, Menke DB, Zhou Q, et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA.2006,103 (8):2474-2479.
    [5]Fraichard A, Chassande O, Bilbaut G, et al. In vitro differentiation of embryonic stem cell into glial cells and functional neurons. J cell Sci.1995,108:3181-3188.
    [6]Kerkis A, Fonseca SA, Serafim RC, et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells.2007, 9(4):535-548.
    [7]张红霞,郑维平,包文斌等.丹顶鹤性别鉴定的分子标记方法[J].农业生物技术学报.2008,16(3):417-420
    [8]刘铸,杨春文,田恒久等.基于CHD基因序列的隼形目12种鸟系统发育关系.生物技术通报.2010,6:179-184
    [9]J.萨姆布鲁克D.W.拉塞尔著黄培堂译分子克隆——实验指南(第三版)
    [10]Itoh Y, Suzuki M, Ogawa A, et al. Identification of the sex of a wide range of carinatae birds by PCR using primer sets selected from chicken EE0.6 and its related sequences, the American Genetic Association.2001,92:315-321
    [11]Hans Ellegern. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Biological Sciences.1996,263(1377):1635-1641
    [12]Dani C, Smith AG, Dessolin S, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci.1997,110:1279-1285
    [13]Drab M, Haller H, Bychkov R, et al. From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells:a retinoic acid and db-cAMP in vitro differentiation model. Faseb J.1997, 11(11):905-915
    [14]Strubing C, Ahnert-Hilger G, Shan J, et al. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev.1995,53(2):275-287
    [15]Wobus AM, Kleppisch T, Maltsev V, et al. Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptors and Ca2+ channels. In Vitro Cell Dev Biol Anim.1994,30A (7):425-434.
    [16]Celso Silva, Jennifer RW, Lisa S, et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell culture treated with all-trans retinoic acid and testosterone. Mol Reprod Dev.2009,76(1):11-21
    [17]Toyooka Y, Tsunekawa N, Akasu R, et al. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA,2003,100:11457-11462.
    [18]Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature,2004,427:148-154
    [19]Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells fromhuman embryonic stem cells in vitro. Hum Mol Genet,2004,13:727-739.
    [20]Baltus AE, Menke DB, Hu YC, et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet.2006, 38(12):1430-1434
    [21]Anderson EL, Baltus AE, Roepers-Gajadien HL, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA.2008,105(39):14976-14980
    [22]Mark M, Jacobs H, Oulad-Abdelghani M, et al. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation.J Cell Sci.2008, 121:3233-3242
    [23]Bost F, Caron L, Marchetti I, et al. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J.2002,361(Pt3): 621-627
    [24]Lu J, Tan L, Li P, et al. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol.2009,10:57
    [25]Chambon P, A decade of molecular biology of retinoic acid receptors. FASEB J.1996, 10(9):940-954.
    [26]Mahony S, Mazzoni EQ, McCuine S, et al. Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol.2011,12 (1):R2
    [27]Chen W, Jia W, Wang K, et al. Retinoic acid regulates germ cell differentiation in mouse embrynoic stem cells through a smad-dependent pathway. Biochem Biophys Res Commun. 2012,418(w3):571-577
    [28]Mitsui K, Tokuzawa Y, Itoh H, et al. The homeopoprotein Nanog is required for maintenance of pluripotenty in mouse epiblast and ES cell. Cell.2003,113(5):631-642
    [29]Hart AH, Hartley L, Ibrahim M, et al. Identification, cloning and expression analysis of the pluripotency promoting nanog genes in mouse and human. Dev Dyn.2004,230(1):187-198
    [30]Hatano SY, Tada M, Kimura H, et al. Pluripotential competence of cells associated with nanog activity. Mech Dev.2005,122(1):67-79
    [31]Yamaguchi S, Kimura H, Tada M,et al. Nanog expression in mouse germ cell development. Gene Expr Patterns.2005,5(5):639-646
    [27]陆建峰.视黄酸及其衍生物诱导胚胎干细胞定向分化为神经细胞及其应用研究[D].复旦大学.2009
    [1]Tanentzapf G, Devenport D, Godt D, et al. Integrin-dependent anchoring of a stem cell niche. Nat Cell Biol,2007,9 (12):1413-8
    [2]Tate MC, Garcia AJ, Keselowsky BG, et al. Specific betal integrins mediate adhesion, migration, and differentiation of neural progenitors derived from the embryonic striatum. Mol Cell Neurosci,2004,27 (1):22-31
    [3]Hayashi Y, Furue MK, Okamoto T, et al. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells,2007,25 (12):3005-15
    [4]Boudreau NJ, Jones PL. Extracellular matrix and integrin signaling:the shape of things to come. Biochem J.1999,339:481-488
    [5]宋阳,许增禄.睾丸细胞外间质作用的研究[J].解剖学报.1997,28(2):221-223
    [6]郭新,漆正宇,秦洁等.不同基质蛋白对小鼠胚胎干细胞生殖细胞分化相关基因表达的 影响[J].中华男科学杂志,2009,15(11):967-73
    [7]Plopper G. The extracellular matrix and cell adhesion. Sudbury, MA:Jones and Bartlett. ISBN 0-7637-3905-7.2007.
