稻田养鸭对土壤及杂草生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究稻鸭生态种养系统杂草的生物多样性,有助了解适度保护农田杂草生物多样性的重要性和潜在的巨大价值,为水稻病虫草害的综合生态防治提供依据;研究稻鸭生态系统的土壤营养特性,有助于了解稻鸭生态种养对土壤养分变化的影响,为稻鸭种养的快速推广提供环境学依据,同时也可为水稻的高产生态栽培提供新的思路。2008年3月-2009年11月采用田间试验,研究了机械直播条件下的稻鸭生态种养系统土壤营养特性和规模化稻鸭生态种养稻田杂草的生物多样性以及病虫害发生特点。主要得到以下结论:
     1完全稻鸭生态系统土壤营养特性
     (1)土壤团聚体含量及其养分特征。与水稻单一种植比较,完全稻鸭生态种养系统土壤2-1 mm团聚体增加5.29%,<0.25mm团聚体减少5.17%,>2 mm团聚体减少0.28%。全氮、全磷、全钾和全有机碳在2-1mm团聚体的含量显著增加,<0.25mm团聚体含量减少。与间歇稻鸭生态种养处理比较,完全稻鸭生态种养处理<0.25mm团聚体含量减少2.14%及其全钾含量下降。稻田养鸭有助于土壤大团聚体的形成,增加土壤养分在大团聚体的贮存量。
     (2)耕层养分特征。完全稻鸭生态种养和水稻单一种植的土壤氮、磷、钾养分的含量均随着耕层深度的增加呈逐渐下降,完全稻鸭生态种养0-5 cm土壤全磷、全钾、速效氮、速效钾和不同活性的有机碳含量增加显著,全氮含量明显下降;5-10 cm全磷、全钾含量减少,而高活性有机碳含量增加。10-15 cm速效氮和速效磷含量略有增加,15-20 cm全钾含量显著增加。说明鸭子的活动和粪便的输入对耕作表层养分影响效果较明显,且不同养分种类不同影响程度存在差异。
     (3)水稻根区营养。齐穗灌浆期水稻根表速效氮、速效钾、活性有机碳、高活性有机碳和pH值比水稻单一种植处理分别高30.80 mg/kg、17.93 mg、2.17 g/kg、0.56g/kg和0.23个单位,全氮、速效磷和全有机碳分别降低了0.11 g/kg、8.66 mg/kg和0.99g/kg;水稻根际土壤全氮、速效氮、速效钾、全有机碳、活性有机碳、中活性有机碳含量比水稻单一种植处理分别低0.11g/kg、15.13 mg/kg、7.61 mg/kg、2.39 g/kg、2.64 g/kg和0.72 g/kg,速效磷含量升高9.66 mg/kg。表明鸭子在稻田的行走中耕作用改变了土壤速效磷、速效钾、活性有机碳和高活性有机碳在水稻根际和根表的相对集中趋势。
     (4)有机碳与土壤理化的相关性分析。完全稻鸭生态种养系统土壤全有机碳与土壤全氮、全磷和速效氮含量的变化呈极显著正相关,相关系数分别为0.95、0.95、0.96,回归方程分别为Y=-11.3033+18.61137X,Y=1.454846+26.23002X,Y=-2.83889+0.181469X,经F检验均达到极显著水平。活性有机碳与全钾回归方程Y=39.21046-2.02799X,经F检验达到显著水平;高活性有机碳与速效磷回归方程为Y=17.62807-0.20748X,但F检验不显著。土壤全有机碳与土壤pH、容重呈极显著负线性相关,与总孔隙度呈显著正相关,相关系数分别为-0.85、-0.77、0.77,线性回归方程为Y=59.51093-7.15519X,Y=24.12376-4.27418X,Y=12.79717+0.113266X,经F检验回归均达到显著水平。活性有机碳、中活性有机碳分别与土壤容重呈显著负线性相关,与总孔隙度表现显著正相关。活性有机碳与土壤容重、总孔隙度线性回归方程为Y=26.334110.8307X,Y=-2.36728+0.287014X,F检验均也达到显著水平。说明稻鸭生态种养系统土壤有机碳的变化是土壤理化性状的综合作用结果。
     2规模稻鸭生态种养系统杂草的生物多样性以及病虫害变化规律
     (1)杂草群落组成及多样性。规模稻鸭生态种养杂草密度明显降低,水稻分蘖到孕穗期稻田杂草主要是看麦娘、稗草、水花生、狗牙根、鸭舌草和水竹叶组成;抽穗期到成熟期是水竹叶、稗草、狗牙根和水花生组成。水稻分蘖期物种丰富度、Simpon指数、Shannon-Wiener指数略高于水稻单一种植,Pielou指数低于水稻单一种植;孕穗期到成熟期物种丰富度、Simpon指数、Shannon-Wiener指数低于水稻单一种植,Pielou指数显著高于水稻单一种植。规模稻鸭生态种养与常规稻鸭生态种养比较稻田杂草密度、生物量和多样性指数差异不显著,但杂草生物多样性指数略有提高。
     (2)病虫害发生与发展特点。规模稻鸭生态种养系统水稻二化螟、稻纵卷叶螟、稻飞虱和稻叶蝉平均虫量较水稻单一种植分别下降54.4%、48.8%、73.6%、96.1%,纹枯病和稻瘟病病株率分别降低78.9%和48.5%;较常规稻鸭生态种养水稻二化螟、稻纵卷叶螟、稻飞虱和稻叶蝉量分别下降18.2%、9.5%、7.0%、0.82%,纹枯病病株率降低35.5%,稻瘟病病株率升高8.0%。稻飞虱和二化螟对水稻危害株率比常规稻鸭生态种养分别降低52.9%和6.9%。同时规模稻鸭生态种养系统水稻二化螟、稻纵卷叶螟、稻飞虱虫峰迟现,持续危害时间等特点;纹枯病蔓延危害期缩短10-14天。
The research adopted methods of experimental plots and investigation in paddy fields, and maked a study on the physical and chemical characteristics of soil, diversity of weed communities, population dynamics for rice insect pests and diseases, and economical benefits in rice-duck ecological farming ecosystem from 2008 to 2009. The main results were as follows:
