崇明岛人工林群落特征及其土壤理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
崇明岛是我国第三大岛屿,也是21世纪上海可持续发展的重要战略空间。近年来,上海市加快了崇明岛生态岛建设,绿化造林发展迅速,营造了大批人工林,成为上海森林覆盖率增长最快的区域,促进了崇明岛生态景观的改善。
     因此,研究崇明岛森林群落结构及其土壤性状,分析人工林群落植物应用和配置特征,探讨影响植物群落发展的主要生境因子,预测森林群落的演变规律,为崇明森林培育和生态重建提供依据。
     本研究从崇明岛南面大堤开始垂直纵深直至北面大堤划定8条水平样区,并在每条样区上选取岛内最为常见的6种人工林(垂柳、栾树、香樟、女贞、水杉、池杉)群落,共计33个植物群落样方作为研究对象,研究内容主要包括:调查样方内的植物群落结构、测定群落不同剖面土壤的主要理化性质、分析土壤理化因子在不同层次土壤剖面中的相关性及其作用机制,从总体上探讨在水平空间(不同群落类型)和垂直空间(土壤剖面)上,崇明岛人工林群落和土壤之间的特异性和相关性。主要结论如下:
     1.在调查的人工林群落中,均为纯林类型,且群落结构较为简单,只有乔木层和草本层,缺乏灌木层。乔木层的平均胸径和平均密度呈显著负相关(P<0.05),草本层的种类偏低,仅20科35属42种,而草本层的Simpson指数和Shannon-Wiener指数之间呈显著正相关(P<0.05)。其中女贞群落和垂柳群落的草本层具有较高的物种多样性,而香樟群落草本层的物种多样性较低。而从水平样区上来看,样区5(沿陈海公路)和样区6(沿北沿公路)上人工林群落的草本层具有较高的物种多样性,而样区3(沿奚家港造船厂——南横引河桥)上的物种多样性则偏低。
     2.土壤物理性质方面,各人工林群落类型之间以及不同土壤剖面之间表现出一定的特异性:其中土壤容重随土壤深度的增加而缓慢增加,土壤总孔隙度和毛管孔隙度随土壤深度的增加而逐渐减小,土壤质量含水量、土壤饱和持水量、土壤毛管持水量和土壤非毛管孔隙度均未体现出明显的规律性变化。
     水杉和池杉群落的毛管持水量/饱和持水量比值较高,说明群落土壤的供水能力较低;而香樟和垂柳群落的比值较低,说明群落土壤的供水能力较高。但女贞群落的毛管持水量/饱和持水量值在不同土壤剖面中出现极端大小的现象。
     大部分群落的毛管孔隙度/非毛管孔隙度值都在1.5-4.1之间,说明群落土壤的透水性、通气性和持水能力相对较协调,其中样区4(沿陈南地道——穿乡公路)上女贞群落的比值(19.8)远高于其他群落,反映出其土壤的持水透气功能极不协调。所有的群落物理水分因子基本都表现为阔叶树群落优于针叶树群落的情况。
     3.土壤化学性质方面,各人工林群落类型之间以及不同土壤剖面之间同样表现出一定的特异性:各群落土壤全部呈碱性,ph值在7.79-9.41之间,表层土壤(0—20cm)电导率介于0.09—0.53mS/cm之间。有机质含量和总氮含量随土壤深度的增加逐渐减小,总磷含量则是随土壤深度的增加先减小后增加,三者的值在群落类型方面均表现为落叶阔叶树群落>落叶针叶树群落>常绿阔叶树群落。
     在不同样区上有机质含量、总氮含量和总磷含量由南到北呈现出先增加后减小的变化趋势,其中总磷含量的变化较为平缓。而土壤电导率则恰恰相反,表现为“两头高,中间低”的变化趋势,土壤ph值没有体现出规律性变化。
     4.分别对在不同土壤剖面中的各种土壤理化因子做相关性分析,结果表明,在不同层次的土壤剖面中,非毛管孔隙度与总孔隙度均呈显著(P<0.05)或极显著(P<0.01)正相关;毛管孔隙度分别与有机质含量、总氮含量和总磷含量呈显著(P<0.05)或极显著(P<0.01)正相关;饱和持水量与毛管持水量呈极显著(P<0.01)正相关;有机质含量分别与总氮含量和总磷含量分别呈显著(P<0.05)或极显著(P<0.01)正相关。随着土壤深度的增加,各种土壤理化因子的相关程度明显变少。
The three islands of Chongming Island in Shanghai is one of the 21st century Shanghai important strategic space for sustainable development. In recent years, Shanghai has accelerated construction of ecological island in Chongming Island, afforestation rapidly, creating a large number of plantations, and has been the fastest growing region about forest cover in Shanghai, promoting the improvement of Chongming Island's ecological landscape.
