带锥约束的优化问题的弱尖锐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪七十年代晚期,B.T. Polyak在文献[88]中提出了尖锐性(即:强唯一局部极小解)的概念。尖锐性是用来研究某些优化问题的扰动问题的稳定性以及用来分析求解这些问题的算法的收敛性的重要工具。L. Cromme和B.T. Polyak对单目标优化问题的尖锐性的相关研究大大促进了这一类问题研究的发展。二十世纪八十年代晚期,M. C. Ferris在文献[37]中提出了弱尖锐性的概念。弱尖锐性考虑了问题的解的非唯一性,因此,弱尖锐性的概念推广了尖锐性。由于弱尖锐性主要存在于凸规划和凸组合规划问题中,比如:线性规划,线性互补问题和投影问题等,因此,人们主要着重于对这些凸问题的弱尖锐性的研究。本文主要研究了带锥约束的单目标凸优化问题的广义弱尖锐性、带抽象约束集的多目标优化问题的适定性以及带锥约束的多目标优化问题的弱Φ尖锐性。
     主要工作如下:
     在第二章中,对带锥约束的单目标凸优化问题,我们引入了广义弱尖锐性的概念。在巴拿赫空间和希尔伯特空间中,我们分别给出了该问题具有广义弱尖锐性的一些充分条件、必要条件和充分必要条件。特别地,当问题的解集满足Robinson约束规格时,我们还给出了该问题具有广义弱尖锐性的几个充分必要条件。在希尔伯特空间中,我们设计了求解这类带约束的单目标凸优化问题的一种算法。当该问题具有广义弱尖锐性时,我们证明了该算法具有有限时间收敛性。
     在第三章中,我们首先引入了由Zheng和Ng在文献[105]中对凸组合优化问题给出的局部弱尖锐解的概念,我们发现这种局部弱尖锐性的定义非常具有局限性,因为,即便是对于一般的线性规划问题也可能不具有这类局部弱尖锐性。为了打破这个局限性,我们对带锥约束的凸单目标优化问题引入了第一型广义弱尖锐性的概念,并给出了该问题具有第一型广义弱尖锐性的一些充分条件、必要条件和充分必要条件。然后,对于这类带锥约束的单目标凸优化问题,我们引入了几类强KKT条件,并利用这些强KKT条件刻画了问题的第一型广义弱尖锐性。最后,应用所得到的第一型广义弱尖锐性的某些结果,我们讨论了一类非退化的可微凸锥包含问题的误差界。
     在第四章中,我们研究了带抽象约束集的多目标优化问题的适定性,其中该问题的决策空间X为有限维赋泛线性空间,目标空间Y是一般的赋泛线性空间。对于这类多目标优化问题,我们给出了使得该问题具有广义适定的几个充分条件和必要条件。我们所得到的结果推广了文献[26]中的大部分结果。在较弱的条件下,我们证明了一般的线性多目标优化问题、一类分段线性多目标优化问题和一类多目标二次凸规划问题都具有广义适定性。
     在第五章中,对于带锥约束的多目标优化问题,我们引入了弱Φ尖锐性的概念和该问题具有弱Φ尖锐性的几个充分条件、必要条件和充分必要条件。建立了一类广义适定性与弱Φ尖锐性之间的相互关系。当该问题的解集具有弱Φ尖锐性时,我们讨论了该问题的扰动问题的稳定性:我们证明了含参数的带锥约束的多目标优化问题的解集映射具有上Holder连续性。
The notion of sharp minima, or strongly unique local minima due to B. T. Polyak [88], emerged in the late 1970s as an important tool in the analysis of the perturbation behavior of certain glasses of optimization problems as well as in the convergence analysis of algorithms designed to solve these problems. The related study of sharp minima for single objective optimization problems of L. Cromme and B. T. Polyak is of particular importance in this development. In the late 1980's M. C. Ferris coined the term weak sharp minima to describe the extension of the notion of sharp minima to include the possibility of a non-unique solution set. The study of weak sharp minima is motivated primarily by applications in convex, and convex composite programming, where such minima commonly occur. For example, such minima frequently occur in linear programming, linear complementarity, and least distance or projection problems. In this paper, we study generalized weak sharp minima for convex optimization problems with cone constraints and weak (?)-sharp minima for multi-objective optimization problems with cone constraints. The main research works are as follows.