     1. The soil nutrient characteristics in rice-duck ecological farming during growth stage of rice
     (1) The content of water stable aggregate and nutrient characteristics. Compared with that of sole cropping,2-1 mm water stable aggregate were increased by 5.29% in rice-duck ecological system,<0.25 mm and>2 mm water stable aggregate were decreased by 5.17% and 0.28% respectively. The content of total N, total P, total K and organic carbon were increased markedly in 2-1 mm and 1-0.25 mm water stable aggregate,<0.25 mm water stable aggregate were decreased.
     (2) Nutrient characteristics of soil profile. The content of N, P and K were decreased from surfance soil to 20 cm soil profile. Ducks moving and inputed dejecta into paddy fields, which influence on the surfance soil nutrient remakedly. The content of total P, total K, available N, available K and active organic carbon were increased markedly in 0-5 cm soil profile, while the content of total N was decreased. In 5-10 cm soil profile, the content of total P, total K were hegher than sole rice cropping, and in 10-15 cm soil profile, the content of available N, available P were incereased, and in 15-20 cm soil profile the content of total K were increased.
     (3) Nutritional status in the root zone. Available N, available K, active organic carbon, heigh-active organic carbon and pH value of rice root surface soil were increased by 30.80 mg/kg,17.93 mg/kg,2.17 g/kg,0.56 g/kg and 0.23, and total N and available P were decreased by 0.11 g/kg、8.66 mg/kg. The soil total N, available N available K, organic carbon, active organic carbon and mid-active organic carbon in rhizosphere were decreased by 0.11 g/kg,15.13 mg/kg,7.61 mg/kg,2.39 g/kg,2.64 g/kg and 0.72 g/kg, and available P was increased by 9.66 mg/kg.
     (4) The correlation analysis between organic carbon and soil properties. Soil total N, total P and available N was significantly correlated with Soil total organic carbon (R=0.95, 0.95,0.96), regression equations were Y=-11.3033+18.61137X, Y=1.454846+26.23002X, and Y=-2.83889+0.181469X respectively. The concertration of total K was with active organic carbon the linear regression equation was Y=39.21046-2.02799X. Soil pH value, bulk density and total porosity were significantly correlated with Soil total organic carbon (R=-0.85、-0.77、0.77), regression equations were Y=59.51093-7.15519X, Y=24.12376-4.27418X, Y=12.79717+0.113266X, F value were 10.11,5.90,5.90.
     2. The biodiversity of weed and population dynamics on rice insect pests and diseases in scale rice-duck ecological farming ecosystem.
