黄土高原子午岭天然油松林土壤微生物生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然油松林是黄土高原森林群落自然演替过程的重要环节,是黄土高原植被保护和恢复的重要森林植被类型之一。土壤是植物群落演替过程中重要的环境因子,是生态系统功能恢复与维持的关键指标。研究天然油松林土壤微生物群落结构特征及其与土壤养分、土壤酶和植被演替等关系,将有助于进一步认识和明确土壤微生物在天然油松林演替过程中地位和作用,这对于黄土高原退化生态系统的恢复和重建具有重要的借鉴意义。
     本文以黄土高原子午岭处于不同演替阶段的天然油松林为研究对象,测定了土壤有机质、全N、碱解N、速效P、速效K、pH和土壤含水量等土壤肥力指标,以及土壤过氧化氢酶、脲酶、转化酶、蛋白酶、纤维素酶、多酚氧化酶、碱性磷酸酶等土壤微生物生理活性指标;利用“平板培养法”、“MPN法”和“末端标记限制性片段长度多态性法(Terminal Restriction Fragment Length Polymorphism, T-RFLP)"分别测定了土壤微生物三大类群、主要功能群以及遗传多样性组成;利用“熏蒸提取-容量分析法”测定了土壤微生物生物量碳(MBC)组成。
     研究结果显示:随着天然油松林的演替,1)十壤有机质、全N,碱解N,速效K及含水昔增加,土壤速效P和pH下降。2)土壤过氧化氢酶含量逐渐下降,土壤纤维素酶、转化酶及脲酶含量上升,土壤多酚氧化酶及碱性磷酸酶呈先升后降趋势。3)土壤可培养微生物数量及土壤MBC增加;基于可培养微生物组成的微生物群落多样性随着油松林的演替而递增,放线菌数量的变化对多样性的影响作用更大。4)辽东栎、油松及白桦凋落叶单独或组合处理70a油松林土壤后,土壤微生物三大类群数量均不同程度的增加;经白桦和辽东栎凋落物分别处理的土壤,其微生物数量均明显高于油松凋落物处理的土壤。5)40a林和70a林土壤微生物群落T-RFLP图谱相似性较大,二者与25a林相似性较小,与10a林相似性最小;由10a油松林发展到40a油松林,土壤微生物群落遗传多样性增加,由40a林发展到70a油松林,多样性明显下降。
     以上结果表明:1)天然油松林演替过程中,伴随着油松凋落物等物质的积累,土壤有机质和总N等肥力指标增加,有机质分解过程中产生的有机酸导致土壤pH下降,并抑制了土壤P的有效化过程,造成土壤速效P含量下降。2)天然油松林的演替过程中,随着林下凋落物的增加,土壤转化酶、脲酶及碱性磷酸酶含量增加,土壤肥力进一步改善;土壤脲酶含量的增加提高了土壤N素含量,而N素的积累有助于土壤蛋白酶的合成;由于油松凋落物纤维化程度较高,土壤纤维素酶活性随油松林演替增加;随着天然油松林演替的进行,土壤过氧化氢酶含量降低,缓解了土壤的自毒效应。3)随着天然油松林的演替,林下凋落物逐年积累,为土壤微生物提供了大量的C源,土壤微生物量及可培养微生物数量增加,微生物三大类群分布愈加均匀。4)凋落叶处理土壤的结果表明,不同凋落物都能促进土壤微生物数量的增长,其中,阔叶树种优于针叶树种,因此,在森林恢复实践中,应注意合理搭配树种,以更好地改善土壤性质。5) T-RFLP结果反映了土壤可培养和未培养微生物组成状况,演替早期阶段,土壤微生物组成变化较大,随着演替的进行,土壤微生物组成愈加相似。微生物群落遗传多样性随着油松群落演替而增加,但到了70a林阶段,多样性急剧下降,个中原因值得进一步研究。
Natural Chinese pine forests, which is one of the important forest plant species in forest recovery and protection in the Loess Plateau, is also the significant links of forest community natural succession process in this region. Soil, which is the vital important environment factor during plant succession, is the key index of function recovery and maintain of the eco-system. Study on the relationship among soil community structure characteristic and soil fertility as well as enzyme activity could further understand the statue and effect of soil microbe in the process of natural Chinese pine forests during different succession stages, which also play an important role in the process of function recovery and maintain of the eco-system in this region.
     Therefore, taking the natural Chinese pine forests with different growth years in Ziwuling forest region of the Loess Plateau as research object; organic matter, total nitrogen, available nitrogen, available phosphorus, available potassium, pH,water content Catalase, Urease,Protease. lnvertase, Cellulose and Polyphenol oxidase as well as Alkaline phosphatase of soil samples were determined by traditional methods so as to investigate the change law of soil physical and chemical properties and soil enzyme activity along plant succession; the three main micro-groups and major functional groups of soil microbe was investigated based on the method of plate cultivation and MPN method, besides, the soil microbial biomass carbon (MBC) was also determined through the method of chloroform fumigation; the soil micro-community composition was studied with the method of terminal restriction fragment length polymorphism (T-RFLP), which would be helpful to further understand status and function of function recovery and maintain of the eco-system in this region.
     Results show that:1) Total nitrogen, organic matter, available nitrogen and available potassium as well as water content of soil samples showed an increasing trend but available phosphorus and pH were reduced as the succession prolonged.2) Catalase showed a decreasing trend but cellulose, urease and invertase increased, and polyphenol oxidase as well as alkaline phosphatase of soil samples showed forword increase and decrease afterword trend along the succession.3) Both total number of soil microbe and soil MBC showed an increasing trend as the succession prolonged. Addinationally, soil actinomycetes play the determining effect on community diversity than soil becteria.4) The three main micro-groups number of soil microbe form the natural Chinese pine forests with the growth year of 70, determined by effective components extracted form the litter fall in this region, showed an increasing trend separately; System cluster result showed that the number treated by birch and liaodong oak is extremely higher than of the chniese pine.5) There is a higher T-RFLP maps similarity between soil samlple of 40a and 70a, and both of them shows a middle similarity with 25a soil sample, and they has a lower similarity with the 10a; the soil genetic diversity show a increasing trend from 10a to 40a but decreas till70a.