     Therefore, the study of Chongming Island about the forest community structure and soil properties,analysis of application and configuration of plantation characteristics of plant communities to explore the impact of the major plant communities in the development of habitat factors, prediction of forest communities in the evolution law for the Chongming Sen Stand and and ecological reconstruction basis.
     The paper studied 6 kinds of plantations(Salix babylonica, Koelreuteria paniculata, Cinnamomum camphora, Ligustrum lucidum, Metasequoia glyptostroboides, Taxodium ascendens), totally 33 plant samples on each of the 8 horizontal courses identified from southern levee vertically to the northern counterpart, the paper is consisted of the research of the community characters within the samples, the testing of main physical and chemical qualities of different sections of community soils, the relativity analysis of physical and chemical factors of soil sections in different layers and causes, the general study of relativity and difference between plantation communities and soil both in horizontal and vertical spaces which refer to different communities and soil sections respectively. The detailed conclusions are as follows:
     1. All the plantations under investigation belong to pure forests and the community constructions is comparatively simple with tree layer, herbage but without shrub. There is a evident negative correlation(P<0.05)between the average DBH and the density of tree layer and the species of herbage is on the low side with only 20 families,40 species, while the relationship between Simpson and Shannon-Wiener index is evidently positively correlative(P<0.05).with high species diversities of herbaceous layers of Ligustrum lucidum and Salix babylonica compared with the low species diversity of Cinnamomum camphora. For horizontal courses 5 and 6, their herbaceous layers of plantation have relatively big species diversity while the course 3 has lower species diversity.
     2. As for the physical characters of soil, there existed some differences between the plantation and different soil sections:the bulk density of soil slightly increased with the increasing of the soil depth while the total porosity of soil and the capillary porosity of soil decreased with the depth, the mass water content of soil, the full water capacity of soil, the capillary moisture capacity and non-capillary porosity of soil didn't reveal visible rules.
     The ratio of capillary moisture capacity and full water capacity of Metasequoia glyptostroboides and Taxodium ascendens was high, which demonstrated the low ability of water supply of the community soils, the water supply capacity of Cinnamomum camphora and Salix babylonica was high, as they showed a low ratio, for the that of Ligustrum lucidum, it was either extremely high or extremely low.
     For the most communities, the ratio of capillary porosity and non-capillary porosity was between 1.5-4.1, which explained the relatively harmonious relationship among water penetrability, ventilation capacity and water holding ability of the community soils, however, for Ligustrum lucidum of course 4, the ratio of 19.8 is much higher than the that of the others which reflected the water holding ability and the ventilation capacity was awfully unharmonious.All the physical factors of the soil in the communities have shown that the broad-leaved forest is much better than coniferous forest.
     3. Concerned with the chemical character, there were also some differences between the plantation and different soil sections:all the soils were alkaline with ph value at 7.79-9.41, the electrical conductivity of surficial soil(0-20cm) was between 0.09-0.53mS/cm. The organic contents and the total nitrogen decreased as the soil depth increased, while the total phosphor increased firstly then decreased with the increasing of the soil depth, in terms of communities, the value relation between three variables were deciduous broad-leaved forest>deciduous coniferous forest >evergreen broadleaf forest.