     (1) The composition and diversity of weed communities. The density of weed of the scale rice-duck farming in paddy fields decreased significantly compared with the sole rice cropping. Before the rice booting stage,weed was composed of Mouochoria vaginalis, Echinochhloa crausgalli, Alternanthera philoxeroides, Murdannia triquetra, Cynodon dactylon L and Alopecurus pratensis Linn; From the rice heading stage to ripe stage, weed was composed of Echinochhloa crausgalli, Alternanthera philoxeroides and Cynodon dactylon L. At the rice tillering stage species richness, Simpon index and Shannon-Wiener index of scale rice-duck farming were higher than sole cropping, while Pielou index was lower than sole cropping. From the rice booting stage to rice ripe stage, species richness, Simpon index and Shannon-Wiener index of scale rice-duck farming were lower than that of sole cropping, while Pielou index was significantly higher than that of sole cropping. During the whole rice growing stage, weed density, weed fresh weight and species diversity were not significantly different between the scale rice-duck farming and conventional rice-duck farming,but species diversity of weed had a increasing trend. The scale rice-duck farming changed the structure of weed community and decreased the weed species diversity, which effectively limited weed infestation in paddy fields.
     (2) Population dynamics on rice insect pests and diseases in scale rice-duck ecological farming ecosystem. In scale rice-duck farming the mean densities of rice stem borers, leaf folder, planthoppers and leafhoppers were decreased by 54.4%,48.8%,73.6% and 96.1% compared with mono-cropping, as well as the rate of diseased plant of rice sheath blights and rice planthopper were decreased by 78.9% and 48.5%; While compared with the conventional rice-duck farming, the average densities of rice stem borer, rice leaf folder, rice planthopper and rice leafhopper was reduced by 18.2%,9.5%,7.0% and 0.82%, and the rate of diseased plant of rice sheath blight were decreased by 35.5%, unfortunately the rate of diseased plant rice blast-infested was increased by 8.0%. In scale rice-duck farming ecosystem, the percentage of infected plants of rice striped stem borer and rice planthopper were 52.9% and 6.9% lower than conventional rice-duck farming. The experiment also shows that the population peak density of rice stem borer, rice leaf folder and planthopper were postponed in scale rice-duck farming field, and infestation period of rice sheath blight was shortened by 10-14 days. The characters of rice in scale_rice-duck farming field were improved in terms of larger number of spikes per plant and kernels per spike, higher 1000-kernel-weight, lower emptiness rate and the highest grain yield. Net profit of scale rice-duck farming treatment increased by 1024.32 yuan/hm2 (4.53%) and 1370.61 yuan/hm2 (71.21%) compared with the conventional rice-duck farming and mono-cropping respectively. The scale rice-duck farming has an good effect on control of rice diseases and pests, and its economic income was increased markedly.
引文
[1]王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.应用生态学报,1999,10(4):425-429.
    [2]Arrouays D,Vion I, Kicin J L.Spatial analysis and Modelling oftopoil carbon storage in temperate forest humic loamy soils of France. Soil Science,1995,159(3):191-198.
    [3]黄昌勇.土壤学.北京:中国农业出版社,2000.
    [4]李忠佩,杨德涌.不同利用年限红壤水稻土有机碳和养分含量的粒级分布变化.土壤学报,2009,46(1):70-77.
    [5]Greenland D J, Wild A, Phillips D.Myths and science of soils inthe tropics. Am.Soc. Agron,1992,17-34,
    [6]许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素.地理研究2009,28(3):602-612.
    [7]Lutzow M, Kogel-Knabner I, Ekschmitt K, et al.Stabilization oforganic matter in temperate soils:Mechanisms and their relevanceunder different soil conditions-Areview. European Journal of Soil Science,2006,57(4):426-445.
    [8]Kogel Knabner I.The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter.Soil Biology and Biochemistry,2002,34:139-162.
    [9]Six J, Frey S D,Thiet R K, et al.Bacterial and fungal contributions to carbon sequestration in agro-ecosystems. Soil Science Society America Journal,2006,70:555-569.
    [10]Wolters V. Invertebrate control of soil organic matterstability. Biology and Fertility of Soils,2000,31:1-19.
    [11]Fox O,Vetter S,Ekschmitt K,et al.Soil fauna modifies the recalcit rance persistence relationship of soil carbonpools. Soil Biology & Biochemistry,2006,38:1253-1263.
    [12]Moore J C. Topdown is bottomup:Does predation inthe rhizosphere regulate aboveground dynamics. Ecology,2003,84(4):846-857.
    [13]Gregorich E G, Carter M R, Doran J W, et al.Biological attributers of soil quality.Soil Quality for Crop Production and Ecosystem Health. Development in Soil Science.The Netherlands:Elsevier,1997,81-113.
