微分包含系统的几类控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性是自然界普遍存在的现象,用微分包含来描述系统的不确定性是常用的方法之一。微分包含系统比一般微分方程描述的系统更具有广泛性,例如线性时不变系统、区间系统、多胞体系统等都可以看作是微分包含系统的一种特殊形式。针对微分包含系统,如何建立该系统的分析和控制器的设计方法,是现代控制理论研究中的一个重要课题。本文主要研究了微分包含系统的几类控制器的设计问题。
     全文分为五章,各章的研究内容叙述如下:
     第一章是绪论部分。首先综述了微分包含系统的性质及其研究的进展情况,简要介绍了微分包含系统的几种具有特殊结构的模型以及研究方法,接着介绍了本论文所用到的数学基础理论,最后概述了本论文的主要工作。
     第二章利用滑模变结构控制理论研究了微分包含系统的镇定性问题。首先研究了单个系统的滑模控制。涉及的模型有一类非线性系统和不确定时滞系统。针对一类非线性系统,提出了一个新的趋近律,该趋近律可以有效地抑制抖振。对于具有非线性输入的不确定时滞系统,给出了基于观测器的无源滑模控制器的设计,同时得到了使闭环系统渐近稳定且无源的充分条件。然后重点研究了多胞体微分包含系统以及多胞体随机微分包含系统的滑模控制,分别给出了滑模控制器的设计,并且对多胞体随机微分包含系统还做了无源性分析,最后通过例子验证了所提方法的有效性。
     第三章研究了多胞体线性时滞微分包含系统和多胞体随机时滞微分包含系统的非线性状态反馈控制问题。利用二次凸包函数方法,首先给出了多胞体线性时滞微分包含系统的非线性状态反馈控制器的设计,然后推广到多胞体随机时滞微分包含系统中,得到了使闭环系统在均方意义下是指数稳定的充分条件。第四章首先采用描述系统方法研究了多胞体线性微分包含系统和多胞体随机微分包含系统的有限时间控制问题。针对多胞体线性微分包含系统,不仅考虑了有限时间控制问题,也考虑了广义H_2性能。对于多胞体随机微分包含系统,给出了有限时间控制器的设计方法。最后考虑了鲁里叶微分包含系统的非脆弱有限时间镇定问题。
     第五章总结了本文研究的主要内容并给出若干值得进一步研究的问题。
     本文的主要创新点概括如下:
     1)针对一类非线性系统,提出了一个新的趋近律,有效地抑制了抖振。针对多胞体微分包含系统和多胞体随机微分包含系统,首次给出了变结构控制器的设计方案。所得结果建立了用变结构控制研究多胞体微分包含系统的理论框架。
     2)将二次凸包函数方法运用到多胞体线性时滞微分包含系统的镇定性分析中,并推广到多胞体随机微分包含系统,从而扩大了非线性控制器的设计范围。
     3)将描述系统方法和有限时间控制相结合,为多胞体线性微分包含系统和多胞体随机微分包含系统的有限时间控制器设计提供了一种可行的新途径。针对鲁里叶微分包含系统,提出基于观测器的非脆弱有限时间控制器的设计方案,有效地解决了该系统的有限时间控制问题。
Uncertainty usually exists in the nature. Differential inclusions usually can be used todescribe the system with uncertainty. This kinds of systems are more general than systemsdescribed by ordinary differential equations. For example, linear time-invariant systems,interval systems, polytopic systems, etc, can be taken as a special form of the differentialinclusion systems. For the differential inclusion system, how to construct the analysis andthe method of controller design has been an important topic in modern control theory.This paper mainly investigates several controller design methods of differential inclusionsystems.
     This paper consists of five chapters. The main contents of every chapter are as fol-lows:
     Chapter one is an introduction. It introduces the properties and the recent develop-ment of differential inclusions, gives a brief introduction about the models of differentialinclusion systems with special structures and some research approaches, then presentsbasic mathematical theories used in this paper. Finally, the major work of the paper issummarized.
     Chaper two considers the stabilization problem of differential inclusion systems viasliding mode control. First, the common systems are investigated, the models includea class of nonlinear systems and uncertain time-delay systems. For a class of nonlinearsystems, a new reaching law is proposed to reduce the chattering phenomenon. For theuncertain time-delay system with nonlinear input, an observer-based passive sliding modecontroller is proposed and sufficient conditions are obtained such that the looped system isasymptotically stable and passive. For polytopic differential inclusion systems and poly-topic stochastic differential inclusion systems, the sliding mode control approach is usedto design their controllers, respectively. Moreover, passivity is considered for the poly-topic stochastic differential inclusion systems. Finally, examples are given to illustratethe effectiveness of the proposed methods.