     The results above represent that:1) As the the forest litter fall accumulation increased, the feritility, including soil organic and total N improved, show an increasing trend as the succession prolonged; Organic acid form the organic acid decomposition make the soil pH stay at lower level, which could restrict the availability of P.2) The complex the plants community structure and increased litter fall under the forest plants which are benefit for the accumulation of soil Urease and Invertase, it indicate that the soil fertility here is getting better and better; besides, the improvement of soil Urease would be helpful to the level of N, which consequently improve the Protease level; according to Chinese pine litter fall of itself characteristic, it would be benefit for the accumulation of soil Cellulose, moreover, the litter fall itself could produce more organic acid, which would interrupt the level of soil Alkaline Phosphatase.3) The distribution of three main micro-groups number of soil microbe is getting more averaged and the number of Actinomycetes play more significant role than the Bacterium in the micro-diversity; The increased litter fall under the forest plants would offer the rich C to the microbe growth, thus, the MBC level at the preliminary stage improved slowly but it showed an increasing trend as the succession time prolonged.4) Soil microbe number form the soil of natural Chinese pine forests with the growth year of 70, determined by effective components extracted form the litter fall in this region, showed an increasing trend separately; System cluster result showed that the number form hardwood litter fall is extremely higher than of the conifer and the litter fall from coriaceous was located between them; it tells us that reasonably plants setting would be extremely important to the plantation growth.5) The soil micro-community genetic diversity was studied with the method of terminal restriction fragment length polymorphism (T-RFLP), it represented that there is high diversity similarity during the earlier succession, and it shows a higher similarity as the succession develops but it sharply decreased till 70a, its pricinple is valuable and necessary to be further studied.
引文
[1]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,10-12.
    [2]Gray N D, I.M. Head. Microbial Ecology [J]. Encyclopedia of Ecology,2008, 2357-2368.
    [3]林先贵.土壤微生物学的研究进展和发展方向[J].土壤,1991,23(4)210-213.
    [4]Amann RI, Ludwig W, et al. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews,1995, 59:143-169.
    [5]Prosser JI. Molecular and functional diversity in soil micro-organisms [J]. Plant Soil,2002,244:9-17.
    [6]Delorme T A, Gagliardi J V, Angle J S, et al. Influence of the Zinc hyperaccumulator Thlaspi caerulescens J.& C. Presl. and the nonmetal accumulator Trifolium pretense L. on soil microbial populations [J]. Canadian Journal of Microbiology,2001,47:773-776.
    [7]Pliverira A L M, Urquiaga S, Dobereiner J, et al. Biological nitrogen fixation (BNF) in micro-propagated sugarcane plants inoculated with different endophytic diazotrophic bacteria. In:Pedrosa F O, Hungria M, Yates M G, eds.
    Nitrogen Fixation:From Molecules to Crop Productivity. Dordrecht/Boston/London: Kluwer Academic Publishers,1999.425
    [8]慈恩,高明.生物固氮的研究进展[J].中国农学通报,2004,20(1):25-28.
    [9]Setala H, Marshall V G, Trofymow J A. Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Biology and Biochemistry,1996,28:307-326.
    [10]Laakso J, Setala H. Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos,1999,87:57-64
    [11]Maue G, Dott W, et al., Diversity of PAHdegrading bacteria in an airliftsuspension reactor system for wastewater cleaning[J]. Acta.Biotechnol,1994, 14 (4):337-345.
    [12]Haigler BE, Wallace Whet al., Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42 [J]Applied Environment Microbiology,1994,60 (9):3466-3473
    [13]王家玲,等.环境微生物学[M].北京:高等教育出版社.2003,269-270.
    [14]龙健,李娟,等.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004(2):597-602.
    [15]Insam H, Mitchell C C, DormaarJ F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisoils. Soil Biology and Biochemistry,1991,23:737-741.
    [16]Anderson J E, Domach K H. A physiological method for measurement of microbial biomass in soils. Soil Biology and Biochemistry,1978,10:215-221.
    [17]于学珍,路葵,等.天童常绿阔叶林退化过程中土壤微生物主要类群变化特性研究[J].安全与环境学报,2005,5(4):60-64.
    [18]李延茂,胡江春,等.森林生态系统中土壤微生物的作用与应用[J].应用生态学,2004,15(10):1943-1946.
    [19]薛萐,刘国彬,等.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J].应用生态学报,2008,19(3):517-523.
    [20]李灵,张玉,等.不同林地土壤微生物生物量垂直分布及相关性分析[J].中南林业科技大学学报,2007,27(2):52-60.
    [21]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,57-60.
    [22]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789-792.
    [23]Brock T D. The study of microorganisms in situ:progress and problems. Gene Microbiology,1987,41:1-17.
    [24]Pennanen T, et al. Phospholipid acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in Coniferous forests [J]. Applied Environment Microbiology,1996,62 (2):420-428.
    [25]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,169-170.
    [26]Fritze H, Pietikainen J, et al. Distribution of microbial biomass and phospholipid fatty acids in podzol profiles under coniferous forest [J]. Europe Journal of Soil Science,2000,51:565-573.
    [27]Praphailong W, Van Gestel M, et al. Evaluation of the Bilolog system for the identification of food and beverage yeasts [J]. Letters in Applied Microbiology, 1997,24:455-459.
    [28]Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-cource utilization [J] Applied Environment Microbiology,1991,57 (5):2351-2359.
    [29]Zak CJ, MR Willig, et al. Functional diversity of microbial communities:a quantitative approach [J].Soil Biol. Biochem,1994,26:1101-1108.