    [14]Campbell C A,Lafond G P,Moulin A P,et al.Cropproduction and soil organic matter in long-term crop rotations in the subhumid northern GreatPlains of Canada. Soil Organic Matter in Temperate Agroecosystems. Boca Raton,FL:Lewis Publishers,1997,297-315.
    [15]Janzen H H,Campbell C A, Izaurralde R C, et al.Management effects on soil C storage on the Canadian prairies.Soil Tillage Research,1998,47:181-195.
    [16]赵明东,罗晓红,刘淑霞.土壤活性有机碳、养分有效性与作物产量的关系.安徽农业科学,2006,34(4):732-733,748.
    [17]赵军,孟凯,隋跃宇,等.海伦黑土有机碳和速效养分空间异质性分析.土壤通报,2005,36(4):487-492.
    [18]Kurmysheva N A, et al.Importance of the fertilizer systems and crop rotations in regulating the humus regime of dernopodzolic soil in conditions of intensive agriculture. Agrokhimiya,1996,12:10-16.
    [19]郭菊花,陈小云,刘满强,等.不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响.土壤,2007,(5):787-793.
    [20]乔云发,韩晓增,韩秉进,等.长期施用化肥对农田黑土有机碳和氮消长规律的影响.中国土壤与肥料,2007,(4):30-33
    [21]Paustian K,Andren O,Janzen H,et al.Agricultural soil as a C sink to offset CO2 emission, Soil Use and Management,1997,13:230-244.
    [22]Angers D A,Bolinder M A,Carter M R,et al.Impact of tillage practices on organic carbon and nitrogen storage in cool,humid soils of eastern Canada.Soil and Tillage Research, 1997,41:191-201.
    [23]Yang X M, Kay B D.Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in southern Ontario,Soil & Till.Res.,2001,59:107-114.
    [24]李丛,汪景宽.长期地膜覆盖及不同施肥处理对棕壤有机碳和全氮的影响.辽宁农业科学,2005,(6):8-10.
    [25]申建波,张福锁,毛达如.根际微生态系统中的碳循环.植物营养与肥料学报,2001,7(2):232-240.
    [26]Butler Tler J L,Bottomely P J,Grifftth S M,etal.Distribution and turn over of recently fixed photosynthetic in ryegrass rhizosphere.Soil Biology and Biochemistry,2004, 36:371-382.
    [27]Lynch J M,Whipps J M.Substrate flowintherhizosphere.Plant Soil,1990,129:1-10.
    [28]Lynch J M,Whipps J M.Substrate flow in the rhizosphere.In:KEISTER D L, CREGAN P B (eds.). The rhizosphere and plant growth. KLUWER Acad.PUBL, Boston,1991, 15-24.
    [29]郑凤英,彭少麟,李跃林.CO2浓度升高对植物-土壤系统地下部分碳流通的影响.生态学杂志,2002,21(3):57-60.
    [30]MARSCHNER H.Mineral nutrient of higher plants.AcademicPress,New York,1995, 889.
    [31]张福锁,申建波.根际微生态系统理论框架的初步构建.中国农业科技导报,1999(4):15-20
    [32]Miller M H.The Plant and Its Environment.New York:Academic Press,1974,643-668.
    [33]Hall J M,Killham K,Paterson E.The effect of elevated CO2 concentration and soil pH on the relationship between plant growth and rhizosphere denitrification potential.Global Change Biology,1998,4(2):209-216.
    [34]张福锁.环境胁迫与植物根际营养.北京:中国农业出版社,1998:21-75.
    [35]李晓林,曹一平.菌根和非菌根三叶草根际土壤磷钾变化.土壤通报,1992,23:180-182.
    [36]Riley D,Barber S A.Bicarbonate accumulation and pH changes at the soyben root-soil interface.Proceedings of Soil Science Society of America,1969,33:905-90.
    [37]许曼丽,刘芷宇.土壤-根系微区养分状况的研究Ⅱ.钾离子的富集与亏缺.土壤学报,1982,19(4):295-302.
    [38]李儒海,强胜,邱多生,等.长期不同施肥方式对稻油两熟制油菜田杂草群落多样性的影响.生物多样性,2008,16(2):118-125.
    [39]古巧珍,杨学云,孙本华,张树兰,同延安.不同施肥条件下黄土麦地杂草生物多样性.应用生态学报,2007,18(5):1038-1042.
    [40]李志胜,黄顶成,徐敦明,等.稻田周围杂草地生境节肢动物群落的物种丰富度、优势度及多样性.福建农林大学学报(自然科学版),2003,32(4):425-429.