     Chapter three investigates the nonlinear state feedback controller design methods ofpolytopic linear differential inclusion systems with time delay and polytopic stochasticdifferential inclusion systems with time delay, respectively. Using the convex hull func-tion method, a nonlinear state feedback law is designed to stabilize the polytopic lineardifferential inclusion system with time delay. Then this technology is successfully ex-tended to the polytopic stochastic differential inclusion system with time delay, sufficientconditions are derived to guarantee the closed-loop system is exponentially stable in themean square.
     Chapter four proposes the finite time control problems for both polytopic linear dif-ferential inclusion systems and polytopic stochastic differential inclusion systems. Forthe polytopic linear differential differential inclusion systems, a generalized H2 controlleris designed not only to guarantee finite time boundedness of the closed-loop system, butalso to restrict the effect of disturbance on a prescribed level. For the polytopic stochas-tic differential inclusion systems, a state feedback law is designed to guarantee finite-timestochastically boundedness of the closed-loop system. Finally, observer-based non-fragilefinite time stabilization of Lur’e differential inclusion systems is investigated.
     Chapter five summarizes the main contents in this thesis and presents some valuableproblems.
     The main innovations of this dissertation can be summarized as follows:
     1) For a class of nonlinear systems, a new reaching law is proposed to reduce thechattering phenomenon. For the polytopic differential inclusion systems and the polytopicstochastic differential inclusion systems, sliding mode control approach is firstly used todesign the controllers, respectively. These results construct a theoretical framework of thepolytopic differential inclusion systems via sliding mode control.
     2) The method of convex hull of quadratics is successfully extended to stabilize thepolytopic linear differential inclusion system with time delay and the polytopic stochasticdifferential inclusion system with time delay. The results greatly enlarge the design scopeof nonlinear controller.
     3) A new feasible approach is proposed to design finite time controllers of both the polytopic linear differential inclusion systems and the polytopic stochastic differentialinclusion systems by the way of combining the descriptor system method and finite timecontrol. For the Lur’e differential inclusion systems, the design of observer-based non-fragile finite time controller is considered. By the design, the problem of finite timecontrol of this type of systems can be effectively resolved.
引文
[1]俞立.鲁棒控制–线性矩阵不等式处理方法.北京:清华大学出版社, 2002.
    [2]褚健,俞立,苏宏业.鲁棒控制理论及应用.杭州:浙江大学出版社, 2000.
    [3]贾英民.鲁棒H∞控制.北京:科学出版社, 2007.
    [4]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社, 2003.
    [5] F. Wu. Induced L2 norm model reduction of polytopic uncertain linear systems. Automat-ica, 1996,32(10):1417-1426
    [6] D. M. Stipanovi, D.D. iljak. Stability of polytopic systems via convex M-matrices andparameter-dependent Lyapunov functions. Nonlinear Analysis, 2000, 40(1-8):589-609.
    [7] E.K. Boukas, Z.K. Liu. Robust H∞filtering for polytopic uncertain time-delay systemswith Markov jumps.Computers and Electrical Engineering, 2002,28(3):171-193.
    [8] D. Peaucelle, A. Fradkov. Robust adaptive L2 gain control of polytopic MIMO LTIsystems–LMI results. Systems and Control Letters, 2008, 57(11):881-887
    [9] K. H. Lee, B. Huang. Robust H2 optimal filtering for continuous-time stochastic systemswith polytopic parameter uncertainty. Automatica, 2008,44(10):2686-2690.
    [10] A. Karimi, H. Khatibi, R. Longchamp. Robust control of polytopic systems by convexoptimization. Automatica, 2007,43(8):1395-1402.
    [11] G. Chesi, A. Garulli, A. Tesi, A. Vicino. Robust stability of time-varying polytopic systemsvia parameter-dependent homogeneous Lyapunov functions. Automatica. 2007,43(2):309-316.
    [12] M. Lu, H. Shao. Robust predictive control of polytopic uncertain systems with both stateand input delays. Journal of Systems Engineering and Electronics, 2007,18(3):616-621.