    [30]Bossio DA,Scow KM. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils[J].Appl. Environ. Microbiol,1995,61 (11):4043-4050.
    [31]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,166-167.
    [32]张汉波,段昌群,等.非培养方法在土壤微生物生态学研究中的应用[J].生态学杂志,2003,22(5):131-136.
    [33]Knight BP, McGrath SP, Chaudri AM. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc [J]. Applied Environment Microbiology,1997,63 (1):39-43.
    [34]李世贵,吕天晓,等.土壤微生物分子生态学研究方法[J].中国土壤与肥料,2008,(6):1-4.
    [35]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,171-179.
    [36]陈晓蕾,张忠泽.微生物的ARDRA检测[J].微生物学杂志,1999,9(4):40-43.
    [37]崔雨新,王小明.分子生物学技术在环境生物学中的应用[J].自然志,1999,21(5):295-301.
    [38]Moyer CL, Dobbs FC, et al. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16s rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii [J]. Applied Environment Microbiology,1994,60 (3):871-879.
    [39]Urakawa H, Kita-Tsukamoto K, et al. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis [J].Microbiology,1999,145:3305-3315.
    [40]Yang C, Crowley DE. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J].Applied Environment Microbiology,2000,66 (1):345-351.
    [41]Nath J, Johnson K L A review of fluorescence in-situ hybridization (FISH) Current status and future prospects [J]. Biotechnology Histochemistry,2000,75: 54-78.
    [42]Uphoff H U, Felske A, et al. The microbial diversity in picoplankton enrichment cultures:a molecular screening of marine isolates [J]. FEMS Microbiology Ecology,2001,35:249-258.
    [43]Connally R, Veal D, et al. High resolution detection of fluorescently labeled microorganisms in environmental samples using time-resolved fluorescence microscopy [J]. FEMS Microbiology Ecology,2002,41:239-245.
    [44]Mengoni A, Grassi E, et al. Genetic Diversity of Bacterial Communities of Serpentine Soil and of Rhizosphere of the Nickel-Hyperaccumulator Plant Alyssum bertolonii [J]. Microbial Ecology,2004,48:209-217.
    [45]Zhou J Z, Davey M E, et al. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA [J]. Microbiology,1997, 143:3913-3919.
    [46]Buckley D H, Schmidt T M. The structure of microbial communities in soil and the lasting impact of cultivation [J]. Microbe Ecology,2001,42:11-21.
    [47]姚健,杨永华,等.农用化学品污染对土壤微生物群落序列多样性的影响研究[J].生态学报,2000,20(6):1021-1027.
    [48]刘晓云,陈文新.三叶草、猪屎豆和含羞草植物根瘤菌16SrDNA PCR-RFLP分析和数值分类研究[J].中国农业大学学报,2003,8(3):1-6.
    [49]张锐,林念炜,等.南极阿德雷岛地表沉积物中细菌及对环境的响应[J].自然科学进展,2003,13(10):1067-1072.
    [50]Radajewski S, Ineson P, et al. Stable-isotope probing as a tool in microbial ecology [J]. Nature,2000,403 (6770):646-649.
    [51]Manefield M, Whiteley A S, et al. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny [J]. Applied and Environment Microbiology,2002,68 (11):5367-5373.
    [52]Radajewski S, McDonald I R, Murrell J C. Stable-isotope probing of nucleic acids:a window to the function of uncultured microorganisms [J]. Current Opinion in Biotechnology,2003,14 (3):296-302.
    [53]Eichner CA, Erb RW, et al. Thermal gradient gel electrophoresis analysis of bio-protection from pollutant shocks in the activated sludge microbial community [J]. Applied Environment Microbiology,1999,65 (1):102-109.
    [54]余素林,吴晓磊,等.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用于环境生物学报,2006,12(6):861-868.
    [55]Lukow T, Dunfield PF, et al. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants [J]. FEMS Microbiology Ecology,2000,32 (3):241-247.
    [56]Marsh TL. Terminal restriction fragment length polymorphism (T-RFLP):an emerging method for characterizing diversity among homologous populations of amplification products [J]. Current Opinion in Biotechnology,1999,2 (3) 323-327.
    [57]Clement BG, Kehl LE, et al. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities [J]. J Microbiology Methods,1998,31 (3):135-142.
    [58]Horton T R, Bruns T D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box [J]. Molecular Ecology,2001,10:1855-1871.
    [59]Ogram A-Discussion soil molecular microbial ecology at age 20:Methodological challenges for the future [J]. Soil Biology & Biochemistry,2000,32:1499-1504.
    [60]Bridge Paul, Brian Spooner. Soil fungi:Diversity and detection-Plant and Soil [J], 2001,232:147-154.
    [61]Dunbar J, Ticknor L, et al. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16SrRNA genes from bacterial communities [J]. Applied Environment Microbiology,2001.67 (1): 190-197.
    [62]Ursel M E Schutte, Zaid Abdo, et al. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16SrRNA genes to characterize microbial communities[J]. Applied Microbiology Biotechnology,2008, 80:365-380.
    [63]Tiedje J M, Asuming-Brempong S, et al. Opening the black box of soil microbial diversity [J]. Applied Soil Ecology.1999,13:1109-1122.
    [64]Maidak B L, Cole J R, et al. The RDP (Ribosomal Data base Project) continues[J]. Nucleic Acids Research.2000,28:173-174.
    [65]李红.末端限制性酶切片段长度多态性分析技术进展[J].安徽师范大学学报(自然科学版),2006,29(6):582-585.
    [66]马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1)104-107.
    [67]Krske M, Wellington E M H. Comparison of different methods for the isolation and purification of total community DNA from soil [J]. Journal of Microbiological Methods,1999,39 (1):1-16.
    [68]Leff L G, Dana J R, et al. Comparison of methods of DNA extraction from stream sediments [J]. Applied Environment Microbiology,1995,61 (3):1141-1143.