    [41]郭玉杰,王念英,陈俊炜,等.不同稻区节肢动物群落中捕食者与猎物的种类与数量特 征.生物防治通报,1994,10(4):1157-161.
    [42]张文庆,张古忍,古德祥.稻飞虱及其节肢类捕食性者的生态位关系研究.中山大学学报论丛,1995,(2):21-26.
    [43]张古忍,张文庆,古德祥.稻田主要节肢类捕食性天敌群落的多样性.中山大学学报论丛,1995,(2):27-32.
    [44]农荣贵,张景强.稻田害虫和捕食性节肢动物群落结构和动态.蛛形学报,1998,7(1):74-80.
    [45]王洪全,颜亨梅,杨海明.中国稻田蜘蛛群落结构研究初报.蛛形学报,1999,8(2):95-115.
    [46]何俊华,陈学新,马云,等.中国水稻害虫天敌名录.北京:科学出版社,1991,244.
    [47]尤民生,徐清元.福州十字花科蔬菜昆虫群落种类组成及其多样性研究.福建农林大学学报,2000,29(4):444-452.
    [48]侯有明,尤民生,庞雄飞,等.菜田节肢动物的类群结构与数量动态.福建农业大学学报,2000,29(3):323-328.
    [49]Andow D A.Vegetational diversity and arthropod population response.Ann.Rev.Entomol, 1991,36:561-586.
    [50]Altieri M A.Biodiversity and pest management in agroecosystems. New York: Haworth Press,1994.185.
    [51]Fowler C.and Mooney, P. Shattering Food, Politics and the Loss of Gene Diversity. University of Arizona Press,Tucson,1990.
    [52]Altieri M.A.Increasing biodiversity to improve insect pest management in agro-ecosystems.In: Hawksworth, D. L. (ed).The Biodiversity of Microorganisms and Invertebrates:Its Role in Sustainable Agriculture.CAB inter.1991,165
    [53]甘德欣,黄璜,黄梅.稻鸭共栖高产高效的原因与配套技术.湖南农业科学,2003,(5):31-32,36.
    [54]王华.稻鸭生态种养减排甲烷和改善稻田环境的功能研究.长沙:湖南农业大学,2002.
    [55]甘德欣,黄璜,黄梅,等.免耕稻鸭复合系统生态学特性研究-Ⅰ.土壤物理性状及养分动态变化.湖南农业大学学报(自然科学版).2004,30(1):24-28.
    [56]甄若宏,王强盛,周建涛,等.稻鸭共作复合系统的生态环境效应研究.安徽农业科学.2008,36(21):9008-9011,9021.
    [57]杨志辉,黄璜,王华.稻-鸭复合生态系统稻田土壤质量研究.土壤通报,2004,35(2):117-121
    [58]王强盛,黄丕生,甄若宏,等.稻鸭共作对稻田营养生态及稻米品质的影响.应用生态学报,2004.15(4):639-645.
    [59]禹盛苗.稻鸭共育新技术.北京:中国农业科学技术出版社,2006.
    [60]吉野隆雄.稻田养鸭的实用技术.东京.农业渔村文化协会.1992,10-16,121-124
    [61]章家恩,赵美玉,陈进,等.鸭稻共作方式对土壤肥力因素的影响.生态环境2004,13(4):654-655.
    [62]甄若宏,王强盛,邓建平,等.稻鸭萍共作复合系统的主要生态效应.生态与农村环境学报,2006,22(3):11-14.
    [63]展茗,曹凑贵,汪金平,等.稻鸭共作对甲烷排放的影响.应用生态学报,2008,19(12):2666-2672.
    [64]王华.稻-鸭生态种养减排甲烷和改善稻田环境的功能研究.湖南:湖南农业大学,2002.
    [65]黄梅.免耕稻-鸭生态种养模式及综合效益研究.湖南:湖南农业大学,2003.
    [66]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望.科学通报,2004,49(13):1226-1233
    [67]魏守辉,强胜,马波,等.长期稻鸭共作对稻田杂草群落组成及物种多样性的影响.植物生态学报,2006,30(1):9-16.
    [68]刘小燕,杨治平,黄璜,等.湿地稻-鸭复合系统中田间杂草的变化规律.湖南农业大学学报(自然科学版),2004,30(3):292-294
    [69]魏守辉,强胜,马波,等.稻鸭共作及其它控草措施对稻田杂草群落的影响.应用生态学报,2005,16(6):1067-1071.