    [13] M.D. Sen. Robust stabilization of a class of polytopic linear time-varying continuous sys-tems under point delays and saturating controls. Applied Mathematics and Computation,2006,181(1):73-83.
    [14] J.C. Geromel, P. Colaneri. Robust stability of time varying polytopic systems. Systems andControl Letters, 2006,55(1): 81-85.
    [15] J.H. Kim, S.J. Ahn, S. Ahn. Guaranteed cost and H∞filtering for discrete-time polytopicuncertain systems with time delay.Journal of the Franklin Institute, 2005,342(4): 365-378.
    [16] Y. Xia, Y. Jia. Robust control of state delayed systems with polytopic type uncertainties viaparameter-dependent Lyapunov functionals. Systems and Control Letters, 2003,50(3):183-193.
    [17] S. Tarbouriech, G. Garcia, J. M. Gomes da Silva Jr. Robust stability of uncertain poly-topic linear time-delay systems with saturating inputs: an LMI approach. Computers andElectrical Engineering, 2002,28(3):157-169.
    [18] Z. Zhang, C. Li, X. Liao. Delay-dependent robust stability analysis for interval linear time-variant systems with delays and application to delayed neural networks. Neurocomputing,2007,70(16-18): 2980-2995.
    [19] G. Wei, Z. Wang, H. Shu, J. Fang. Delay-dependent stabilization of stochastic interval delaysystems with nonlinear disturbances.Systems and Control Letters, 2007,56(9-10):623-633.
    [20] L. Liu, Z. Han, W. Li. Global stability analysis of interval neural networks with discrete anddistributed delays of neural type. Expert systems with applications, 2009,36:7328-7331.
    [21] A.F. Filippov. Differential equations with discontinuous righthand side, Americal Mathe-matical Society Translations. 1964, 42(2): 199-231.
    [22] J.P. Aubin, A. Cellina. Differential inclusions: set-valued maps and viability theory.Springer-Verlag, 1984.
    [23] A.F. Filippov. Differential equations with discontinuous righthand sides. Kluwer AcademicPublishers. 1988.
    [24] E.P. Brad, S.S. Shankar. A calculus for computing Filippov’s differential inclusion withapplication to the variable structure control of robot manipulators. IEEE Transactions onCircuits and Systems. 1987, 34(1):73-82.
    [25] V. Azhmyakov. Stability of differential inclusions: A computational approach. Mathemati-cal Problems in Engineering, 2006,2006:1-15.
    [26] E.S. Pyatnitskiy, L.B. Rapopor. Criteria of symptotic stability of differentia inclusions andperiodic motions of time-varying nonlinear control systems, IEEE Transactions on Circuitsand Systems-I: Fundamental Theory and Applications,1996, 43(3):219-229.
    [27] H.J. Sussmann. A Strong Maximum Principle for systems of differlent ial inclusions,Proceedings of the 35th Conference on Decision and Control Kobe, Japan December1996:1809-1814.
    [28] K.N. Wang, A.N. Michel. Stability analysis of differential Inclusions in banach space withapplications to nonlinear sysltems with time delays, IEEE Transactions on Circuits andSystems-I: Fundamental Theory and Applications, 1996, 43(8): 617-626.
    [29] N. Cohen, I. Lewkowicz. Exponential stability of triangular differential inclusion systems.Systems and Control letters, 1997,30(4):159-164.
    [30] F. H. Clarke, Y. S. Ledyaev, R.J. Stern. Asymptotic stability and smooth Lyapunov func-tions, J. Differential Equations, 1998,149:69-114.
    [31] J. P. Aubin. Viability Theory, Birkhoauser Boston, Cambridge, MA, 1991.
    [32] J. P. Aubin, A. Cellina. Differential Inclusions, Springer-Verlag, Berlin, 1984.
    [33] J.P. Aubin, H. Frankowska. Set-Valued Analysis, Birkhoauser Boston, Cambridge, MA,1990.
    [34]凡震彬.巴拿赫空间中微分包含的解及其性质.扬州大学博士论文, 2007.
    [35] G.V. Smirnov. Introduction to the theory of differential inclusions. American MathematicalSociety. America, 2002.
    [36] V.A. Kamenetskii, Y.S. Pyatnitskii. An iterative method of Lyapunov function constructionfor differential inclusions. System and Control Letters, 1987,8:445-451.