     In chapter two, we introduce a notion of generalized weak sharp minima for convex optimization problems with cone constraints. We study it in the Banach space and Hilbert space settings, respectively. Several characterizations for the solution set to be a set of generalized weak sharp minima for convex optimization problems with cone-constraints are provided. In particular, under the assumption that Robinson's constraint qualification holds over the solution set, we give several necessary and sufficient conditions for the generalized weak sharp minima property of convex optimization problems with cone constraints. As applications, we propose an algorithm for convex optimization problems with cone constraints in the Hilbert space setting. Convergence analysis of this algorithm is given.
     In chapter three, We first introduce a notion of local weak sharp solutions for convex-composite optimization problems given by Zheng and Ng [105]. We find that this definition is very limited in applying to the usual mathematical program-ming. Even for linear programming, it is shown that the solution set is not that type of local weak sharp solutions. In this section, we consider a class of convex optimization problem with cone constraints in Banach spaces. We introduce a new notion:type I generalized (local) weak sharp minima for the convex conic optimiza-tion problem. Several types of strong Karush-Kuhn-Tucker characterizations and criteria for a feasible point to be a type I generalized local weak sharp minimum are given. As applications, local error bounds for a class of non-degenerate conic differential convex inclusion problem are studied.
     In chapter four, we study generalized well-posedness for multi-objective opti-mization problems with cone constraints in the case when the decision space X is a finite dimensional normed space and the object space Y is a normed vector space ordered by a closed convex cone with nonempty interior or a polyhedral cone with nonempty interior. Our results generalize most of the corresponding ones established by Deng [26]. Finally, under mild conditions, we also show that general linear vector optimization problems, a class of piecewise linear vector optimization problems and a class of convex vector quadratic programs are generalized well-posed.
     In chapter five, we study weak (?)-sharp minima for multi-objective optimiza-tion problems with cone constraints in the Banach space. Several sufficient or necessary conditions for existence of such class of weak sharp minima are obtained. The relationships between weak (?)-sharp minima and a type of well posedness for multi-objective optimization problems with cone constraints are established. As applications, we prove upper Holder continuities of the solution set-valued mapping to the corresponding parametric multi-objective optimization problems with cone constraints.
引文
[1]Aubin, J. P. and Cellina, A., Differential inclusions [M]. Springer-Verlag, Berlin,1984.
    [2]Aubin, J. P. and Ekeland, I., Applied nonliear analysis [M]. Wiley-Interscience, New York,1984.
    [3]Bednarczuk, E., On weak sharp minima in vector optimization with applica-tions to parametric problems [J]. Control and Cybernetics, Vol.36, pp.563-570, 2007.
    [4]Bednarczuk, E., Well-posedness of vector optimization problems,Lecture Notes in Economics and Mathematical Systems [M]. Springer-Verlag, Berlin, Vol.294, pp.51-61,1987.
    [5]Bednarczuk, E. M., Weak sharp efficiency and growth condition for vector valued functions with applications [J]. Optimization, Vol.53, pp.455-474,2004.
    [6]Bianchi, M., Hadjisavvas, N. and Schaible, S., Minimal coercivity conditions for variational inequalities with application to exceptional families of elements [J]. Jornal of Optimization Theory and Applications, Vol.122, pp.1-17,2004.
    [7]Bianchi, M. and Pini, R., Coercivity conditions for equilibrium problems [J]. Jornal of Optimization Theory and Applications, Vol.124, pp.79-92,2005.
    [8]Borwein, J. and Lewis, A., Convex analysis and nonlinear optimization [M]. Springer, New York,2000.
    [9]Burke, J. V. and Deng, S., Weak sharp minima revisited, part Ⅰ:Basic theory [J]. Control and Cybernetics, Vol.31, pp.439-469,2002
    [10]Burke, J. V. and Deng, S., Weak sharp minima revisited, part Ⅱ:Application to linear regularity and error buonds [J]. Mathematical programming. Ser. B, Vol.104, pp.235-261,2005
    [11]Burke, J. V. and Deng, S., Weak sharp minima revisited, part Ⅲ:Error bounds for differentiable convex inclusions [J]. Mathematical programming. Ser. B, Vol.116, pp.37-56,2009
    2007.
    [12]Burke, J. V. and Ferris, M. C., Weak sharp minima in mathematical program-ming [J]. SIAM J. Control and Optim., Vol.31, pp.1340-1359,1993.
