饱和控制系统理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
执行器饱和特性广泛地存在于现实控制系统中,但传统的控制理论又常漠视之,直至发生多起灾难事故后才引起学者关注。饱和是硬非线性,具有不光滑特性,它的加入增加了系统分析与设计的复杂性。目前对于执行器幅度饱和的系统研究已取得了许多成果,但对于更难于分析的执行器幅度与速率饱和的系统研究工作却很少。在实际工程中,除了系统存在的执行器饱和外,还存在由于系统建模参数及运行环境的变化等一系列因素造成的系统模型不确定,以及当被控对象进行大范围运动时,系统模型存在的光滑非线性,这些实际问题在进行控制系统设计时都应予以相应的考虑。由于船舶航向控制的操舵系统存在幅度与速率饱和,进行控制器设计时必须给予考虑和很好的处理。然而目前已有的船舶航向控制器设计结果中,一直没有给出很好解决此问题的办法。
     对于存在执行器饱和的系统,全局稳定是很难得到保证的,大部分工作集中在系统局部分析,因此本文针对含执行器幅度饱和的线性系统,改进了局部鲁棒稳定性和性能的分析方法,并针对具有特殊形式的含执行器幅度与速率饱和的系统,完善了现有的抗饱和控制理论,从理论上保证了含抗饱和补偿器的闭环系统的代数环良定性,即系统动力学方程解的存在性及唯一性。采用的主要处理手段有:饱和特性的凸包处理方法,结果具有更低的保守性;借助椭球体和参考集估计系统吸引域的大小;采用线性微分包含处理系统模型中的光滑不确定非线性项;通过引入幅度与速率饱和(MRS)模型和状态变量增广法处理了执行器的幅度与速率饱和;且将所有控制问题转化为线性矩阵不等式(LMI)或双线性矩阵不等式(BMI)约束的(凸)优化问题,便于用MATLAB优化求解。
     主要研究内容:
     对四类饱和控制系统进行了理论研究并给出相应的结论,且将其中一类系统的理论研究结果应用于船舶航向控制的实际中,很好的解决了航向控制中的舵角与舵角速率饱和问题。
     (1).对于幅度饱和的反馈矩阵有摄动的线性系统进行稳定性分析,采用凸包方法处理饱和,基于二次Lyapunov函数,给出了判定闭环系统收缩不变椭球的充分性条件,通过选取多面体参考集,进行最大吸引域估计,且将此问题转化为LMI约束的凸优化问题。
     (2).对于幅度饱和的参数不确定线性系统进行保成本控制,用凸包方法处理饱和,基于二次Lyapunov和非二次Lyapunov函数,分别给出保证系统鲁棒稳定与鲁棒性能的充分性条件,且将控制器设计问题分别转化为LMI和/或BMI约束的优化问题。
     (3).对于一类幅度与速率饱和且执行器满足一定动力学特性的线性系统进行静态抗饱和控制。通过采用状态变量增广法,将幅度与速率饱和问题转化为幅度饱和问题,基于二次Lyapunov函数,采用多面体微分包含和范数有界微分包含,分别给出系统同时满足稳定性和最佳性能的充分性条件,且将抗饱和补偿器设计问题转化为LMI约束的凸优化问题。
     (4).对于一类幅度与速率饱和的不确定非线性系统进行静态抗饱和控制。首先采用线性微分包含处理系统模型中的不确定非线性项;之后通过引入MRS模型,将幅度与速率饱和问题转化为幅度饱和问题。给出了闭环系统代数环良定性的充要条件,并将其化作LMI约束,从而去除了代数环良定性假设。基于二次Lyapunov函数,采用范数有界微分包含,给出了闭环系统同时满足鲁棒稳定与鲁棒性能的充分性条件,且将抗饱和补偿器设计问题转化为LMI约束的凸优化问题。
     (5).进行船舶航向保持控制器设计,基于线性船舶运动学模型,采用静态抗饱和控制方法,很好地解决了舵角速率饱和问题。
     (6).进行船舶转向控制器设计,基于不确定非线性船舶运动学模型,给出了转向静态抗饱和控制器的设计,通过与转向饱和有限时间控制器仿真比较,更好地说明抗饱和控制器很好地解决了舵角与舵角速率饱和问题,提高了系统的控制性能。
     最后是全文总结及展望。
Although saturation characteristics exist extensively in practical control systems, it had been rarely studied in conventional control theory until several disasters happened. As a hard nonlinearity, saturation's non-smooth characteristic makes system analysis and design more complex. As for the systems subject to actuator amplitude saturation, many research results have been recently achieved, however, the system analysis of actuator amplitude and rate saturation still remains harder with less results. In addition to practically encountered actuator saturation, system model uncertainties and smooth non-linearities really exist and should be appropriately taken into consideration, due to the factors such as the variation of the system modeling parameters, the variation of the operating environment and so on. Since there exists amplitude and rate saturation in rudder manipulation systems of steering, the appropriate consideration and management must be paid. However, the present results of ship steering controller design can't provide a perfect solution to the rudder saturation.