    [37] V. A. Kamenetskii, E.S. Pyatnitskii. Gradient method of developing Lyapunov functionsin problems of absolute stability. Automation and Remote Control, a translation of Au-tomatikai Telemekhnika, 1987,1: 1-9.
    [38] S. Boyd, Q. Yang. Structured and simultaneous Lyapunov functions for system stabilityproblems. Int. J. Control, 1989,49(6):2215-2240.
    [39] A. P. Molchanov, E. S. Pyatnitskii. Criteria of asymptotic stability of differential and dif-ference inclusions encountered in control theory. Syst. Control Letters, 1989, 13:59-64.
    [40] R. Trubnik. Optimal control of delay-differential inclusions, Proceedings of the 38th Con-ference on Decision and Control, Phoenix, Arizona USA, 1999: 442-447.
    [41] C. M. Kellett. Advances in converse and control Lyapunov functions, Ph.D. Dissertation,University of California Santa Barbara, 2002.
    [42] D. Angeli, Ingalls, E.D. Sontag, Y. Wang. Uniform global asymptotic stability of differen-tial inclusions, Journal of Dynamical and Control Systems, 2004, 10(3):391-412.
    [43] A. Loffe. Optimal control of differential inclusions: new developments and open problems,Proceedings of the 41th IEEE Conference on Decision and Control, Las Vegas, NevadaUSA, 2002:3127-3132.
    [44] I.M. Ross, F. Fahroo. A unified computational framework for real-time optimal control,Proceedings of the 42th IEEE Conierence on Decision and Control hlaui, Haraii USA,2003:2210-2215.
    [45] D. Nesic, A. R.Teel. A Framework for stabilization of nonlinear sampled-data systemsbased on their approximate discrete-time models, IEEE Transactions on automatic control,2004, 49(7):1103-1122.
    [46] Y. Sharon, M. Margaliot. Third-order nilpotency, finite switchings and asymptotic stabil-ity, Proceedings of the 44th IEEE Conference on Decision and Control, and the EuropeanControl Conference, Seville, Spain, 2005:5415-5420.
    [47] R. Goebel, A.R. Teel, T. Hu, Z. Lin. Conjugate convex Lyapunov functions for dual lineardifferential lnclusions, IEEE Transactions on Automatic Control, 2006, 51(4):661-666.
    [48] T. Hu, A .R. Teel, L. Zaccarian. Performance analysis of saturated systems via two forms ofdifferential inclusions, Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference, Seville, Spain, 2005:8100-8105.
    [49] T. Hu. Nonlinear control design for linear differential lnclusions via convex hull quadraticLyapunov functions, Proceedings of the 2006 American Control Conference, 2006: 14-16.
    [50]张学铭,邵剑.关于微分包含式最佳控制问题的充分条件,控制理论与应用,1984,1(4):123-134.
    [51]郭树理,阎绍泽,黄琳.一类积分加权时滞型非线性微分包含的稳定性,控制与决策,2004,19(4):429-432.
    [52]黄琳.稳定性与鲁棒性的理论基础.北京:科学出版社, 2003.
    [53]程桂芳.不连续非线性系统的稳定与镇定的若干问题.郑州大学博士论文, 2007.
    [54]张著洪.具有伪单调算子的非线性微分包含约束的最优控制,数学研究与评论,2002,22(2):229-237
    [55]赵益波,罗晓曙,方锦清,汪秉宏.电压反馈型DC-DC变换器的稳定性研究,物理学报,2005,54(11):5022-5026.
    [56]张建雄,唐万生.分段线性微分包含系统的最优控制设计,系统工程学报, 2006,21(4):341-346.
    [57] D. Philip, Loewen, R. T. Rockafellar. Optimal control of unbounded differential inclusions.SIAM J Control and Optimization, 1994, 32(2):442-470.
    [58] D. Li. Morse Decompositions for General Dynamical Systems and Differential Inclusionswith Applications to Control Systems. SIAM J Control and Optimization. 2007, 46(1): 35-60.
    [59] P. Kree. Diffusion equation for multivalued stochastic differential equation, Journal ofFunctional Analysis, 1982, 49:73-90.
    [60] A.N. Lepeyev. On stochastic differential inclusions with unbounded right sides, Theory ofStochastic Processes, 2006, 12:94-105.