    [13]Burke, J. V. and Ferris, M. C., A Gauss-Newton method for convex composite optimization [J]. Mathematical programming, Vol.71, pp.179-194,1995.
    [14]Burke, J. V.,Lewis, A. and Overton, M., Optimization matrix stability [J]. Proc. of the American Math. Soc., Vol.129, pp.1635-1642,2000.
    [15]Burke, J. V.,Lewis, A. and Overton, M., Optimization stability and eigenvalue multiplicity [J]. Foundations of Computational Mathematics, Vol.1, pp.205-225, 2001.
    [16]Burke, J. V. and More, J. J., On the identification of active constraints [J]. SIAM J. Numer. Anal., Vol.25, pp.1197-1211,1988.
    [17]Ceng, L. C., Hadjisavvas, N., Schaible, S. and Yao, J. C., Well-posedness of mixed quasivariational-like inequalities [J]. Journal of Optimization Theory and Applications, Vol.139, pp.109-125,2008.
    [18]Ceng, L. C. and Yao, J. C., Well-posedness of generalized mixed variational in-equalities, inclusion problems and fixed-point problems [J]. Nonlinear Analysis, Theory, Methods and Applications, Vol.69, pp.4585-4603,2008.
    [19]Chen, G. Y., Huang, X. X. and Yang, X. Q., Vector optimization, set-valued and variational analysis. Lecture Notes in Economics and Mathematical Sys-tems [M]. Springer-Verlag, Berlin,2005.
    [20]Clarke, F. H., Optimization and nonsmooth analysis[M]. Wiley, New York, 1983.
    [21]Cromme, L., Strong uniquness [J]. Numerische Mathematik, Vol.29, pp.179-193,1978.
    [22]Daniilidis, A. and Hadjisavvas, N., Coercivity conditions and variational in-equalities [J]. Mathematical Programming, Vol.86, pp.433-438,1999.
    [23]Deng, S., Characterizations of the nonemptyness and compactness of solution sets in convex optimization [J]. Journal of Optimization Theory and Applica-tions, Vol.96, pp.123-131,1998.
    [24]Deng, S., Characterizations of the nonemptyness and boundedness of weakly efficient solution sets in convex vector optimization problems in real reflexive Banach spaces [J]. Accepted.
    [25]Deng, S., Well-posed problems and error bounds in optimization [J]. Nons-mooth, Piecewise Nonsmooth and Smoothing Methods, Appl. Optim., Vol.22, pp.117-126,1999.
    [26]Deng, S., Coercivity properties and well-posedness in vector optimization [J]. RAIRO Oper. Res., Vol.37, pp.195-208,2003.
    [27]Deng, S. and Yang, X. Q., Weak sharp minima in multi-criteria linear pro-gramming [J]. SIAM J. Optim., Vol.15, pp.456-460,2004.
    [28]Dentcheva, D. and Helbig, S., On variational principles, level sets, well-posedness, and ε-solutions in vector optimization [J]. Journal of Optimization Theory and Applications, Vol.89, pp.325-349,1996.
    [29]Dontchev, A. L. and Rockafellar, R. T., Regularity and conditioning of solution mappings in variational analysis [J]. Set-valued Anal., Vol.12, pp.79-109,2004.
    [30]Dontchev, A. L. and Zolezzi, T., Well-posed optimization problems, Lecture Notes in Mathematics [M]. Springer, Berlin,1993.
    [31]Fabian, F. B., Existence theorems for generalized noncoercive equilibrium prob-lems:the quasi-convex case [J]. SIAM J. Optim., Vol.11, pp.675-690,2000.
    [32]Facchinei, F. and Pang, J. S., Finite dimensional variational inequalities and complementarity problems [M]. Springer-Verlag, New York,2003.
    [33]Fang, Y. P. and Hu, R., Parametric well-posedness for variational inequali-ties defined by bifunctions [J]. Compuers and Mathematica with Application, Vol.53, pp.1306-1316,2007.
    [34]Fang, Y. P. and Huang, N. J., Well-posedness for vector variational inequality and constrained vector optimization [J]. Taiwanese Journal of Mathematics, Vol.11, pp.1287-1300,2007.
    [35]Fang, Y. P., Hu, R. and Huang, N. J., Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints programming [J]. Computers and Mathematica with Application, Vol.55, pp.89-100,2008.