    [8]Thorsteinsdottir S. The extracellular matrix dimension of skeletal muscle development. Dev Biol.2011,354(2):191-207
    [9]Zhou J, Zhang Y, Lin Q, et al. Embryonic bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. J Genet Genomics.2010,37(7):451-60
    [10]Ma W, Tavakoli T, Derby E, et al. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol,2008,8:90
    [11]Hynes RO. Integrins versatility, modulation and signaling in cell sdhesion. Cell.1992, 69(1):11-25
    [12]Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol.1997,139(1):279-293
    [13]Folkman J, Moscona A. Role of cell shape in growth control. Nature.1978,273(5661): 345-349
    [14]Roskelley CD, Desprez PY, Bissell MJ. Extracellular matrix-dependent tissue-specific gene expression in mammaryepithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci USA.1994,91(26):12378-12382
    [15]Chen CS, Mrksich M, Huang S, et al. Geometric contol of cell life and death. Science.1997, 276(5317):1425-1428
    [16]Chiba M, Teitelbaum SL, Cao X, et al. Retinoic acid stimulates expression of the functional osteoclast integrin alpha v beta3:transcriptional activation of the beta 3 but not the alpha v gene. J Cell Biochem.1996,62(4):467-475
    [17]Ross SA, Ahrens RA, De Luca LM. Retinoic acid enhances adhesiveness, laminin and integrin beta 1 synthesis, and retinoic acid receptor expression in F9 teratocarcinoma cells. J Cell Physiol.1994,159(2):263-273
    [18]Bizot-Foulon V, Bouchard B, Hornebeck W, et al. Uncoordinate expression of type Ⅰ and Ⅲ collagens, collagenase and tissue inhibitor of matrix metalloproteinase 1 along in vitro proliferative life span of human skin fibroblasts. Regulation by all-trans retinoic acid. Cell Biol Int.1995,19(2):129-135
    [19]Nicholson RC, Mader S, Nagpal S, et al. Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site. EMBO J.1990,9(3):4443-4454
    [20]Varghese S, Rydziel S, Jeffrey JJ, et al. Regulation of interstitial collagenase expression and collagen degredation by retinoic acid in bone cells. Endocrinology.1994,134(6): 2438-2444
    [21]Medhora MM. Retinoic acid upregulates beta (1)-integrin in vascular smooth muscle cells and alters adhesion to fibronectin. Am J Physiol Heart Circ Physiol.2000,279:382-387
    [1]de Rooij DG, Repping S, van Pelt AM. Role for adhesion molecules in the spermatogonial stem cell niche. Cell stem cell,2008,3(5):467-468
    [2]de Rooij DG The spematogonial stem cell niche. Microsc Res Tech.2009,72(8):580-585
    [3]Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod,2011,84(4):639-645
    [4]Lacham-Kaplan O, Chy H, Trounson A.Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem cells, 2006,24(2):266-273
    [5]Qing T, Shi Y, Qin H, et al. Induction of oocyte-like cells from mouse embryonic stem cellsby coculture with ovarian granulose cells. Differentiation,2007,75(10):902-911
    [6]Richards M, Fong CY, Bongso A. Comparative evaluation of different in vitro systems that stimulate germ cell differentiation in human embryonic stem cells. Fertil Steril,2010, 93(3):986-994
    [7]Aflatoonian B, Ruban L, Jones M, et al. In vitro post-meiotic germ cell development from human embryonic stem cell. Hum Reprod,2009,24(12):3150-3159
    [8]Geens M, Sermon KD, Van de Velde H, et al. Sertoli cell-conditioned medium induces germ cell differentiation in human embryonic stem cells. J Assist Reprod Genet,2011,28(5):471-480
    [9]张学明,李德雪,岳占碰等.睾丸提取液、EGF、雌激素对小鼠精原干细胞体外存活和增殖的效果.中国农学通报,2006,6(22):1-4
    [10]朱海鲸.奶山羊雄性生殖干细胞的分离培养及向精子细胞的诱导分化.西北农林科技大学.2011