    [61] M. Kisielewicz. Stochastic differential inclusions and diffusion processes,J.Math.Anal.Appl., 2007, 334:1039-1054.
    [62] T.N. Kravets. On the problem of stochastic differential inclusions, Journal of MathematicalSciences, 1991, 53:398-403.
    [63] T.N. Kravets. On the stability of solutions of stochastic differential inclusions, UkrainianMathematical Journal, 1995, 47:640-644.
    [64] B. Truong-Van, X.D.H. Truong. Existence results for viability problem associated to non-convex stochastic differential inclusions, Stochastic Anal.Appl.,1999, 17:667-685.
    [65] X. Chen. Stochastic differential inclusions, Doctor of Philosophy University of Edinburgh,2006.
    [66] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System andControl Theory. Philadelphia: PA: SIAM, 1994.
    [67]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [68] H. Morioka, K. Wada, A. Sabanovic, K. Jezernik. Neural network based chattering freesliding mode control. Proc of the 34th SICE Annual Conf. 1995,7:1303 -1308.
    [69] S.J. Huang, K.S. Huang, K.C. Chiou. Development and application of a novel radial basisfunction sliding mode controller.Mechatronics, 2003, 13(4): 313 - 329.
    [70] F.P. Da. Decentralized sliding mode adaptive controller design based on fuzzy neural net-works for interconnected uncertain nonlinear systems. IEEE Trans on Neural Networks,2000, 11(6): 1471 -1480.
    [71] Z. H. Man, A. P. Paplinski, H.R. Wu. A robust MIMO terminal sliding mode control schemefor rigid robot manipulators. IEEE Trans on Automatic Control, 1994, 39(12): 2464 - 2469.
    [72] J.H. Huang, W. Gao, J.C. Huang. Variable structure control: A survey. IEEE Trans onIndustrial Electronics, 1993,40(1):2-22.
    [73] J.M. Nazzal, A.N. Natsheh. Chaos control using sliding mode theory. Chaos, Soliton &Fractals. 2007,33:695-702.
    [74] H.T. Yau. Design of adaptive sliding mode controller for chaos synchronization with un-certainties. Chaos, Soliton & Fractals. 2004,22:341-347.
    [75] Y. Feng, X.H.Yu, Z.H. Man. Non-singular terminal sliding mode control of rigid manipu-lators. Automatica, 2002, 38(2): 2159 -2167.
    [76] K.B. Park, T. Teruo. Terminal sliding mode control of second-order nonlinear uncertainsystems. Int J of Robust and Nonlinear Control, 1999, 9(11): 769 - 780.
    [77] B. Yoo, hamw. Adaptive fuzzy sliding mode control of nonlinear system. IEEE Trans onFuzzy Systems, 1998, 6(2): 315 - 321.
    [78] Y.S. Lu, J.S. Chen. A self-organizing fuzzy sliding-mode controller design for a class ofnonlinear servo systems. IEEE Trans on Industrial Electronics, 1994, 41(5): 492 - 502.
    [79] G. Bartolini, A. Ferrara, E. Usani. Chattering avoidance by second-order sliding modecontrol.IEEE Trans on Automatic Control, 1998, 43(2): 241 - 246.
    [80] G. Bartolini, A. Ferrara, E. Usani, V.I. Utkin. On multiinput chattering-free second-ordersliding mode control. IEEE Trans on Automatic Control, 2000, 45(9): 1711-1717.
    [81]王丰尧.滑模变结构控制.北京:机械工业出版社, 1995.
    [82] Y.S. Lu, J.S. Chen. Design of a global sliding-mode controller for a motor drive withbounded control. Int J Control, 1995, 62(5):1001 - 1019.
    [83] H.S. Choi, Y.H. Park, Y.S. Cho, M.H. LEE. Global sliding mode control. IEEE ControlSystems Magazine, 2001, 21(3): 27 - 35.
    [84]肖雁鸿,葛召炎,周靖林,彭永进.全滑模变结构控制系统,电机与控制学报, 2002,6(3):233 - 236.
    [85]米阳,李文林,井元伟,刘晓平.线性多变量离散系统全程滑模变结构控制,控制与决策, 2003, 18(4): 460- 464.
    [86]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展,控制理论与应用,2007,24(3):407-418.
    [87] J. Wu. Robust stabilization for single-input polytopic nonlinear systems. IEEE Trans. Au-tomat. Contr. 2006,51(9):1492-1496.