     It's definitely difficult to achieve the global stability of systems subject to actuator saturation, therefore most work concentrate on system local analysis. In this paper, local stability and performance analysis methods are improved for linear systems subject to actuator amplitude saturation. As for the systems with both amplitude and rate saturation, however, the present anti-windup control theory is inapplicable because of the assumption of the algebraic loop well-posedness of the closed-loop system. The theory is improved in this paper that the closed-loop well-posedness is guaranteed for the special formed systems with anti-windup compensator, therefore, also guaranteed is the existence and uniqueness of the solution to the system dynamics. The tricks of this paper include the convex hull manipulation of saturation characteristics with less conservative results, estimating the system domain of attraction via ellipsoids and the reference sets, manipulating the uncertain smooth nonlinear terms of the system model via linear differential inclusions, introducing the magnitude and rate saturation (MRS) model and state variable augmentation to deal with the actuator amplitude and rate saturation, and finally transforming all the control problems into (convex) optimizations subject to linear matrix inequalities (LMI) and/or bi-linear matrix inequalities (BMI) constraints. All the problems can be sufficiently optimized using MATLAB.
     The main research contents are as follows:
     Four kinds of saturation control systems are concerned in the theory and the corresponding results are presented. Furthermore, the theory research results of one kind of them are applied to well solve the problem of the rudder amplitude and rate saturation in the ship course control.
     (1). For linear systems subject to amplitude saturation and feedback matrix perturbation, the stability is analyzed via convex hull method. The sufficient condition of determining the closed-loop system's contractively invariant ellipsoid is obtained based on the quadratic Lyapunov function. Therefore the maximum domain of attraction is estimated by choosing the reference sets as polytopes and the problem can be transformed into the LMI constrained convex optimization.
     (2). For linear systems subject to amplitude saturation and parametric uncertainties, the guaranteed cost control problem is solved via the convex hull method. The sufficient conditions are respectively proposed based on the quadratic and non-quadratic Lyapunov functions, with the closed-loop robust stability and the guaranteed robust performance. Furthermore, the controller synthesis problems are transformed into the LMI and/or BMI constrained convex optimization problems.
     (3). For linear systems subject to both amplitude and rate saturation, the static anti-windup control problem is discussed with the actuator dynamics of certain form. The amplitude and rate saturation problem is simplified to the amplitude saturation problem by augmenting the state variables. Under the assumption that the closed-loop system's algebraic loop is well-posed, the sufficient conditions are respectively proposed based on the quadratic Lyapunov function and the polytopic/norm-bounded differential inclusions, with closed-loop stability and better performance. Furthermore, the anti-windup compensator design problems are transformed into the LMI constrained convex optimization problems.
     (4). For a class of nonlinear uncertain systems subject to amplitude and rate saturation, the static anti-windup problem is addressed. The first step involves the nonlinear uncertain terms' management using linear differential inclusions and the second, via introducing the MRS model, the transformation of the amplitude and rate saturation problem into the amplitude saturation problem. The key point is that the necessary and sufficient condition of the closed-loop algebraic loop well-posedness is obtained and transformed into the LMI constraint, thus the above-mentioned assumption is removed. By employing the norm-bounded differential inclusions, the sufficient conditions are obtained based on the quadratic Lyapunov function, with the closed-loop robust stability and robust performance. Furthermore, the anti-windup compensator design problems are transformed into the LMI constrained convex optimization problems.