    [70]戴志明,杨华松,张曦,等.云南稻-鸭共生模式效益的研究与综合评价(三).中国农学通报,2004,20(4):265-267,27
    [71]金千瑜,禹盛苗,欧阳由男,等.中国稻-鸭农作系统发展概况与稻鸭共育技术研究.赵振祥主编.第四届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004,1-6
    [72]马国强,庄雅津,周铭成.稻鸭共作无公害水稻生产技术初探.农业装备技术,2002,(2):20-21
    [73]朱克明,沈晓昆,谢桐洲,等.稻鸭共作技术试验初报.安徽农业科学,2001,29(2):262- 264
    [74]杨治平,刘小燕,黄璜,等.稻田养鸭对稻飞虱的控制作用.湖南农业大学学报,2004,30(2):103-10
    [75]熊国远,朱秀柏,陈周前,等.稻鸭共生技术示范推广报告.当代畜牧,2003,(10):4-6
    [76]朱凤姑,丰庆生,诸葛梓.稻鸭生态结构对稻田有害生物群落的控制作用,浙江农业学报,2004,16(1):37-41
    [77]林章荣,晋焯忠.稻田放鸭防治虫害的初步研究.中国生物防治,2002,18(2):94-95
    [78]童泽霞.稻田养鸭与稻田生物种群的关系初探.中国稻米,2002,(1):33-34
    [79]席运官,钦佩,宗良纲.有机水稻病虫草防治技术与经济效益分析.南京农业大学学报,2004,27(3):46-49
    [80]禹盛苗,金千瑜,欧阳由男,等.稻鸭共育对稻田杂草和病虫害的生物防治效应.中国生物防治,2004,20(2):99-102
    [81]冉茂林,陈铮,谷义成.我国稻田养鸭的发展及研究现状.中国畜牧杂志,1993,25(5):58-59
    [82]冉茂林.稻鸭共作的水稻增产效益.宜宾科技,1991,4:27-30
    [83]黄兴国.稻鸭生态种养对稻、鸭生长与营养品质及生态环境的影响研究.湖南:湖南农业大学,2008,1-63
    [84]黄璜,王华,龙江松等.稻田围栏养鸭,北京:金盾出版社,2003
    [85]向平安,黄璜,甘德欣,等.免耕稻-鸭生态种养技术的环境经济学分析.生态学报,2005,25(8):1981-1986.
    [86]刘明辉,傅志强,黄璜,等.稻鸭共育生态栽培模式配套频振式诱蛾灯物理杀虫技术应用效果研究.作物研究,2005,19(2):109-110
    [87]刘小燕,黄璜,杨治平,等.稻鸭鱼共栖生态系统CH4排放规律研究.生态环境,2006,15(2):265-269
    [88]黄璜,何保良,陈灿,等.稻(鸭)-紫云英复合系统的生态学功能分析.中国生态学会2006年学术年会论文集摘要,165.
    [89]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000,146-195
    [90]鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2007,25-113
    [91]徐明,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报,2006,43(5):723-729.
    [92]刘合明,杨志新,刘树庆.不同粒径土壤活性有机碳测定方法的探讨.生态环境,2008,17(5):2046-2049
    [93]章明奎,郑顺安,王丽平.利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响.中国农业科学,2007,40(8):1703-1711.
    [94]孙天聪,李世清,邵明安,等.半湿润农田生态系统长期施肥对土壤团聚体中有机氮组分的影响.应用生态学报,2007,18(10):2233-2238
    [95]向艳文,郑圣先,廖育林,等.长期施肥对红壤水稻土水稳性团聚体有机碳、氮分布与储量的影响.中国农业科学2009,42(7):2415-2424
    [96]Gale W J, Cambardella C A. Carbon dynamics of surface residue and root derived organic matter under simulated no-till.Soil Science Society of America Journal,2000, 64:190-195
    [97]Schimel D S.Terrestrial ecosystems and the carbon cycle.Global Change Biology,1995, 1:77-91
    [98]Kern J S,Johnson M G.Conservation tillage impacts on national soil and atmospheric carbon levels.Soil Science Society of America Journal,1993,57:200-210
    [99]Paustian K, Andren O,Janzen H R,et al.Agricultural soilas a C sink to offset CO2 emissions. Soil Use and Man-agement,1997,13:230-244
    [100]吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较.植物生态学报,2004,28(5):657-664
    [101]沈宏,曹志洪,胡正义.土壤活性碳的特征及其生态效应.生态学杂志,1999,18(3):32-38.
    [102]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库指数的影响.土壤学报,2000,37(2):166-173
    [103]Bradley R L, Fyles J W. Akinetic parameter describing soil available C and its relationship to rate increase in C mineralization.Soil Biology and Biochemistry,1995, 27(2):167-172.