    [88] S. Xu, J. Lam, Y. Zou, N. Zhong, N. Zhong, H. gao, C. Wang. Robust stabilization forstochastic time-delay systems with polytopic uncertainties, 2004 8th International Confer-ence on control,Automation, Robotics and vision, 2004:1747-1750.
    [89]盛梅,王为群,邹云.多胞体不确定性随机时滞系统鲁棒H∞控制,信息与控制,2006,4(35):532-540.
    [90] M.C.D. Oliveira, J. Bernussou, J.C. Geromel. A new discrete-time robust stability condi-tion, Systems Control Lett. 1999,37:261-265.
    [91] H. Gao, C. Wang, J. Wang. On H∞performance analysis for continuous-time stochasticsystems with polytopic uncertainties, Circuits Systems Signal Processing, 2005,24(4):415-429.
    [92] P. Niamsup, V.N. Phat. H∞control for nonlinear time-varying delay systems withconvex polytopic uncertainties, Nonlinear Analysis: Theory, Methods and Applications,2010,72(11):4254-4263.
    [93]钟震,段广仁.时变多面体系统的有限时间稳定性分析. Proceedings of the 26th ChineseControl Conference. 2007, 26-31.
    [94] P. Dorato. Short time stability in linear time-varying systems. In Proceeding of the IREinternational convention record Part, 1961,4:83-87.
    [95] L. Weiss, E.F. Infante. Finite time stability undering perturbing forces and on productspaces. IEEE Trans. Auto. Contr, 1967, 12:54-59.
    [96] F. Amato, M. Ariola, P. Dorato. Finite-time control of linear sytems subject to parametricuncertainties and disturbances, Automatica, 2001, 37:1459-1463.
    [97] F. Amato, M. Ariola, C.T. Abdallah, P. Dorate. Finite-time control for uncertain lin-ear systems with disturbance inputs. Proceedings of the American Control Conference,1999:1776-1780.
    [98] F. Amato, M. Ariola, C. Cosentino. Finite time control via output feedback: A generalapproach, Proceedings of the 42nd IEEE Conference on Decision and Control, 2003:350-355.
    [99] M.L. Coradini, G. Orlando. Linear unstable plants with saturating actuators: Robust stabi-lization by a time varying sliding surface. Automatica. 2007,43:88-94.
    [100] L.C. Hung, H.Y. Chung. Decoupled control using neural network-based sliding-mode con-troller for nonlinear systems. Expert Systems with Applications. 2007, 32:1168-1182.
    [101] H. Wang, Z. Han, Q. Xie, W.Zhang. Sliding mode control for chaotic systems based onLMI. Commun Nonlinear Sci Simul. 2009,14(4):1410-1417.
    [102] Y.J. Sun. Stability criterion for a class of descriptor systems with discrete and distributedtime delays, Chaos, Solitons & Fractals, 2007, 33: 986-993.
    [103] C.H. Lien. Delay-dependent and delay-independent guaranteed cost control for uncertainneutral systems with time-varying delays via LMI approach, Chaos, Solitons & Fractals,2007, 33:1017-1027.
    [104] M.D. Sen. On positivity of singular regular linear time-delay time-invariant systems subjectto multiple internal and external incommensurate point delays, Applied Mathematics andComputation, 2007,190: 382-401.
    [105] F. Wang, C. Liu. Synchronization of unified chaotic system based on passive control, Phys-ica D: Nonlinear Phenomena, 2007, 225(1): 55-60.
    [106] M. Basili, M. De Angelis. Optimal passive control of adjacent structures interconnectedwith nonlinear hysteretic devices, Journal of Sound and Vibration, 2007,301:106-125.
    [107] N. Noiray, D. Durox, T. Schuller, S. Candel. Passive control of combustion instabilitiesinvolving premixed ?ames anchored on perforated plates, Proceedings of the CombustionInstitute 2007, 31:1283-1290.
    [108] A.J. Koshkouei. Passivity-based sliding mode control for nonlinear systems, InternationalJournal of Adaptive Control and Signal Processing, 2008, 22:859-874.
    [109] A. Loria, E. Panteley, H. Nijmeijer. A remark on passivity-based and discontinuous controlof uncertain nonlinear systems, Automaica, 2001, 37:1481-1487.