    [69]Brunk C F, Avaniss-Aghajani E, et al. A Computer analysis of primer and probe hybridization potential with bacterial small subunit rRNA sequences [J]. Applied Environment Microbiology,1996,62 (3): 872-879.
    [70]Osborn A M, Moore E R B, et al. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics [J]. Environmental Microbiology,2000,2(1):39-50.
    [71]Braker G, Ayala-del-Rio H L, et al. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16SrRNA genes [J]. Applied Environment Microbiology, 2001,67 (4):1893-1901.
    [72]Blackwood C B, Marsh T L, et al. Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities [J]. Applied Environment Microbiology,2003,69 (2):926-932.
    [73]Dollhopf S L, Hashsham S A, et al. Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence [J]. Microbial Ecology,2001,42 (4):495-505.
    [74]Dunbar J, Ticknor L, et al. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16SrRNA genes from bacterial communities [J]. Applied Environment Microbiology,2001,67 (1): 190-197.
    [75]池挣明.微生物生态学[M].济南:山东大学出版社,1999,2-6.
    [76]Xu Chunxiao, Liu Hong. Crop candidates for the bio-regenerative life support systems in China[J]. Acta Astronautica,2008,63:1076-1080.
    [77]Hendrickx L, Wever H D, et al. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative) Reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions [J]. Research in Microbiology, 2006,157:77-86.
    [78]Nelson M, Allen J, et al. Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere [J]. Advance Space Research,2003,31 (7):1649-1655.
    [79]Somova L A, Pechurkin N S, et al. Micro-and in life macro-organisms support systems (problem of coexistence) [J]. Advance Space Research,1996,18(12): 259-263.
    [80]Slenzka K. Life suport for aquatic species-past; present; future [J]. Advance Space Research,2002,30 (4):789-795.
    [81]Wignarajah K & Bubenheim D L. Integration of crop production with celss waste mangment [J]. Advance Space Research,1997,20 (10):1833-1843.
    [82]Kudenko Y A, Gribovskaya L V, et al. Mineralization of wastes of human vital activity and plants to be used in a life support system [J]. Acta Astronautica,1997, 41 (3):193-196.
    [83]Ling T, Hong L et al. The investigation on the respiration characteristic of the micro-organism in the plant growing substrate in the Bio-regenerative Life Support System [J]. Journal of Biotechnology,2008, (136):663-664.
    [84]Hublitza, Henninger D L. Engineering concepts for inflatable Mars surface greenhouses [J]. Advances in Space Research,2004, (34):1546-1551.
    [85]谢冰,徐亚同.环境微生物的分子生物学研究方法[J].世界科技研究与发展,2004,25(2):48-53.
    [86]Stackebrandt E, Goebel B M. Taxonomic Note:A place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology [J]. International Journal of Systematic Bacteriology,1994,44 (4):846-849.
    [87]曹慧,孙辉,等.土壤酶活性及其对土壤质量的指标研究进展[J].应用与环境生物学报,2003,19(1):105-109.
    [88]张猛,张健.林地土壤微生物、酶活性研究进展[J].四川农业大学学报,2003,21(4):347-351.
    [89]张薇,魏海,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    [90]赵存玉,王涛.沙质草原沙漠化过程中植被演替研究现状和展望[J].生态学杂志,2005,24(11):1343-1346.
    [91]孙濡泳,李博,等.普通生态学[M].北京:高等教育出版社,1993,163-172.
    [92]安树青,张久海,等.森林植被动态研究述评[J].生态学杂志,1998,17(5):50-58.
    [93]杜峰,梁宗锁,等.植物竞争研究综述[J].生态学杂志,2004,23(4):157-163.
    [94]Odum E P(孙儒泳等译).生态学基础[M].北京:人民教育出版社,1982.
    [95]Knapp R(宋永昌等译).植被动态[M].北京:科学出版社,1986.
    [96]Rexford Daubenmire(陈庆诚译).植物群落植物群落生态学教程[M].北京:人民教育出版社,1981.
    [97]Clements. Plant Succession:Analysis of the Development of Vegetation[Z]. 1916, Publication No.242. Garnegie Institution of Washington, Washington D.C., U.S.A.
    [98]Meeker D O等(李永宏译).顶极群落及其在植被分类上的应用[J].生态学进展,1989,6(2):116-119.
    [99]赵哈林,赵学勇,等.北方农牧交错区沙漠化的生物过程研究[J].中国沙漠,2002,22(4):309-315.
    [100]郭柯,董学军,等.毛乌素沙地沙丘土壤含水量特点~兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,24(3):275-279.
    [101]Mclntosh R P. Succession an ecological theory [A]. In:West D C, eds.Forest Succession:Concepts and Application[C]. NewYork:Springer-Verlag,1982, 10-23.
    [102]Odum E P. The strategy of ecosystem development[J].Science,1969, 164:262-270.
    [103]Whittaker R H & Levin S A. The role of mosaic phenomenon natural communities [J]. Theor Popul Biol,1977,12:117-139.
    [104]Lindeman R L. Ecological dynamics in a senescent lake. Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.—The trophic-dynamics aspects of ecology [J]. Ecology,1942,23:399-418.
    [105]Thomas P B. Lindeman's contradiction and the trophic structure of ecosystems [J]. Ecology,1989,70 (5),1355-1362.
    [106]赵丽娅,,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20(增刊):9-14.
    [107]Glenn-Lewin D C, Peet P K et al. Plant succession:theory and prediction [M]. London:Chapman & hall,1992.
    [108]Giarratano J C, Riley G. Expert systems:principles and programming [M].2nd edtion. Boston:PWS Publishing Company,1994.
    [109]Prach K, Prsek P et al. Changes in species types during succession:a search for pattern [J]. Oikos,1997,79:201-205.
    [110]Prach K, Prsek P, Smilauer P. Predition of vegetation succession in human-disturbed habitats using an expert systerm [J]. Restoration Ecology,1999,7 (1):15-23.