     (5). Based on the linear ship motion model and the static anti-windup control theory, the course keeping controller is designed to perfectly solve the problem of the rudder rate saturation.
     (6). Based on the nonlinear uncertain ship motion model, the ship course changing static anti-windup controller is designed. By comparison with the saturated finite interval course changing controller, simulation results show that the anti-windup controller achieves better ship course changing performance since it can perfectly solve the problem of the rudder amplitude and rate saturation.
     The conclusions and perspectives are given in the end of the paper.
引文
[1]M A. Dornheim. Report pinpoints factors leading to YF-22 crash. Aviation Week Space Tech,1992,137(1):53-54P
    [2]G. Stein. Respect the unstable. IEEE Control Systems Magazine,2003, 23(1):12-25P
    [3]D. Sourlas, J. Choi, V. Manousiouthakis. Best achievable control systems performance:The saturation paradox. Proceedings of the conference on Decision and Control. IEEE,1994:3816-3818P
    [4]A. T. Fuller. In-the-large stability of relay and saturating control systems with linear controllers. International Journal of Control,1969,10(4): 457-480P
    [5]J. L. Lemay. Recoverable and reachable zones for linear systems with linear plants and bounded controller output. IEEE trans. Automat. Control,1964, 9(2):346-354P
    [6]W. E. Schmitendorf, B. R. Barmish. Null controllability of linear systems with constrained controls. SIAM Journal of Control and Optimization,1980, 18(4):327-345,327-345P
    [7]E. D. Sontag, H. J. Sussmann. Nonlinear output feedback design for linear systems with saturating controls. Proceedings of the 29th IEEE Conference on Decision and Control. IEEE,1990:3414-3416,3414-3416P
    [8]F. Tyan, D. S. Bernstein. Global stabilization for systems containing a double integrator using a saturated linear controller. International Journal of Robust and Nonlinear Control,1999,9(15):1143-1156P
    [9]J. Goncalves.. Quadratic surface lyapunov functions in global stability analysis of saturating systems. Proceedings of the American Control Conferenc. IEEE,1990:4183-4185P
    [10]H. J. Sussmann, Y. Yang. On the stabilizability of multiper integrators by means of bounded feedback controls. Proceedings of the 30th IEEE
    Conference on Decision and Control. IEEE,1991:70-72P
    [11]A. R. Teel. Global stabilization and restricted tracking for multiple integrators with bounded control. Systems and Control Letters,1992,18(2): 165-171P
    [12]H. J. Sussmann, E. D. Sontag, Y. Yang. A general result on stabilization of linear systems using bounded controls. IEEE trans. Automat. Control,1994, 39(12):2411-2425P
    [13]A. R. Teel. Linear systems with input nonlinearities:global stabilization by scheduling a family of H∞type controllers. International Journal of Robust and Nonlinear Control,1995,5(6):399-411P
    [14]J. M. Shewchun, E. Feron. High performance control with position and rate limited actuators. International Journal of Robust and Nonlinear Control, 1999,9(10):617-630P
    [15]R. Suarez, J. A. Rammirez, J. Solis-Daun. Linear systems with bounded input:Global stabilization with eigenvalue placement. International Journal of Robust and Nonlinear Control,1997,7(9):835-845P
    [16]G. F. Wredenhagen, P. R. Belanger. Piecewise-linear LQ control for systems with input constraints. Automatica,1994,30(4):403-416P
    [17]P. O. Gutman, P. Hagander. A new design for constrained controllers for linear systems. IEEE trans. Automat. Control,1985,30(1):22-33P