    [11]Hua J, Tuch BE, Sidhu KS. Coaxing HESC to form oocyte-like structures by co-culture with testicular extract and hormones. The open stem cell journal,2011,3,34-45
    [12]潘少辉.小鼠胚胎干细胞向雄性生殖细胞诱导分化的研究.西北农林科技大学.2011
    [13]李碧春.生成转基因鸡基础理论和方法的研究[D].西北农林科技大.2000
    [14]吴洪.鸡精原细胞分离纯化与体外初步培养[D].扬州大学.2006
    [15]Chaudhary J, Skinner MK. Identification of a novel gene product, Sertoli cell gene with a zinc finger domain, that is important for FSH activation of testicular sertoli cells. Endocrinology,2002,143(2):426-435
    [16]Besmer P, Manova K, Duttlinger R, et al. The kit-ligand (steel factor) and its receptor c-kit/W:pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl,1993:125-137
    [17]Lee NP, Cheng CY. Adaptors, junction dynamics and spermatogenesis. Biol Reprod,2004, 71(2):392-404
    [18]唐丽娟Sertoli's细胞的培养及转GDNF基因的TM4细胞系的建立.曲阜师范大学硕士学位论文,2010
    [19]West FD, Machacek DW, Boyd NL, et al. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem cells, 2008,26(11):2768-2776
    [20]Cavazzini D, Galdieri M, Ottonello S. Retinoic acid synthesis in the somatic cells of rat seminiferous tubules. Biochim Biophys Acta,1996,1313(2):139-145
    [21]Sigillo F, Guillou F, Fontaine I, et al. In vitro regulation of rat sertoli cell transferring expression by tumor necrosis factor a and retinoic acid. Mol Cell Endocrinol,1999, 148(1-2):163-170
    [22]Sugimoto R, Nabeshima YI, Yoshida S. Retionic acid metabolism links the periodical differentiation of germ cells with the cycle of sertoli cells in mouse seminiferous epithelium. Mech Dev,2012,128:610-624
    [23]Chung SS, Wolgemuth DJ,2004. Role of retinoid signaling in the regulation of spermatogenesis. Cytogenetic and Genome Research.2004,105:189-202.
    [24]Vernet N, Dennefeld C, Guillou F, et al. Prepubertal testis development relies on retinoic acid but not rexinoid receptors in sertoli cells. EMBO Journal.2006,25:5816-5825.
    [1]Schlatt S. Spermatogonial stem cell preservation and transplanation. Mol.Cell Endocrinol. 2002,187(1-2):107-111.
    [2]Brinster R L, Zimmermann J W. Spermatogenesis following male germ cell transplantation. PNAS.1994,91 (24):11298-11302.
    [3]Kalina J, Senigl F, MicakovaA, et al. Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction.2007,134 (3):445-453.
    [4]He X, Qi B, Liu GS, et al. A novel method to transfer gene in vivo system. Progress in Biochemistry and Biophysics.2006,33 (7):685-690.
    [5]Li BC, Sun GB, Sun HC, et al. Efficient generation of transgenic chickens using the spermatogonial stem cells in vivo and ex vivo transfection. Science in China Series C. Life Science.2008,51 (8):734-742.
    [6]Honaramooz A, Megee S, Zeng W X, et al. Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB,2008,22 (2):374-382..
    [7]Daniel G, Peter S, Martin H, et al. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. PNAS,2007,104(16):6806-6811.
    [8]Martin schwemmle, Kirsten C Weining, Marc F Richter, et al. Vesicular stomatitis virus transcription inhibited by purified MxA protein.Virology.1995,206:545-554.
    [9]倪黎纲,吴晓伟,程旭梅等.鸡Mx蛋白基因诱变修饰及抗病活性[J].微生物学报.2008,48(6):785-789.
    [10]吴晓伟.鸡Mx蛋白基因多态性检测及其细胞定位的研究[D].江苏.扬州大学.2009.
    [11]F.M.奥斯伯,R.布伦特,R.E.金斯顿等.精编分子生物学实验指南(第五版)[M].北京:科学出版社,2008,605-609
    [12]Joseph S, David WR分子克隆实验室手册(第3版)[M].西安:世界图书出版社公司,2002,1480-1481.
    [13]曹阳,高庆颖,李庆伟等.精子干细胞转染法制备转基因兔的研究[J].高技术通讯,2001.10:17-21.
    [14]Virginie O, Francois C. The spermatogonial stem cell:from basic knowledge to transgenic technology. Biochem Cell Biol,2005, (37):246-250.
    [15]Chang K, Qian J, Jiang M, et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol,2002,2(1):2-5
    [16]孙国波.鸡精原干细胞介导转基因的研究[D].江苏.扬州大学.2007.