    [111]林鹏.植物群落学[M].上海:科学技术出版社,1986.
    [112]赵志模,等.群落生态学原理与方法[M].重庆:科学技术文献出版社,1990.
    [113]董厚德,等.辽东山地“乱石窖”植被演替规律的初步研究[J].植物生态学与地植物学从刊,1965,(1):117-130.
    [114]杨龙.梵净山黔桐林的结构和动态[J].植物生态学与地植物学丛刊,1983(3):204-214.
    [115]张善铭.森林群落演替的两个拓扑学模型[J].福建林学院学报,1983(2):92-95.
    [116]梁士楚.广西英罗湾红树植物群落的研究[J].植物生态学报,1996,20(4):310-321.
    [117]严国安,等.武汉东湖水生植物群落的研究[J].植物生态学报,1997,21(4):319-327.
    [118]彭少麟,等.鼎湖山厚壳桂群落演替过程的组成和结构动态[J].植物生态学报,1998,22(3):245-249.
    [119]岳明.陕北南部侧柏林演替时期的划分及其特征[J].植物生态学报,1998,22(4):327-335.
    [120]李永宏.放牧空间梯度上和恢复演替时间上羊草草原的群落特征及其对应性[A].草原生态系统研究(第四集)[C].北京:科学出版社,1992.1-7.
    [121]王仁忠,李建东.放牧对松嫩平原羊草草地影响的研究[J].草业科学,1992,9(2):11-14.
    [122]赵哈林,根本正之,等.沙质草甸植物种群特征的放牧演变[J].中国沙漠,1995,15 (Supp.1):92-98.
    [123]赵哈林,根本正之,等.沙质草甸生态系统的放牧演变[J].中国沙漠,1995,15(Supp.1):99-106.
    [124]赵哈林,等.科尔沁沙质放牧草地植物多样性及生态位的分异规律研究[J].中国沙漠,1999,19(Supp.1):35-39.
    [125]周灿芳.植物群落动态研究进展[J].生态科学,2000,19(2):53-59.
    [126]周小勇,黄忠良,等.鼎湖山针阔混交林演替过程中群落组成和结构短期动态研究[J].热带亚热带植物学报,2004,12(4):323-330.
    [127]任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征[J].生态学报,1999,19(6):817-822.
    [128]李德军,莫江明.鼎湖山自然保护区不同演替阶段森林土壤中有效微量元素状况研究[J].广西植物,2004,24(6):529-534.
    [129]张庆费,徐绒娣.浙江天童常绿阔叶林演替过程的凋落物现存量[J].生态学杂志,1999,18(2):17-21.
    [130]陈生永.沙地植被演替研究成果综述[J].山西水土保持科技,2001,4:23-26.
    [131]Botkin D B, Janak J F et al. Some ecological consequences of a computer model of forest growth[J]. Journal Ecology,1972B,60:849-872.
    [132]Malanson G O. Intensity as a kind of factor of disturbance regime and its effect on species diversity [J]. Oikos,1984,43:411-413.
    [133]王伯荪.植物群落学[M].北京:高等教育出版社,1987.186-187.
    [134]李雪梅,程小琴.生态位理论的发展及其在生态学各领域中的应用[J].北京林业大学学报,2007,29(2):294-298.
    [135]杨小波.广东省黑石顶南亚热带森林次生演替生理生态机理研究[D].中山大学博士论文,1996.
    [136]刘金福,洪伟.格氏栲群落生态学研究[J].生态学报,1999,19(3):347-352.
    [137]陈存及,陈新芳,等.人工-天然杉阔混交林种群生态位及竞争研究[J].林业科学,2004,40(1):78-83.
    [138]王本洋,余世孝等.植被演替过程中种群格局动态的分形分析[J].植物生态学报,2006,30(6):924-930.
    [139]康慕谊.植被演替的间接研究方法及其分析[J].科学技术与辩证法,1989,(1):26-28.
    [140]赵松岭,陈庆诚,等.植物群落演替的线性与非线性系统及数字预测[J].生态学报,1981,1(3):235-240.
    [141]熊文愈,骆林川.琅哪山森林群落演替及其经营利用[J].南京林业大学学根,1989,13(3):1-7.
    [142]杨持,郝敦元,等.羊草草原群落水平格局研究Ⅰ.二维网函数插值法[J].生态学报,1984,4(3):345-353.
    [143]刘玉成,缪世利.缙云山常绿阔叶林次生演替优势种群动态[J].植物生态学与地植物学报,1992,16(1):29-35.
    [144]中国科学院西北水土保持研究所.黄土高原杏子河流域自然资源与水土保持[M].西安:陕西科学技术出版社,1986
    [145]张社奇.黄土高原油松、刺槐人工林土壤生态系统的功能特征研究[D].西北农林科技大学博士论文,2005.
    [146]张希彪,郭小强,等.子午岭种子植物区系分析[J].西北植物学报,2004,24(2):267-274.
    [147]罗伟祥,刘广全,等.西北主要树种培育技术[M].北京:中国林业出版社,2007:238-245.
    [148]李裕元,郑纪勇,等.子午岭天然林与人工林群落特征比较研究[J].西北植物学报,2005,25(12):2447-2456.
    [149]朱志诚,黄可,等.陕北黄土高原森林地带油松林的主要类型及其动态关系[J].陕西师范大学学报,1991,19(3):56-63.
    [150]刘向东,吴钦孝,等.黄土丘陵区人工油松林和山杨林林冠截留作用的研究[J].水土保持通报,1991,11(1):4-7.
    [151]李勇,徐晓琴.黄土高原油松人工林根系改善土壤物理性质的有效模式[J].林业科学,1993,29(3):193198.
    [152]魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究[J].土壤侵蚀与水土保持学报,1999,5(4):45-51.
    [153]张社奇,王国栋,等.黄土高原油松人工林地土壤水分物理性质研究[J].干旱地区农业研究,2005,23(1):60-64.