    [110] L. Wu, W. Zheng. Passivity-based sliding mode control of uncertain singular time-delaysystems, Automatica, 2009, 45:2120-2127.
    [111] K.C. Hsu. Variable structure control design for uncertain dynamic systems with sectornonlinerities , Automatica, 1998, 34:505-508.
    [112] T.Y. Chiang, M.L. Hung, J. Yan, Y.S. Yang, J.F. Chang. Sliding mode control for uncertainunified chaotic systems with input nonlinearity, Chaos, Solitons & Fractals, 2007, 34:437-442.
    [113] J.S. Lin, J.J. Yan, T.L. Liao. Chaotic synchronization via adaptive sliding mode observerssubject to input nonlinearity, Chaos, Solitons & Fractals, 2005, 24: 371-81.
    [114] W.D. Chang. Robust adaptive single neural control for a class of uncertain nonlinear sys-tems with input nonlinearity, Information Sciences 2005, 171:261-271.
    [115] F.M. Yu, H.Y. Chung, S.Y. Chen. Fuzzy sliding mode controller design for uncertain time-delayed systems with nonlinear input, Fuzzy Set & Systems, 2003, 140:359-374.
    [116] T. Fliegner, H. Logemann, E. P. Ryan. Low-gain integral control of continuous-time linearsystems subject to input and output nonlinearities, Automatica, 2003,39:455-62.
    [117] H.T. Yau, J.J. Yan. Chaos synchronization of different chaotic systems subjected to inputnonlinearity, Applied Mathematics and Computation, 2008,197: 775-788.
    [118] J. Chen, J. Huang, Y.L. Leonard. Viable control for uncertain nonlinear dynamical systemsdescribled by differential inclusions. Journal of Mathematical Analysis and Applications.2006,315(1):41-53.
    [119] J. Chen. Asymptotic stability for tracking control of nonlinear uncertain dynamical systemsdescribled by differential inclusions. Journal of Mathematical Analysis and Applications,2001,261:369-389.
    [120] J. Chen, J. Cheng, J. Hsieh. Tracking control of nonlinear uncertain dynamical systemsdescribled by differential inclusions. Journal of Mathematical Analysis and Applications.1999,236:463-479.
    [121] G.Y. Qi, Z.Q. Chen, Z.Z. Yuan. Adaptive high order differential feedback control for affinenonlinear system, Chaos, Solitons & Fractals, 2008,37:308-315.
    [122] H. Salarieh, A. Alasty. Chaos control in uncertain dynamical systems using nonlinear de-layed feedback, Chaos, Solitons & Fractals, 2009,41(1):67-71 .
    [123] H.H. Tsai, C.C. Fuh, C.N. Chang. A robust controller for chaotic systems under externalexcitation, Chaos, Solitons & Fractals, 2002,14:627-632.
    [124] H.T. Yau. Design of adaptive sliding mode controller for chaos synchronization with un-certainties, Chaos, Solitons & Fractals, 2004,22:341-347.
    [125] H. Salarieh, A. Alasty. Control of stochastic chaos using sliding mode method, Journal ofComputational and Applied Mathematics, 2009,225:135-145.
    [126] H. Salarieh, A. Alasty. Chaos synchronization of nonlinear gyros in presence of stochasticexcitation via sliding mode control, Journal of Sound and Vibration, 2008,313:760-771.
    [127]张彦虎.线性凸多面体不确定离散系统的分析与综合.浙江大学博士论文,2006。
    [128] A. Halany. Differential equations: Stability, Oscillations, Time Lags. Academic Press, NewYork, 1966.
    [129] F. Blanchini, A. Megretski. Robust state state feedback control of LTV systems: Nonlinearis better than linear. IEEE Trans. Autom. Control, 1999,44:802-807.
    [130] R.Z. Khasminskii. Stochastic stability of differential equations, Springer-Verlag, New York,1980.
    [131] Y. Shen, C. Li. LMI-based finite-time boundedness analysis of neural networks with para-metric uncertainties, Neurocomputing, 2008, 71:502-507.
    [132] F. Amato, M. Ariola, P. Dorate. Finite-time stabilization via dynamic output feedback.Automatica, 2006,42:337-342.
    [133] F. Amato, M. Ariola. Finite-time control of discrete-time linear system, IEEE Transactionon Automatic Control, 2005,50:724-729.