     For different studying courses, the organic contents, the total nitrogen and the total phosphor had an initial increasing trend then decreased with a mild change for the total phosphor while quite the contrary, the electrical conductivity was high on both sides and low in between and there was no rule for the ph changes of soil.
     4. The relativity analysis of physical and chemical factors of different soil sections was operated and the results indicated that in soil sections of different layers, all the relation between the non-capillary porosity and total porosity, the capillary porosity and organic contents, total nitrogen and total phosphor, organic contents and total nitrogen and organic contents and total phosphor was evidently(P<0.05) or extremely evidently positively correlative(P<0.01), while the full water capacity and the capillary moisture capacity presented a extremely evidently positive correlation(P<0.01). Besides, with the increasing of soil depth, the correlation among all the physical and chemical factors of soil was obviously lower and lower.
引文
Albert M. Generating management alternatives for multi-species stands using the decision support system BWINPRO[M].//Gadow K V et al. ed. Continuous cover Forestry assessment, analysis, scenarios. International IUFRO Conference 19-21 Sept, Gottingen, Germany,2001:211-217.
    Bais H.P., Vepachedu R, Gilroy S., et al. Allelopathy and exotic plant invasion:From molecules and genes to species interactions [J]. Science, 2003,301(5638):1377-1380.
    Batish D. R., Singh H. P., Setia N., et al. Chemical composition and inhibitory activity of essential oil from decaying leaves of Eucalyptus citriodora[J]. Zeitschrift Fuer Naturforschung Section C:Journal of Biosciences, 2006,61(1/2):52-56.
    Batish D. R. Singh H. P., Setia N., et al. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora[J]. Zeitschrift Fuer Naturforschung Section C:Journal of Biosciences,2006, 61(7/8):465-471.
    Bristow M., Vanclay J. K. Brooks L., et al. Growth and species interactions of Eucalyptus pellita in amixed and monoculture plantation in the humid tropics of north Queensland[J]. Forest Ecology and Management,2006,233(2/3):285-294.
    Calder I. R., Hall R. L., Adlard P. G. Growth and Water Use of Forest Plantation[M].New York:John Wiley & Sons.1992.
    Charles J. Krebs.1998. Ecological methodology.
    Ferreira V., Elosegi A., Gulis V., et al. Eucalyptus plantations affect fungal communities associated with leaf-litter decomposition in Iberian streams[J]. Archiv Fuer Hydrobiologie,2006,166(4):467-490.
    Florence R. Cultural problems of Eucalyptus as exotics[J].Commonwealth Forestry Review,1986,65:141-163.
    Hector A, Schmid B, Beierkuhnlein C, et al. Plantdiversity and productivity experiments in European grassland[J]. Science,1999,286:1123-1127.
    Hierro J. L., Callway R. M. Allelopathy and exotic plant invasion[J].Plant and Soil, 2003,256(1):29-39.
    Jon M., Jesus P. Impact of a eucalyptus(Eucalyptus globulus Labil.)plantation on the nutrient content anddynamics of coarse particulate organic matter(CPOM)in a small stream[J]. Hydrobiologia,2004,528:143-165.
    Juan M, Torres Rojo, Sofia Sanchez Orois. A decision support system for optimizing the conversion of rotation forest stands to continuous cover forest stands[J]. Forest Ecology and Management,2005,207:109-112.
    Khan M. A., Marwat K. B., Hassan G. Allelopathic potential of some multipurpose tree species(MPTS) on wheat and some of its associated weeds[J]. International Journal of Biology and Biotechnology,2004,1(3):275-278.
    Matthew J Kelty. The role of species mixtures in plantation forestry. Forest Ecology and Management,2006,233:195-204.