    [18]A. R. Teel. Semi-global stabilization of linear null controllable systems with input nonlinearities. IEEE trans. Automat. Control,1995,40(1): 96-1 OOP
    [19]A. Saberi, Z. Lin, A. R. Teel. Control of linear systems with saturating actuators. IEEE trans. Automat. Control,1996,41(3): 368-378,368-378,368-378P
    [20]J. Solis-Daun, J. A. Rammirez, R. Suarez. Semi-global stabilization of linear systems using constrained controls:A parametric optimization approach. International Journal of Robust and Nonlinear Control,1999, 9(8):461-484P
    [21]T. Hu, Z. Lin, Y. Shamash. Semi-global stabilization with guaranteed regional performance of linear systems subject to actuator saturation. Systems and Control Letters,2001,43(2):203-210,203-210P
    [22]D. S. Bernstein, A. N. Michel. A chronological bibliography on saturating actuators. International Journal of Robust and Nonlinear Control,1995,5(5): 375-380P
    [23]A. Saberi, A. A. Stoorvogel. Special issue on control problems with constraints. International Journal of Robust and Nonlinear Control,1999, 9(10):583-734P
    [24]S. Huang, J. Lams, B. Chen. Local reliable control for linear systems with saturating actuators. Proceedings of the conference on Decision and Control. IEEE,2002:4154-4159P
    [25]T. Hu, Z. Lin. Exact characterization of invariant ellipsoids for linear systems with saturating actuators. IEEE Trans. Automat. Contr.,2002, 47(1):164-169P
    [26]F. Blanchini. Set invariance in control-A survey. Automatica,1999,35(11): 1747-1767,1747-1769,1747-1769,1747-1769P
    [27]F. Blanchini. Constrained stabilization via smooth Lyapunov function. Systems and Control Letters,1998,35:155-163P
    [28]M. Cwikel, P. Gutman. Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states. IEEE Transaction on Automatic Control,1983,31: 457-459P
    [29]C. Pittet, S. Tarbouriech, C. Burgat. Stability region for linear systems with saturating controls via circle and popov criteria. Proceedings of the 36th Conference on Decision and Control. San Diego, California USA,1997: 4518-4523P
    [30]H. Hindi, S. Boyd. Analysis of linear systems with saturating using convex optimization. Proceedings of the 37th Conference on Decision and Control. Tampa, Florida, USA,1998:903-908,903-908P
    [31]A. H. Glattfelder, W. Schaufelberger. Stability analysis of single-loop control systems with saturation and antireset-windup circuits. IEEE Transaction on Automatic Control,1983,28(12):1074-1081,1074-1080P
    [32]A. H. Glattfelder, W. Schaufelberger. Stability of discrete override and cascade-limiter single-loop control systems. IEEE Transaction on Automatic Control,1988,33(6):532-540P
    [33]P. Kapasouris, M. Athans. Multivariable control systems with saturating actuators antireset windup strategies. Proceedings of the American Control Conference. Boston, MA,1985:1579-1584P
    [34]B. S. Chen, S. S. Wang. The stability of feedback control with nonlinear saturating actuator:time domain approach. IEEE Transaction on Automatic Control,1988,33(3):483-487P
    [35]E. F. Mulder, M. V. Kothare, M. Morari. Multivariable anti-windup controller synthesis using linear matrix inequalities. Automatica,2001, 37(9):1407-1416P
    [36]L. Zaccarian, A. R. Teel. A common framework for anti-windup, bumpless transfer and reliable design. Automatica,2002,38(10):1735-1744P
    [37]T. Hu, Z. Lin, B. M. Chen. An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica,2002, 38(2):351-359,351-359,351-359,351-359,351-359,351-359P