    [154]焦醒,刘广全.陕西黄土高原油松生长状况及其影响因子分析[J].干旱地区农业研究,2009,29(5):867-873.
    [155]蔡艳,薛泉宏,等.黄土高原几种乔灌木根区土壤微生物区系研究[J].陕西林业科技,2002,15(1):4-9.
    [156]张社奇,王国栋,等.黄土高原刺槐林地土壤微生物的分布特征[J].水土保持学报,2002,18(6):128-131.
    [157]贾国梅,方向文,等.黄土高原弃耕地自然恢复过程中微生物碳的大小和活性的动态[J].中国沙漠,2006,26(4):581-584.
    [158]闵红,和文祥,等.黄土丘陵区植被恢复过程中土壤微生物数量演变特征[J].西北植物学报,2007,27(3):588-593.
    [159]梁健,王孝安,陶树兴,等.森林演替过程中优势树种凋落叶对土壤微生物组成的影响[J].生态学杂志,2008,27(7):1127-1133.
    [160]张文婷,来航线,等.黄土高原不同植被坡地土壤微生物区系特征[J].生态学报,2008,28(9):4228-4234.
    [161]杜小刚,唐明,等.黄土高原不同树龄刺槐丛枝菌根与根际微生物的群落多样性[J].林业科学,2008,44(4):78-82.
    [162]刘卓玛姐,刘增文,等.陕北半湿润黄土丘陵区不同人工林土壤生物学特征研究[J].西北林学院学报,2009,24(2):26-31.
    [163]胡婵娟,傅伯杰,等.黄土丘陵沟壑区植被恢复对土壤微生物生物量C和N的影响[J].应用生态学报,2009,20(1):45-50.
    [164]许炯心.黄土高原生态环境建设的若干问题与研究需求[J].水土保持研究,2000,7 (2):11-13(79).
    [165]Jordan D, Kremer R J, et al. Evaluation of microbial methods as potential indicators of soil quality in historical agriculture fields [J].Biological Fertilizer and Soils,1995,19 (4):297-302.
    [166]Jones A J. Methods for assessing soil quality [M]. Special Publication, Soil Science Society of America, Madison, WI,1996,49:410-415.
    [167]Sojka R E, Upchurch D R. Reservations regarding the soil quality concept [J]. Soil Science Society of America Journal,1999,63 (5):1039-1054.
    [168]Wienholdl B J, Andrews S S, et al. Soil quality:a review of the science and experiences in the USA [J].Environmental Geochemistry and Health,2004, 26:89-95.
    [169]张希彪,郭小强,等.黄土丘陵子午岭油松天然林群落特征研究[J].植物研究,2006,26(2):169-175.
    [170]刘立品.子午岭木本植物志[M].兰州:兰州大学出版社,1998,29-30.
    [171]邹厚远,刘国彬,等.子午岭林区北部近50年植被的变化发展[J].西北植物学报,2002,22(1):1-8.
    [172]曲国辉,郭继勋.松嫩平原不同演替阶段植物群落和土壤特性的关系[J].草业学报,2003,12(1):18-22.
    [173]欧阳学军,黄忠良,等.鼎湖山南亚热带森林群落演替对土壤化学性质影响的累积效应研究[J].水土保持学报,2003,17(4):51-54.
    [174]游秀花.马尾松天然林不同演替阶段土壤理化性质的变化[J].福建林学院学报,2005,25(2):121-124
    [175]彭少麟,黄忠良.生产力与生物多样性之间的相互关系研究概述[J].生态科学,2000,19(1):1-9.
    [176]Pimm S L. The complexity and stability of ecosystems [J]. Nature,1984, 307:321-326.
    [177]Robortson G P, Vitowsck P M. Nitrification potentials in primary and secondary succession [J]. Ecology,1981,62:376-386.
    [178]中国科学院土壤研究所.土壤理化分析[M].上海:上海科技出版社.1978
    [179]周礼恺,张志明.土壤酶活性检测方法.土壤通报[J].1980.
    [180]Doran J W, Parkin T B., et al. Defining soil quality for sustainable environment [J].Soil science society of America special publication. Madison, Wisconsin,1994,35,319-324.
    [181]严昶升.土壤肥力研究方法[M].北京:农业出版社.1988.
    [182]Kiss, S., Dragan-Bularda, M, et al. Biological significance of enzymes in soil [J]. Adv. Agron,1975,27,25-91.
    [183]郝文芳,梁宗锁.黄土高原不同植被类型土壤特性与植被生产力关系研究进展[J].西北植物学报,2002,22(6):1545-1550.
    [184]姚槐应.黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,160-163.
    [185]中科院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978,2-3.
    [186]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2002.12:301-320.
    [187]林德喜,樊后保,等.马尾松林下套种阔叶树土壤理化性质的研究[J].土壤学报,2004,41(4):655-659.
    [188]张祖荣,古德洪.重庆四面山次生植被不同演替阶段土壤理化性质的比较研究[J].林业科技,2008,33(6):21-25.
    [189]宋洪涛.滇西北亚高山地区植被演替中的土壤理化性质研究[J].科技信息,2007,16:158-160.
    [190]郑颖吴主编.木论喀斯特林区概论[M].北京:科学出版社,1999:2-4,34-36.
    [191]马志林,周心澄.高寒山区退耕还林不同a限土壤理化性质研究——以青海省大通县为例[J].林业资源管理,2008,3:72-76.
    [192]张庆费,由文辉,等.浙江天童植物群落演替对土壤化学性质的影响[J].应用生态学报,1999,10(1):19-22.
    [193]Halvorson A D, Reule C A., et al. Evaluation of management practices for converting grassland back to cropland [J]. Journal of soil and water conversation, 2000,55 (1):57-62.
    [194]Gewin V L, Kennedy A C., et al. Soil quality in eastern Washington with conversation reserve program (GRP) take-out [J]. Journal of soil and water conversation,2000,55 (1):432-438.