    [104]Sparliing G P,Ord B G,Vaughan D. Changes in microbial biomas and activity in soils amended with phenolic acids.Soil Biology and Biochemistry,1981,13:455-460.
    [105]张璐,张文菊,徐明岗,等.长期施肥对中国3种典型农田土壤活性有机碳库变化的影响.中国农业科学,2009,42(5):1646-1655
    [106]孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响.中国农业科学,2005,38(9):1841-1848.
    [107]黄欠如,胡锋,袁颖红,等.长期施肥对红壤性水稻土团聚体特征的影响.土壤,2007,39(4):614-613
    [108]王强盛,甄若宏,丁艳锋,等.稻鸭共作下水稻植株的壮秆效应及生理特性.应用生态学报2008,19(12):2661-2665
    [109]禹盛苗,欧阳由男,张秋英,等.稻鸭共育复合系统对水稻生长与产量的影响.应用生态学报,2005,16(7):1252-1256
    [110]章家恩,赵美玉,陈进,等.鸭稻共作方式对水稻生长的影响.生态科学,2005,24(2):117-119
    [111]全国明,章家恩,滕丽丽,等.稻鸭共作对水稻根系生长的影响.华南农业大学学报,2008,29(3):1-5.
    [112]刘小燕,刘大志,陈艳芬,等.稻-鸭-鱼共栖生态系统中水稻根系特性及经济效益.湖南农业大学学报(自然科学版),2005,31(3):314-316
    [113]李奕林,黄启为,王兴祥,等.不同氮效率水稻生育后期根表和根际土壤硝化特征.生态学报,2009,29(2):824-831
    [114]何胜德,林贤青,朱德峰,等.杂交水稻根际供氧对土壤氧化还原电位和产量的影响.杂交水稻,2006,21(3):78-80
    [115]马红亮,吴艳红,朱建国,等.大气C02浓度升高对作物根际土壤氮的影响.农业环境科学学报2009,28(4):849-854
    [116]江立庚,周佳民,徐世宏.免耕对水稻根系生长及根际环境的影响-免耕对水稻根际pH和养分含量的影响.中国农学通报,2009,25(15):113-116
    [117]姜勇,郝伟,张玉革,等.潮棕壤不同利用方式营养元素随耕层深度的变化特征.水土保持学报,2006,20(3):93-96
    [118]刘方,轰华,刘生,等.不同施肥措施对土壤硝态氮垂直分布的特征.土壤通报,2005,36(1):50-53
    [119]张心昱,陈利顶,傅伯杰,等.不同农业土地利用方式和管理对土壤有机碳的影响.生态学报,2006,26(10):3198-3204.
    [120]刘少华,陈国祥,吕川根,等.根际pH值对杂交稻幼苗光能转化特性的影响.中国水稻科学,2003,17(3):244-248
    [121]陈欣,王兆骞,唐建军.农业生态系统杂草多样性保持的生态学功能.生态学杂志,2000,19(4):50-52
    [122]McLaughlin A, Mineau P. The impact of agricultural practices on biodiversity. Agriculture, Ecosystem and Enviroumeut,1995,55:201-212
    [123]郭水良,李扬汉.杂草的基本特点及其丰富栽培地生物多样性的作用.资源科学,1996(3):48-52
    [124]杨治平,刘小燕,黄璜,等.稻田养鸭对稻鸭复合系统中病、虫、草害及蜘蛛的影响.生态学报,2004,24(12):2756-2760
    [125]黄璜,杨志辉,王华,等.湿地稻-鸭复合系统的CH4排放规律.生态学报,2003,23(5):929-934
    [126]王华,黄璜,杨志辉,等.湿地稻-鸭复合生态系统综合效益研究.农村生态环境,2003,19(4):23-26
    [127]Xing P A, Huang H, Huang M, et al. Studies on technique of reducing methane emission in a rice-duck ecological system and the evaluation of its economic significance. Agricultural Sciencesin in China,2006,5(10):758-766
    [128]黄璜,黄梅,童泽霞,等.湿地农田生态系统农药“零量”输入的生态效益分析.湖南农业科学,2002,(3):45-47
    [129]黄璜,王华,胡泽友,等.稻鸭种养生态工程的理论分析与实践过程.作物研究,2003,17(4):189-191
    [130]禹盛苗,金千瑜.稻鸭共育新技术.北京:中国农业科学技术出版社,2006:96-99
    [131]马克平.生物群落多样性的测度方法Ⅰ:α多样性的测度方法(上).生物多样性,1994,2(3):162-168
    [132]马克平,刘玉明.生物群落多样性的测度方法Ⅰ:α多样性的测度方法(下).生物多样性,1994.2(4):231-239
    [133]魏守辉,强胜,马波,等.稻鸭共作及其它控草措施对稻田杂草群落的影响.应用生态学报,2005,16(6):1067-1071
    [134]古巧珍,杨学云,孙本华,等.不同施肥条件下黄土麦地杂草生物多样性.应用生态学报,2007,18(5):1038-1042
    [135]马丽荣,蔺海明,陈玉梁,等.兰州引黄灌区玉米田杂草群落及生态位研究.草业学报,2007,16(2):111-117
    [136]魏守辉,强胜,马波,等.长期稻鸭共作对稻田杂草群落组成及物种多样性的影响.植物生态学报2006,30(1):9-16
    [137]Charence,J.S. and Stephen D M.Weed science beyond the weeds:the role of integrated weed management in agroecosystem health.Weed Science,1996,44:437-445.