    [38]T. Hu, B. Huang, Z. Lin. Absolute stability with a generalized sector condition. IEEE Transactions on Automatic Control,2004,49(4): 535-548,535-548P
    [39]M. Johansson, A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transaction on Automatic Control, 1998,43(4):555-559P
    [40]A. E. B. Milani. Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls. Proceedings of the American Control Conference. Arlington, VA,2001:4206-4211P
    [41]Y. Y. Cao, Z. Lin. Stability analysis of discrete-time systems with actuator
    saturation by a saturation-dependent Lyapunov function. Automatica,2003, 39(7):1235-1241P
    [42]T. Hu, Z. Lin. Composite quadratic Lyapunov functions for constrained control systems. IEEE Transactions on Automatic Control,2003,48(3): 440-450,440-450P
    [43]T. S. Hu. Nonlinear control design for linear differential inclusions via convex hull of quadratics. Automatica,2007,43(3):685-692P
    [44]Y. Wang, Y. Y. Cao, Y. Sun. Stability analysis and anti-windup design for discrete-time systems by a saturation-dependent Lyapunov function approach. In Proceedings of 16th IF AC World Congress. Prague,2005: 593-598P
    [45]T. Nguyen, F. Jabbari. Disturbance attenuation for systems with input saturation:An LMI approach. IEEE Transaction on Automatic Control, 1999,44(4):852-857P
    [46]T. Nguyen, F. Jabbari. Output feedback controller for disturbance attenuation with bounded inputs. Proceedings of the 36th IEEE Conference on Decision and Control. IEEE,1997:177-182P
    [47]B. Chen, H. Lu. State estimation of large-scale systems. International Journal of Control,1988,47(6):1613-1632P
    [48]M. S. Mahmoud. Dynamic controllers for systems with actuators. International Journal of Systems Science,1995,26(2):359-374P
    [49]A. Saberi, A. A.. Stoorvogel. Stabilization and regulation of linear systems with saturated and rate-limited actuators. Proceedings of the American Control Conference. New Mexico,1997:3920-3921P
    [50]Z. Lin. Semi-global stabilization of linear systems with position and rate-limited actuators. Systems and Control Letters,1997,30(1):1-11P
    [51]Z. Lin. Semi-global stabilization of discrete-time linear systems with position and rate-limited actuators. Systems and Control Letters,1998, 34(5):313-322,313-322P
    [52]Z. Lin. Robust semi-global stabilization of linear systems with imperfect
    actuators. Systems and Control Letters,1997,29(4):215-221P
    [53]J. Collado, R. Lozano, A. Alion. Semi-global stabilization of linear discrete-time systems with bounded input using a periodic controler. Systems and Control Letters,1999,36(4):267-275P
    [54]T. Hu, Z. Lin. Absolute stability analysis of discrete-time systems with composite quadratic lyapunov functions. IEEE Transaction on Automatic Control,2005,50(7):781-797P
    [55]H. A. Fertik, C. W. Ross. Direct digital control algorithm with anti-windup feature. ISA Transactions,1967,6(4):317-328P
    [56]P. S. Buckley. Designing override and feedforward controls. Contr. Eng., 1971,18(8):48-51P
    [57]K. S. Walgama, J. Stenby. Inherent observer property in a class of anti-windup compensators. International Journal of Control,1990,52(3): 705-724P
    [58]J. Doyle, A. Packard. Uncertain multivariable systems from a state space perspective. Proceedings of the American Control Conference. Minneapolis, MN, USA,1987:2147-2152P
    [59]R. Hanus, M. Kinnaert, J. L. Henrotte. Conditioning technique, a general anti-windup and bumpless transfer method. Automatica,1987,23(6): 729-739P