    Morris J., Zhang N.N., Yang Z. J., et al. Water use by fast-growing Eucalyptus urophylla plantations in southern China[J]. Tree PHysiology, 2004,24(9):1035-1044.
    Naeem S, L J Tompson, S P Lawler, et al. Declining biodiversity can alter the performance of ecosystems[J]. Nature,1994,368:734-737.
    O'Reilly-Wapstra J. M., Potts B. M., McArthur C., et al. Inheritance of resistance to mammalian herbiv ores and of plant defensive chemistry in an Eucalyptus species[J]. Journal of Chemical Ecology,2005,31(2):357-375.
    Poore M. E., Fries C. The ecological effects of Eucalyptus[R]. FAO paper No.59, FAO,Rome,1985.
    Reininger Heinrich. Das Plenterprinzip[M]. Stuttgart:Leopold Stocker Verlag,2000.
    Roberts M R. Response of the herbaceous layer to disturbance in North American forests[J]. Canadian Journal of Botany,2004,82:1273-1283.
    Robinson N., Harper R. J., Smettem K.R.J. Soil water depletion by Eucalyptus spp.integrated into dryland agricultural systems [J]. Plant and Soil, 2006,286(l/2):141-151.
    Singh S., Sharma S. K. Antibacterial activity of essential oil and root extract of Eucalyptus teriticornis[J].Indian Journal of Natural Products,2005,21(1):16-17.
    Sturm K. Methoden und Ziele der Waldbiotopkartierung. Mitteilungen aus der NNA[J]. Niedersachsern-Naturschutz in der Forstwirtschaft-Biologie und Schutz der Fledermause im Wald.1993,4:7-20.
    Takahashi T., Kokubo R., Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculate[J]. Letters in Applied Microbiology,2004,39(1)60-64.
    Tsiri D., Kretsi O., Chinou I. B., et al. Composition of fruit volatiles and annual changes in the volatiles of leaves of Eucalyptus camaldulensis Dehn. growing in Greece[J]. Flavour and Fragrance Journal,2003,18(3):244-247.
    Weinreich Axel. Qualitaetsentwicklung junger Eichen in Bestandesluecken[D]. Germany, Breisgau:Universitaet Freiburgi.2000.
    Whittaker R H. Forest dimensions and production in the Great Smoky Mountains[J]. Ecology,1966,47:103-121.
    Zobel K, Lirra J. Ascale-independent approach to the richness vs. biomass relationship inground-layer plant communities [J]. Oikos,1997,80:325-332.
    安慧,韦兰英,刘勇,等.黄土丘陵区油松人工林和白桦天然林细根垂直分布及其与土壤养分的关系[J].植物营养与肥料学报,2007,13(4):611-619.
    北京林业大学.土壤科学[M].北京:中国林业出版社,1982.
    蔡锡安,彭少麟,赵平,等.三种乡土树种在二种林分改造模式下的生理生态比较[J].生态学杂志,2005,24(3):243-250.
    陈爱玲,洪伟.福建中亚热带常绿阔叶林林隙对土壤肥力的影响研究[J].江西农业大学学报,2006,28(5):723-727.
    陈光水,何宗明,谢锦升,等.福建柏和杉木人工林细根生产力、分布及周转的比较[J].林业科学,2004,40(4):15-21.
    陈辉.33年生格氏栲人工林与天然林群落特征比较[J].福建林学院学报,2009,29(2):155-159.
    陈立新.人工林土壤质量演变与调控[M].北京:科学出版社,2004.
    陈少雄.桉树在不同地区的整地方式研究[J].林业科学研究,1997,10(3):309-315.
    陈少雄.桉树生态学问题的来源与对策[J].热带林业,2005,33(4):26-30.
    崇明县人民政府.崇明岛概况(地理环境).上海崇明岛政府网(www.cmx.gov.cn).2006.
    戴朝晖,叶永昌,朱剑云,等.三种人工林的结构特征及林分改造对策[J].广东林业科技,2009,25(1):16-22.