    [195]彭文英,张科利,等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005,20(2):273-278.
    [196]耿增超,张社奇,等.黄土高原油松人工林地土壤养分及化学性质的时空效应[J].西北农林科技大学学报,2006,34(8):98-104.
    [197]袁秉政,秦天才,等.不同退耕还林模式对土壤修复作用的研究——以甘肃省庆阳市为例[J].林业资源管理,2005(6):51-54.
    [198]关松荫.土壤酶及其研究法[M].北京:农业出版社.1986.198-201.
    [199]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ.土壤酶活性与土壤肥力[J].植物营养与肥料学报,2003,9(2):146-15.
    [200]刘国彬,等.黄土丘陵区不同植被恢复模式对土壤酶活性的影响[J].中国农学通报,2008,24(9):429-434.
    [201]Brookes P C, Tate K R, et al. The adenylate energy charge of the soil microbial biomass [J]. Soil Biollogy & Biochemistry.1983,15:9-16.
    [202]赵忠,薛德白,等.油松侧柏混交林效益及种间关系的研究[J].西北林学院学报,1994,9(1):12-17.
    [203]王兵,刘国彬,等.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009,17(3):282-287.
    [204]王涵,王果,等.pH变化对酸性土壤酶活性的影响[J].生态环境,2008,17(6):2401-2406.
    [205]孙瑞莲,赵秉强,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4):406-410.
    [206]Kandeler E, Palli S, et al. Tillage changes microbial biomass and enzyme activities in particle-size fractions of aHaplic Chernozem [J].Soil Biology and Biochemistry,1999,31:1253-1264.
    [207]贾国梅,王刚,等.子午岭植被演替过程中土壤生物学特性的动态[J].生态环境,2007,16(5):1466-1469.
    [208]张淑香,高子勤,等.连作障碍与根际微生态研究Ⅲ.土壤酚酸类物质及其生物学效应[J].应用生态学报,2000,11(5):741-744.
    [209]吴凤芝,孟立君,王学征.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报,2006,12(4):554-558.
    [210]刘建国,张伟,等.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J].中国农业科学,2009,42(2):725-733.
    [211]黄懿梅,安韶山,等.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变[J].水土保持学报,2001,21(1):152-155.
    [212]安韶山,黄懿梅,等.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(3):233-237.
    [213]胡斌,段昌群,等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响关[J].土壤学报,2002,39(4):604-608.
    [214]张笑培,杨改河,等.黄土高原沟壑区不同植被恢复模式对土壤生物学特性的影响[J].西北农林科技大学学报(自然科学版),2008,36(5):150-159.
    [215]池振明.现代微生物生态学[M].北京:科学出版社,2005:217-242.
    [216]樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持学报,2003,10 (1):85-87
    [217]耿玉清,白翠霞,等.北京八达岭地区土壤酶活性及其与土壤肥力的关系[J].北京林业大学学报,2006,28(5):7-11.
    [218]李现伟,何莉莉,等.黄瓜有机营养土栽培中土壤酶活性、肥力动态变化及其相互关系[J].土壤通报,2008,39(3):524-527.
    [219]兰雪,戴全厚,等.喀斯特退化森林不同恢复阶段土壤酶活性研究[J].农业现代化研究,2009,30(5):620-624.
    [220]付必谦.生态学实验原理与方法[M].北京:科学出版社,2006:214-222.
    [221]游家兴.如何正确运用因子分析法进行综合评价[J].统计教育,2003(5):10-11.
    [222]Elgersma A M. Primary forest succession on poor sandy soils as related to site factors [J]. Biodiversity and Conservation,1998,7:193-206.
    [223]Aplet G H, Vitousek P M. An age-altitude matrix analysis of Hawaiian rainforest succession [J]. Journal of Ecology,1994,82 (1):137-147.
    [224]闫德仁,刘永军,等.落叶松人工林枯落物特征研究[J].内蒙古林业科技,2003,3:23-26.
    [225]Raich J W, Nadelhoffer K J. Below ground carbon allocation in forest ecosystems:Global trends [J]. Ecol.,1989,70:1346-1354.
    [226]李宁云,田昆,等.澜沧江上游典型退化山地土壤酶活性研究[J].西南林学院学报,2006,26(2):29-32.
    [227]Insam H, Hitzl W. Data evaluation of community-level physiological profiles:A reply toletter of Howard [J]. Soil Biology & Biochemistry,1999,31:1198-1200.
    [228]张希彪,郭小强,等.子午岭种子植物区系分析[J].西北植物学报,2004,24(2):267-274.
    [229]刘向东,刘钦孝,赵鸿雁.黄土丘陵区人工油松林和山杨林林冠截留作用的研究[J].水土保持通报,1991,11(1):4-7.
    [230]张社奇,王国栋,时新玲,等.黄土高原油松人工林地土壤水分物理性质研究[J].干旱地区农业研究,2005,23(1):60-64.
    [231]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,160-168.
    [232]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986,176-179.
    [233]吴金水.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006,58-59.
    [234]孙儒泳.动物生态学原理(第3版)[M].北京:北京师范大学出版社.2001,398-399.
    [235]刘福德,孔令刚,安树青,等.连作杨树人工林不同生长阶段林地内土壤微生态环境特征[J].水土保持学报,2008,22(2):121-125.
    [236]Menyailo O V. The influence of tree species on the biomass of denitrifying bacteria in gray forest soils. Soil Biology,2007,3:331-337.
    [237]杜国坚,张庆荣,洪利兴,等.杉木连载地土壤微生物区系及其生化特性和理论性质的研究[J].浙江林业科技,1995,15(5):14-20.
    [238]杨承栋,孙启武,焦如珍,等.大青山—二代马尾松土壤性质变化与地力衰退关系的研究[J].土壤学报,2003,40(2):267-273.