    [60]R. Hanus, M. Kinnaert. Control of constrained multivariable systems using the conditioning technique. Proceedings of the American Control Conference. Piscataway, NJ, USA,1989:1712-1718P
    [61]K. S. Walgama, S. Roennbaeck, J. Sternby. Generalisation of conditioning technique for anti-windup compensators. Control Theory and Applications, 1992,139(2):109-118P
    [62]K. J. Astrom, L. Rundqwist. Integrator windup and how to avoid it. Proceedings of the American Control Conference. Piscataway, NJ, USA, 1989:1693-1698P
    [63]Q. Hu, G. P. Rangaiah. Anti-windup schemes for uncertain nonlinear
    systems. Control Theory and Applications,2000,147(3):321-329P
    [64]A. Zheng, M. V. Kothare, M. Morari. Anti-windup design for internal model control. International Journal of Control,1994,60(5):1015-1024P
    [65]M. V. Kothare, P. J. Campo, M. Morari, et al. Unified framework for the study of anti-windup designs. Automatica,1994,30(12):1869-1883P
    [66]T. S. Hu, A. R. Teel, L. Zaccarian. Regional anti-windup compensation for linear systems with input saturation. Proceedings of the American Control Conference. Portland, OR, USA,2005:3397-3402P
    [67]E. F. Mulder, M. V. Kothare, M. Morari. Multivariable anti-windup controller synthesis using linear matrix inequalities. Automatica,2001, 37(9):1407-1416P
    [68]L. Zaccarian, A. R. Teel. Nonlinear scheduled anti-windup design for linear systems. IEEE Transaction on Automatic Control,2004,49(11): 2055-2061P
    [69]T.S. Hu, A.R. Teel, L. Zaccarian. Anti-windup synthesis for linear control systems with input saturation:Achieving regional, nonlinear performance. Automatica,2008,44:512-519,512-519P
    [70]N. Mort. Autopilot design for surface ship steering using self-tuning controller algorithms. University of Sheffield PhD thesis,1983:23-69P
    [71]K. J. Astrom, B. Wittenmark. On self tuning regulators. Automatic,1973,9: 185P
    [72]C. G. KAllstrom, K. J. Astrom, N. E. Thorell etal. Adaptive autopilots for tankers. Automatic,1979,15(2):241-254,241-254P
    [73]J. V. Amerongen. Adaptive steering of ships-a model reference approach. Automatic,1984,20(1):3-14,3-14P
    [74]W. Brown, E. Guest, W. Y. Hwang, C. Pizzariello. Factors to consider in developing a knowledge-based autopilot expert system for ship maneuvering simulation. Proceedings of the 14th Ship Technology and Research. New Orleans, USA,1989:132-141P
    [75]J. V. Ameronben. An autopilot for ships designed with fuzzy sets. Proc.
    IF AC Conference on Digital Computer Applications to Process Control. The hague, USA,1977:101-106P
    [76]J. R. Layne, K. M. Passino. Fuzzy model reference learning control for cargo ship steering. IEEE Control Systems,1993,13(6):23-34P
    [77]G. E. Hearn, Y. Zhang, P. Sen. Comparison of SISO neural control strategies for ship track keeping. Control Theory and Application,1997, 144(2):153-165P
    [78]王兴成.船舶航向控制器非线性Backstepping设计Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China, 2006:6265-6268P
    [79]张显库.船舶航向保持的非线性逆推鲁棒控制算法.大连海事大学学报,2007,33(2):80-83页
    [80]孔令涛,杜佳璐,王玉杰.基于逆推-非线性阻尼算法的船舶航向控制器设计.大连海事大学学报,2006,32(4):61-64页
    [81]宋立忠,李红江,陈少昌.滑模预测离散变结构控制用于船-舵伺服系统.中国电机工程学报,2003,23(11):160-163页
    [82]吴汉松,黄凯,徐袭.舰船航向保持的变结构控制及仿真.海军工程大学学报,2004,16(3):27-31,27-31页
    [83]丁玲玲,刘胜.舰船主舵/襟翼舵广义预测联合控制规律研究.哈尔滨工程大学学报,2000,6:1-6页
    [84]胡耀华,贾欣乐.具有约束条件的船舶运动预测控制.控制理论与应用,2000,17(4):532-537页
    [85]智力,王树青.一类基于模型预测的船舶自动舵控制策略研究.船舶工程,2007,29(2):38-41,38-41页
    [86]郑云峰,杨盐生,李铁山.带有执行器的船舶航向控制反馈线性化设计.大连海事大学学报,2004,30(3):14-17页
    [87]张松涛,任光.基于反馈线性化的船舶航向保持模糊自适应控制.交通运输工程学报,2005,5(4):72-76,72-76页