    段春华,翟建平,杜立民.杨树人工林地力衰退研究现状及防止措施[J].山东林业科技,2009,2:97-101.
    高健,刘令峰,叶镜中.伐桩粗度和高度对杉木萌芽更新的影响[J].安徽农业大学学报,1995,22(2):145-149.
    龚珊珊,廖善刚.桉树人工林与天然林土壤养分的对比研究.江苏林业科技,2009,36(3):1-4.
    谷思玉,隋跃宇.红松人工纯林、人工混交林和天然林几种土壤酶活性比较[J].农业系统科学与综合研究,2007,23(4):486-493.
    樊奔,包树敏,蒋永丰,等.连栽杨树林对土壤微生物的影响[J].南京林业大学学报,2007,31(5):81-83.
    方升佐,徐锡增,吕士行.杨树萌芽更新与持续生产力[J].南京林业大学学,2000,24(4):43-48.
    冯玉龙,刘利刚,金钟跃,等.长白落叶松水曲柳混交林增产机理的研究(Ⅰ)-落叶松水曲柳混交林生态条件的研究[J].东北林业大学学报,1996,24(2):8-13.
    何毓蓉,廖超林,张保华.长江上游人工林与天然林土壤结构质量及保水抗蚀性研究[J].水土保持学报,2005,19(5):14.
    洪亚平,朱延林,赵万钦.植被恢复建设需要注意的几个问题[J].河南林业科技,2003,23(3):53-54.
    胡立江,沈海龙,赵克尊,等.红松人工林冠下水曲柳天然更新的最适宜生境研究[J].东北林业大学学报,2005,33(3):7-10.
    黄清麟,李元红.福建中亚热带天然阔叶林与人工林对比评价[J].山地学报,2000,18(3):244-247.
    黄世能,郑海水,翁启杰.不同轮伐期和重复采收对大叶相思萌芽更新和林分产量的影晌[J].林业科学研究,1995,8(5):528-534.
    蒋有绪.中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社,1996:3-15.
    江泽慧.中国现代林业[M].中国林业出版社,2000,28-31.
    孔令刚.多代连作杨树人工林土壤根际效应的研究[D].山东农业大学硕士学位论文,2007.
    蓝佩玲,廖新荣,廖观荣,等.桉树与粗果相思混交对土壤养分的影响.热带亚热带土壤科学,1998,7(1):77-79.
    雷静品,肖文发,黄志霖,等.带状改造对柏木人工林林下植被多样性和环境的影响[J].江西农业大学学报,2009,31(1):382-387.
    李东海,杨小波,邓运武,等.桉树人工林林下植被、地面覆盖物与土壤物理性质的关系[J].生态学杂志,2006,25(6):607-611.
    李慧蓉.生物多样性和生态系统功能研究综述[J].生态学杂志,2004,23(3):109-114.
    李坚.现有林经营管理导论[M].哈尔滨:东北林业大学出版社,1994:80-84.
    李昆,陈玉德.元谋干热河谷人工林地的水分输入与土壤水分研究[J].林业科学研究.1995,8(6):651-657.
    李庆逵.中国土壤[M].北京:科学出版社,1987:447.
    廖观荣.我国桉树人工林立地土壤问题研究概况[J].生态环境,2003,12(1):119-121.
    廖观荣,简明,钟继洪,等.桉树人工林生态系统养分循环与平衡研究V桉树林间种山毛豆对土壤肥力和林木生长的作用[J].生态环境,2003,12(4):443-445.
    廖观荣,李淑仪,蓝佩玲,等.桉树人工林生态系统养分循环与平衡研究Ⅰ.桉树人工林生态系统的养分贮存[J].生态环境,2003,12(2):150-154.
    廖观荣,林书蓉,李淑仪,等.雷州半岛桉树人工林地的生物改良研究[J].热带亚热带土壤科学,1994,3(1):8-20.