    [134] L. Zhu, Y. Shen, C. Li. Finite-time control of discrete time sysems with time-varyingexogenous disturbance, Communications in Nonlinear Science and Numerical Simulation,2009,14(2):361-370.
    [135] J. Feng, Z. Wu, J. Sun. Finite-time control of linear singular systems with parametricuncertainties and disturbances, Acta Automatica Sinica, 2005,31:634-637.
    [136] Q. Meng, Y. Shen. Finite time H∞control for linear continuous system with norm-boundeddisturbance, Commun Nonlinear Sci Numer Simulat, 2009,14(4):1043-1049.
    [137] P. Dorato, C.T. Abdallah, D.Famularo. Robust finite time stability design via linear matrixinequalities, Proceedings of the 36th Conference on Decision and Control, 1997,1305-1306.
    [138] Y. Shen. finite time control of linear parameter-varying systems with norm-bounded exoge-nous disturbance, J Control Theory Appl, 2008,6:184-188.
    [139] Y.Y. Cao, Z. Lin. A descriptor system approach to robust stability analysis and controllersynthesis, IEEE Transaction on Automatic Control, 2004,49:2081-2084.
    [140] D. A.W. Convolution and hankel operator norms for linear systems, IEEE Tranctions onAutomatic Control, 1989,34:94-97.
    [141] H. Liu, B. Ding, G. Duan. Non-fragile generalized H2 control for linear time-delay sysems,Proceedings of the 25th Chinese Control Conference, 2006:806-811.
    [142] A. Mario, Rotea. The generalized H2 control problem. Automatica, 1993,29:373-385.
    [143] H. Liu, G. Duan. Generalized H2 control of linear neutral time-delay systems, Proceedingsof the 6th World Congress on Intelligent Control and Automation, 2006:2349-2352.
    [144] J. Wang, D.A. Wilson. Mixed GL2/H2/GH2 control with pole placement and its applica-tion to vehicle suspension systems, International Journal of Control, 2001,74:1353-1369.
    [145] W. Zhang, X. An. Finite-time control of linear stochastic systems, International Journal ofInnovative Computing, Information and Control, 2008,4:687-694.
    [146] A. Lure. Some Nonlinear Problem in the Theory of Automatic Control. Her Majesty’sStationary Office. London, 1957.
    [147] R. Leine, H. Nijmeijer. Dynamics and Bifurcations in Non-Smooth Mechanical Systems.Berlin: Springer Verlag, 2004.
    [148] K. Addi, S.Adly, B. Brogliato, D.Goeleven. A method using the approach of Moreau andPanagiotopoulos for the mathematical formulation of non-regular circuits in electronics.Nonlinear Anal: Hybrid Syst 2007,1:30–43.
    [149] X. Liu, J. Cao. On periodic solutions of neural networks via differential inclusions. NeuralNetworks, 2009;22(4):329–34.
    [150] J. Bruin, A. Doris,N. Wouw, W. Heemels, H.Nijmeijer. Control of mechanical motionsystems with non-collocation of actuation and friction: a popov criterion approach for input-to-state stability and set-valued nonlinearities. Automatica 2009;45(2):405–15.
    [151] M. Osorio, J. Moreno. Dissipative design of observers for multivalued nonlinear systems.In: Proc 45th IEEE Conf Decision Control, 2006:5400–5405.
    [152] B. Brogliato, W. Heemels. Observer design for Lur’e systems with multivalued mappings:a passivity approach, IEEE Trans Automat Control 2009,54(8):1996–2001。
    [153] J. Huang, Z. Han, X. Cai, L. Liu. Adaptive full-order and reduced-order observers for theLure differential inclusion system, Commun Nonlinear Sci Numer Simulat, 2010, In press.
    [154] S. He, F. Liu. Observer-based finite-time control of time-delayed jump systems, AppliedMathematics and Computation, 2010, 217:2327-2338.
    [155] X. Luan, F. Liu, P. Shi. Observer-based finite-time stabilization for extended markov jumpsystems, Asian Journal of Control, 2012, 14:1-11.
    [156] T. Hu, F. Blanchini. Non-conservative matrix inequality conditions for stabil-ity/stabilizability of linear differential inclusions. Automatica, 2010, 46(1): 190-196.
    [157] T. Hu. Nonlinear control design for linear differential inclusions via convex hull of quadrat-ics. Automatica, 2007, 43(4): 685-692.