    [88]袁士春,郭晨,史成军.基于线性变参数的船舶运动H∞控制及仿真.大连海事大学学报,2007,33(2):89-91页
    [89]张显库,赵翔宇.船舶转向的鲁棒控制及其优化设计.哈尔滨工程大学学报,2006,27(3):319-322,319-322页
    [90]卜仁祥,刘正江,李铁山.迭代滑模增量反馈及在船舶航向控制中的应用.哈尔滨工程大学学报,2007,28(3):268-272页
    [91]C. Y. Tzeng. Optimal control of a ship for a course-changing maneuver. Journal of Optimization Theory and Applications,1998,97(2): 281-297,281-297P
    [92]C. Y. Tzeng, G. C. Goodwin, S. Crisafulli. Feedback linearization design of a ship steering autopilot with saturation and slew rate limiting actuator. International Journal of Adaptive Control and Signal Processing,1999, 13(1):23-30,23-30,23-30P
    [93]C. Y. Tzeng, K. F. Lin. Adaptive ship steering autopilot design with saturating and slew rate limiting actuator. International Journal of Adaptive Control and Signal Processing,2000,14:411-426,411-426,411-426P
    [94]C. Y. Tzeng. An internal model control approach to the design of yaw-rate-control ship-steering autopilot. IEEE Journal of Oceanic Engineering,1999,24(4):507-513,507-513P
    [95]Hassan K. Khalil.非线性系统.朱义胜,董辉,李作洲等译.第三版.北京:电子工业出版社,2005:78-83,228P
    [96]申铁龙.H∞控制理论及应用.北京:清华大学出版社,1996:36页
    [97]冯德兴.凸分析基础.北京:科学出版社,1995:1-20页
    [98]Tingshu Hu, Zongli Lin. Control Systems with Actuator Saturation. Boston: Birkhauser,2001:160,162,170-175,170-175P
    [99]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社,2002:8-9页
    [100]H. Hindi, S. Boyd. Analysis of linear systems with saturating using convex optimization. Proceedings of the 37th IEEE Conference on Decision and Control. Florida,1998:903-908P
    [101]C. pittet, S. Tarbouriech, C. Burgat. Stability regions for linear systems with saturating controls via circle and Popover criteria. Proceedings of the 36th
    IEEE Conference on Decision and Control. San Diego, CA,1997: 4518-4523P
    [102]L. Yu. Optimal guaranteed cost control of linear uncertain system:an LMI approach. Control Theory and Application,2000,17(3):423-428P
    [103]T. Hu, R. Goebel, A Teel, Z. Lin. Conjugate Lyapunov functions for saturated linear systems. Automatica,2005,41(11): 1949-1956,1949-1956P
    [104]A. Hassibi, J. How, S. Boyd. A path-following method for solving BMI problems in control. Proceedings of the American Control Conference. USA:IEEE,1999:1385-1389P
    [105]R. Freeman, L. Praly. Integrator backstepping for bounded controls and control rates. IEEE Transaction on Automatic Control,1998,43(2): 258-262P
    [106]F. Tyan, D.S. Bernstein. Dynamics output feedback compensation for linear systems with independent amplitude and rate saturations. Int. J. Contr., 1997,67:89-116P
    [107]A.R. Teel. A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Transaction on Automatic Control,1996, 41(9):1256-1270P
    [108]J.M. Shewchun, E. Feron. High performance bounded control of systems subject to input and input rate constraints. Proceedings of AIAAGNC Conference. New Orleans(LA), USA,1997:770-779P
    [109]V. Kapila, S. Valluri. Model predictive control of systems with actuator amplitude and rate saturation. Proceedings of the 37th IEEE Conference on Decision and Control. Tampa, FL; United States,1998:1396-1401P
    [110]A. Bateman, Z. Lin. An analysis and design method for discrete time linear systems under nested saturation. IEEE Transaction on Automatic Control, 2002,47(8):1305-1310P
    [111]A. Bateman, Z. Lin. An analysis and design method for linear systems under nested saturation. Systems and Control Letters,2003,48:41-52P
    [112]F. Jabbari, I.E. Kose. Rate and magnitude-bounded actuators:scheduled output feedback design. Int. J. Robust and Nonlinear Control,2004,14: 1169-1184P