    [239]张丽萍,张兴昌,刘增文,等.人工林凋落叶分解对土壤性质的影响[J].西北农林科技大学学报(自然科学版),2008,36(9):87-92.
    [240]邓若磊,徐海荣,曹云飞,等.植物吸收铵态N的分子生物学基础[J].植物营养与肥料学报,2007,13(3):512-519.
    [241]Gil-Sotres F, Trasar-Cepeda C, LeirosMC, et al. Different approaches to evaluating soil quality using bio-chemical properties [J]. Soil Biology and Biochemistry,2005,37:877-887.
    [242]Wardle DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biological Reviews,1992,67:321-358.
    [243]朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,2006,19(4):523-526.
    [244]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,57-58.
    [245]刘海岗,刘一,等.森林凋落物研究进展[J].安徽农业科学,2008,36(3):1018-1120.
    [246]Binkley D. Forest nutrition management [M]. New York:John Wiley and Sons, 1987,1-174.
    [247]Charles K. Ecology-the experimental analysis of distribution and abundance 3rd edition [M]. Harper Collins Publishers,1992,668-702.
    [248]Anderson J M, Proctor J, et al. Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, SarawakⅢ:Decomposition processes and nutrient losses from leaf litter [J].J Ecology,1983,71:503-527
    [249]Bergelson J. Life after death:Site preemption by the remains of Poa annua [J]. Ecology,1990,71:2157-2165.
    [250]David E R, Donaldrz. Relationships between plant nitrogen economy and life history in three deciduous forest herbs [J] J Ecol,2001,89 (3):385-394.
    [251]Pausas J G, Casals P, et al. Litter decomposition and faunal activity in Mediterranean forest soils:Effects of N content and the moss layer[J].Soil Biology and Biochemistry,2004,36:989-997.
    [252]徐秋芳,钱新标,等.不同林木凋落物分解对土壤性质的影响[J].浙江林学院学报,1998,15(1):27-31.
    [253]林波,刘庆等.川西亚高山针叶林凋落物对土壤理化性质的影响[J].应用与环境学报,2003,9(4):346-351.
    [254]梁宏温.田林老山中山杉木人工林凋落物及其分解作用的研究[J].林业科学,1993,29(4):355-359.
    [255]刘举,常庆瑞,等.黄土高原不同林地植被对土壤肥力的影响[J].西北农林科技大学学报(自然科学版),2004,32(增刊):111-115.
    [256]周存宇,蚁伟民,等.不同凋落叶分解的土壤微生物效应[J].湖北民族学院学报(自然科学版),2005,23(3):303-305.
    [257]周存宇.凋落叶分解对土壤微生物数量和组成的影响[J].湖北民族学院学报(自然科学版),2006,24(4):235-238.
    [258]胡亚林,汪思龙,等.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J].生态学报,2005,25(10):2662-2667.
    [259]薛立,陈红跃,等.湿地松混交林地土壤养分、微生物和酶活性的研究[J].应用生态学报,2003,14(1):157-159.
    [260]王清奎,汪思龙,等.杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响[J].应用生态学报,2007,18(6):1203-1207.
    [261]http://baike.baidu.com/view/386980.htm?fr=ala0_1_1
    [262]何帆,王得祥,等.秦岭林区主要树种叶片凋落物性质的研究[J].西北林学院学报,2007,18(6):1203-1207.
    [263]张冀,汪有科.黄土高原几种主要森林类型的凋落及其过程比较研究[J].水土保持学报,2001,15(5),91-94.
    [264]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3)375-380.
    [265]许光辉,郑洪元.森林枯枝落叶分解过程的微生物学特性[J].生态学报,1982,2(1),11-20.
    [266]张德强,叶万辉,等.鼎湖山演替系列中代表性森林凋落物研究[J].生态学报,2000,20(6):938-944.
    [267]郭剑芬,杨玉盛,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [268]Torsvik V, Ovreas L. Microbial diversity and function in soil:from genes to ecosystems [J]. Current Opinion in Microbiology,2002,5:240-245.
    [269]Rosello M R, Amann R. The species concept for prokaryotes [J]. FEMS Microbiology Reviews,2001,25:39-67.
    [270]张建萍,董乃源,等.应用16S rDNA-RFLP方法分析宁夏地区稻田土壤细菌的多样性[J].生物多样性,2008,16(6):586-592.
    [271]Nogva H K, Rudi K, et al. Application of 5-nuclease PCR for quantitative detection of listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk [J]. Appl& Environ Microbiol,2000,66 (10) 4266-4271.
    [272]Voytek M A, Ward B B. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR [J]. Applied Environment Microbiology,1995,61 (4):1444-1450.
    [273]Acinas S G, Rodriguez-Valera F, et al. Spatial and temporal variation in marine bacteriop lankton diversity as shown by RFLP finger printing of PCR amplified 16S rDNA [J]. FEMS Microbiology Ecology,1997,24 (1):27-40.
    [274]贾俊涛,宋林生,等.T-RFLP技术及其在微生物群落结构研究中的应用[J].海洋科学,2004,28(3):64-68.
    [275]余素林,吴晓磊,等.环境微生物群落分析的T-RFLP技术及其优化措施[J].海洋科学,2006,12(6):861-868.
    [276]葛云英,陈松,等.土壤细菌群体多样性的T-RFLP分析应用探讨[J].中国法医学精选,2008,23(2):104-107.
    [277]湛方栋,陆引罡,关国经,等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494.
    [324]胡小加.根际微生物与植物营养[J].中国油料作物学报,1999,21(3):77-79.
    [278]Yevdokimov I V, Ruser R, Buegger F, et al. Interaction between Rhizosphere Microorganisms and Plant Root:13C Fluxes in the Rhizosphere after Pulse Labeling [J]. Soil Biology,2007,7:852-861.
    [279]王茹华,张启发,等.浅析植物根分泌物与根际微生物的相互作用关系[J].土壤通报,2007,38(1):167-172.