    [138]Lagerlof J,. Wallin H. The abundance of arthropods along two field margins with different types of vegetation composition:an experimental study. Agriculture, Ecosystem and Environment,1993,43:141-154
    [139]常向前,李儒海,褚世海,等.湖北省水稻主产区稻田杂草种类及群落特点.中国生态农业学报,2009,17(3):533-536
    [140]章秀福,王丹英,方福平,等.中国粮食安全和水稻生产.农业现代化研究,2005,26(2):85-88
    [141]高志强,刘纪远,庄大方.我国耕地面积重心及耕地生态背景质量的动态变化.自然资源学报,1998,13(1):92-96
    [142]高尚宾.建立生态补偿机制,探索集约化农业可持续发展之路.农业科技管理,2008,27(1):21-24
    [143]吴大付,孙夏耘,张伟.我国农业集约化与持续化关系研究.农业现代化研究,2008,29(4):417-420
    [144]王井士,桑海旭,李运动,等.用完善的生态系统防治稻田病虫害.垦殖与稻作,2005,(2):31-33
    [145]黄德超,曾玲,梁广文,等.不同耕种稻田害虫及天敌的种群动态.应用生态学报,2005,16(11):2122-2125
    [146]黄璜,黄梅,童泽霞.湿地农业生态系统农药“零量”输入的生态效益分析.湖南农业科学,2003,(3):45-46
    [147]郑永华,邓国彬.稻鱼鸭种养共生模式效益的研究及综合评价.中国生态农业学报,1998,6(1):48-51
    [148]农业部农作物病虫测报总站.农作物主要病虫测报办法.北京:农业出版社,1981
    [149]向平安,黄璜,黄梅,等.稻-鸭生态种养技术减排甲烷的研究及经济评价.中国农业科学,2006,39(5):968-975
    [150]卢跃红,魏红江,张曦;等.国内外稻鸭共生的研究现状.云南农业大学学报,2006,21(1):81-85
    [151]杨治平,刘小燕,黄璜,等.稻田养鸭对稻飞虱的控制作用.湖南农业大学学报(自然科学版),2004,30(2):103-106
    [152]刘小燕,杨治平,黄璜,等.稻鸭复合生态系统中二化螟发生规律的研究.湖南师范大学自然科学学报,2005,28(1):70-74
    [153]刘向东,张孝羲,郭慧芳,等.稻田蜘蛛群落对稻飞虱的控制功能作用研究.生态学报,2001,21(1):100-105
    [154]陶方玲.蜘蛛对稻纵卷叶螟和白背飞虱的选择捕食作用.生态科学,1995,(2):49-53
    [155]刘小燕,杨治平,黄璜,等.湿地稻鸭复合系统中水稻纹枯病的变化规律.生态学报,2004,24(11):2579-2583
    [156]甄若宏,王强盛,张卫建,等.稻鸭共作对稻田主要病、虫、草的生态控制效应.南京农业大学学报,2007,30(2):60-64
    [157]谢乐强,陈仕贵,黄璜,等.稻鸭复合系统的生态经济效益分析.湖南农业科学,2005,(4):93-95
    [158]章家恩,陆敬雄,张光辉,等.鸭稻共作生态农业模式的功能与效益分析.生态科学,2002,21(1):6-10
    [159]詹媛媛,薛梓瑜,任伟,等.干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征.生态学报,2009,29(1):59-66
    [160]王强盛,黄丕生,甄若宏,等.稻鸭共作对稻田营养生态及稻米品质的影响.应用生态学报,2004,15(4):639-645