    [113]S. Galeani, A.R. Teel, L. Zaccarian. Constructive nonlinear anti-windup design for exponentially unstable linear plants. Systems and Control Letters, 2007,56(5):357-365P
    [114]C. Roos, J.M. Biannic. A convex characterization of dynamically-constrained anti-windup controllers. Automatica,2008,44: 2449-2452P
    [115]G. Grimm, A.R. Teel, L. Zaccarian. The L2 anti-windup problem for discrete-time linear systems:Definition and solutions. Systems and Control Letters,2008,57:356-364P
    [116]S. Galeani, S. Onori, A. R. Teel, L. Zaccarian. A magnitude and rate saturation model and its use in the solution of a static anti-windup problem. Systems and Control Letters,2008,57(1):1-9,1-9,1-9,1-9P
    [117]S. Galeani, S. Onori, A. R. Teel, L. Zaccarian. Further results on static linear anti-windup design for control systems subject to magnitude and rate saturation. Proceedings of the 45th IEEE Conference on Decision and Control. San Diego,2006:6373-6378,6373-6378,6373-6378P
    [118]C. Barbu, S. Galeani, A.R. Teel, L. Zaccarian. Nonlinear antiwindup for manual flight control. International Journal of Control,2005,78(14): 1111-1129P
    [119]F. Wu, M. Soto. Extended anti-windup control schemes for LTI and LFT systems with actuator saturations. Int. J. Robust and Nonlinear Control, 2004,14(15):1255-1281P
    [120]N. Wada, M. Saeki. Synthesis of a static anti-windup compensator for systems with magnitude and rate limited actuators. Transactions of the Society of Instrument and Control Engineers,2001,37(4):331-337P
    [121]R.B. Miller, M. Pachter. Manual flight control with saturating actuators. IEEE Control Systems,1998,18(1):10-19P
    [122]T. Hu, A. R. Teel, L. Zaccarian. Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov function. IEEE Transactions on Automatic Control,2006,51(11): 1774-1776,1774-1776,1774-1776,1774-1775,1770-1786,1770-1786P
    [123]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模.大连:大连海事大学出版出,1999:49-138,294-305页
    [124]杨能凯.神经网络在大型船舶航向控制中的应用研究.哈尔滨工程大学硕士论文,2007:86-87页
    [125]张显库,贾欣乐,刘川.响应型船舶运动数学模型的构造.大连海事大学学报,2004,30(1):18-21页
    [126]赵希人,刘胜.具有非有理谱平稳随机过程仿真的谱方法.自动化学报,1990,16(2):161-165页
    [127]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001:63,64页
    [128]贾欣乐,张显库.船舶运动智能控制与H∞鲁棒控制.大连:大连海事大学出版出,2002:26-27页
    [129]刘胜,方亮.船舶航向GA-PID自适应控制研究.系统仿真学报,2007,19(16):23-27页
    [130]沐阿华,吕强,张锋等.具有不确定性的船舶航向鲁棒控制LMI方法研究.船舶工程,2007,29(2):54-57页
    [131]杜刚,战兴群,张卫明等.基于改进型径向基函数网络的船舶非线性航向自适应逆控制.上海交通大学学报,2006,40(6):988-992页
    [132]孙红英,于风卫.船舶航向非线性系统的自适应动态面控制.船电技术,2008,28(4):243-246页
    [133]S. S. Hu, P. H. Yang, J. Y. Juang, B. C. Chang. Robust nonlinear ship course-keeping control by H ∞ I/O linearization and μ-synthesis. International Journal of Robust and Nonlinear Control,2003,13:55-70P
    [134]T. M. Rueda, F. J. Velasco, E. Moyano, et al. Application of a robust QFT linear control method to the course changing manoeuvring of a ship. Journal of Maritime Research,2005,2(1):69-86P
    [135]贾欣乐,蒋丹东,张显库.船舶转向控制器研究.大连海事大学学报,1998,24(1):23-28页
    [136]ANNA WITKOWSKA, MIROSLAW TOMERA, ROMAN SMIERZCHALISKI. A backstepping approach to ship course control. International Journal of Applied Mathematics and Computer Science,2007, 17(1):73-85P
    [137]Jiuhong Ruan, Yibin Li. ADRC based ship course controller design and simulations. Proceedings of the IEEE International Conference on Automation and Logistics. Jinan, China,2007:2731-2735P
    [138]方亮.船舶舵/翼舵-鳍/翼鳍智能鲁棒控制研究.哈尔滨工程大学博士论文,2008:42-44,42-44页
    [139]洪奕光,程代展.非线性系统的分析与控制.北京:科学出版社,2005:225-249页