    廖观荣,林书蓉,李淑仪,等.雷州半岛桉树人工林地力退化的成因与防治措施[J].土壤与环境,2002,11(3):268-273.
    林开敏,林国清.天然阔叶林与杉木连栽林地土壤肥力的差异[J].浙江林学院学报,1995,12(2):221-225.
    刘爱琴,刘春华.香叶树和杉木人工林生态功能的比较[J].中南林学院学报,2005,25(6):47-51.
    刘福德,姜岳忠,王华田,等.杨树人工林连作效应的研究[J].水土保持学报,2005,19(2):102-105.
    刘思涵,李宏庆,孔正红.崇明岛种子植物区系及植被资源.长江流域资源与环境.2007,16(2):14-20.
    卢景龙,卫金.杨树人工林萌芽更新初报[J].山西师范大学学报,2001,15(1):57-60.
    罗菊春.抚育改造是森林生态系统经营的关键性措施[J].北京林业大学学报,2006,28(1):121-124.
    马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J].生物学报,1995,15(3):268-277.
    马梅.人工林地力衰退问题研究[J].林业科技管理,2003(3):26-29.
    宁金魁,陆元昌,赵浩彦,等.北京西山地区油松人工林近自然化改造效果评价[J].东北林业大学学报,2009,37(7):42-44.
    秦武明,何斌,余浩光,等.马占相思人工林不同年龄阶段的生物生产力[J].东北林业大学学报,2007,35(1):22-24.
    上海市崇明县县志编纂委员会.崇明县志.上海人民出版社.1989.
    上海市人类居住科学研究会.崇明岛21世纪绿色生态理念和实验区规划研究
    (2005-2020年).2004.
    盛炜彤,范少辉.杉木人工林的育林干扰对长期立地生产力的影响[J].林业科学,2003,39(5):37-43.
    史作民,刘世荣.宝天曼地区栓皮栎林恢复过程中高等植物物种多样性变化[J].植物生态学报,1998,22(5):415-421.
    宋云.崇明三岛土壤主要养分的时空变异特征及其影响因素分析[D].华东师范大学硕士学位论文,2009.
    苏英吾,李向阳.华南土壤肥力特征与桉树施肥[J].中南林业调查规划,1997(3):35-38.
    唐佩凯.水曲柳与落叶松最佳混交方式的探索[J].林业科技,1987,1:18-20.
    太立坤,余雪标,时忠杰,等.琼中桉树人工林植物多样性与生物量关系研究[J].广东农业科学,2009,6:143-147.
    太立坤,余雪标,杨曾奖,等.三种类型森林林下植物多样性及生物量比较[J].生态环境学报,2009,18(1):229-234.
    佟静秋,牟长城,赖富丽.哈尔滨城市人工林自然演替趋势[J].东北林业大学学报,2009,37(3):24-25.
    王长庭,龙瑞军,王启基,等.高寒草甸不同草地群落物种多样性与生产力关系的研究[J].生态学杂志,2005,15(5):483-487.
    王成,刘继生,武红,等.带状间伐促进赤松人工林天然更新的效果[J].延边大学农学学报,2000,22(3):164-168
    王承义,刘关彬.长白落叶松人工林的自发演变过程[J].林业科技,2001,26(1):12-14.
    王承义,刘关彬.人工林下天然更新种群特征[J].林业科技,2000,25(6):13-15.
    王承义,徐起,何林荣.人工林天然更新过程的干扰效应与人为干扰方式[J].林业科技,2000,25(5):1-3.
    王国兵,阮宏华,唐燕飞,等.亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报,2008,19(1):37-42.
    王丽华.三江平原人工林天然化的生物多样性研究[J].高师理科学刊,2000,20(2):61-63.
    王凌晖,吴国欣,施福军,等.不同造林密度对杂交相思生长的影响[J].南京林业大学学报,2009,33(2):134-136.
    温远光,刘世荣,陈放,等.桉树人工林植物物种多样性及动态研究.北京林业大学学报,2005,27(4):17-22.
    吴国清.崇明岛土壤资源评价初探.水土保持研究.1995,2(1):9-15.
    吴锦容,彭少麟.化感——外来植物入侵的"Novel Weapons"[J].生态学报,2005,25(11):3093-3097.
    夏江宝,曲志远,朱玮,等.鲁中山区不同人工林土壤水分特征[J].中国水土保持科学,2005,3(3):45-50.
    项文化,田大伦.不同密度中幼龄湿地松人工林生长过程的经济效益分析[J].中南林学院学报.1998,18(3):71-74.
    徐大平,张宁南.桉树人工林生态效应研究进展[J].广西林业科学,2006,35(4):179-187;201.
    徐明,于荣,王伯人.土壤活性有机质的研究进展[J].土壤肥料,2000(6):3-7.
    许新桥.近自然林业理论概述[J].世界林业研究,2006,19(1):10-13.
    薛立,赖日石,陈红跃,等.深圳宝安区生态风景林典型造林地土壤养分、微生物和酶活性的研究[J].林业科学研究,2002,15(2):242-246.
    杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):153-159.
    杨小波,李跃烈.海南西南部不同植被类型样地的土壤养分特性及持水性比较研究[J].海南大学学报:自然科学版,2003,21(4):334-338,343.
    杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报,2003,23(9):1719-1730.
    杨玉盛,但主盟,邹双全,等.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J.生态学报,1998,18(2):198-202.
    杨曾奖,陈元,徐大平,等.桉树与豆科植物混交种植对土壤速效养分的影响[J].生态学杂志,2006,25(7):725-730.
    杨澄,刘建军,杨武.桥山森林土壤水分物理性质的分析[J].陕西林业科 技,1998,(1):24-27.
    尹娜,魏天兴,张晓娟.黄土丘陵区人工林土壤养分效应研究[J].水土保持研究,2008,15(2):209-211.
    余雪标,白先权,徐大平.不同连栽代次桉树人工林的养分循环[J].热带作物学报,1999,9(3):60-66.
    余雪标,莫晓勇,龙腾,等.不同连栽代次桉树林枯落物及其养分组成研究[J].海南大学学报:自然科学版,1999,6(2):140-144.
    云南林学院林业系,北京市西山试验林场(沈国舫执笔).北京西山地区油松人工混交林的研究[J].林业科学,1978,14(3):12-20.
    曾明洪,熊建宏,杨清培,等.南岭山地杉木人工林与天然林群落特征研究[J].江西林业科技,2008,5:10-14.
    张鼎华,叶章发,王伯雄.“近自然林业”经营法在杉木人工幼林经营中的应用[J].应用与环境生物学报,2001,7(3):219-223.
    张国成.西双版纳地区典型群落土壤主要营养成分的研究[D].中国科学院西双版纳热带植物园硕士学位论文,2006.
    张立英,张百习,孙海红.中国人工林地力衰退研究进展[J].防护林科技,2009(4):99-100.
    张正雄.山地人工林集材作业技术[J].山地学报,2002,20(6):761-764.
    赵俊卉,亢新刚,张慧东,等.长白山主要针叶树种胸径和树高变异系数与竞争因子的关系[J].应用生态学报,2009,20(8):1832-1837.
    郑世锴,卢永农.山东临沂地区杨树人工林密度及经济效益的研究[J].林业科学研究.1990,3(2)166-171.
    中国科学院南京土壤研究所.土壤农化分析[M].上海:上海科学技术出版社,1978:365-366.
    钟继洪,李淑仪,蓝佩玲,等.雷州半岛桉树人工林土壤肥力特征及其成因[J].水土保持通报,2005,25(3):44-48.
    周霆,盛炜彤.关于我国人工林可持续问题[J].世界林业研究,2008,21(3):49-53.