    [36]Fang, Y. P., Huang, N. J. and Yao, J. C., Well-posedness of mixed variational inequalities, inclusion problems and fixed-point problems [J]. Journal of Global Optimization, Vol.41, pp.117-133,2008.
    [37]Ferris, M. C., Weak sharp minima and penalty functions in mathematical pro-gramming [J]. Ph. D thesis, University of Cambridge, Cambridge,1988.
    [38]Ferris, M. C., Iterative linear programming solution of convex programs [J]. Journal of Optimization Theory and Applications, Vol.65, pp.53-65,1990.
    [39]Ferris, M. C., Finite termination of the proximal point algorithm [J]. Mathe-matical Programming, Vol.50, pp.359-366,1991.
    [40]Flam, S. D. and Seeger, A., Solving cone-constrained convex programs by dif-ferential inclusions [J]. Mathematical Programming, Vol.65, pp.107-121,1994.
    [41]Flam, S. D. and Zowe, J., A primal-dual differential method for convex pro-gramming [J]. Optimization and Nonlinear Analysis, Vol.224, pp.211-222, 1992.
    [42]Flores-bazan, F. and Vera, C., Characterization of the nonemptiness and com-pactness of solution sets in convex and nonconvex vector optimization [J]. Jorunal of Optimization Theory and Applications, Vol.130, pp.185-207,2006.
    [43]He, Y. R. and Sun, J., Error bounds for degenerate cone inclusion problems [J]. Mathematics of Operations Research, Vol.30, pp.701-717,2005.
    [44]Henrion, R. and Outrata, J., A subdifferential condition for calmness of mul-tifunctions [J]. Journal of Mathematical Analysis and Applications, Vol.258, pp.110-103,2001.
    [45]Henrion, R. and Outrata, J., Calmness of constraint systems with applications [J]. Mathematical Programming, Vol.104, pp.437-464,2005.
    [46]Huang, X. X., Optimization conditions and approximate optimality conditions for locally Lipschitz vector optimization [J]. Optimization, Vol.51, pp.309-321, 2003.
    [47]Huang, X. X., Extended well-posed properties of vector optimization problems [J]. Journal of Optimization Theory and Applications, Vol.106, pp.165-182, 2000.
    [48]Huang, X. X., Extended and strongly extended well-posedness of set-valued optimization problems [J]. Mathematical Methods of Operational Reserach, Vol.53, pp.101-116,2001.
    [49]Huang, X. X., Pointwise well-posedness of perturbed vector optimization prob-lems in a vector-valued variational principle [J]. Journal of Optimization The-ory and Applications, Vol.108, pp.671-686,2001.
    [50]Huang, X. X., Teo, K. L. and Yang X. Q., Calmness and exact penalization in vector optimization with cone constraints [J]. Computational Optimization and Applications, Vol.35, pp.47-67,2006.
    [51]Huang, X. X. and Yang X. Q., Generalized Levitin-Polyak well-posedness in constrained optimization [J]. SIAM J. Optim., Vol.17, pp.243-258,2006.
    [52]Huang, X. X. and Yang X. Q., Further study on the Levitin-Polyak Well-Posedness of Constrained Convex Vector Optimization Problems [J]. submitted for publication.
    [53]Huang, X. X. and Yang X. Q., Generalized Levitin-Polyak well-posedness in constrained optimizationCharacterizations of the nonemptiness and compact-ness of the set of weakly efficient solutions for convex vector optimization and applications [J]. Journal of Mathematical Analysis and Applications, Vol.264, pp.270-287,2001.
    [54]Huang, X. X. and Yang X. Q., Levitin-Polyak well-posedness in generalized variational inequalities with functional constraints [J]. Journal of Industrial and Management Optimization, Vol.3, pp.671-684,2007.
    [55]Huang, X. X. and Yang X. Q., Levitin-Polyak well-posedness of constrained vector optimization problems [J]. Journal of Global Optimization, Vol.37, pp.287-304,2007.
    [56]Huang, X. X., Yang X. Q. and Teo, K. L., Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications [J]. Journal of Optimization Theory and Applications, Vol.123, pp.391-407,2004.
    [57]Huang, X. X., Yang X. Q. and Zhu, D. L., Levitin-Polyak well-posedness for variational inequality problems with functional constraints [J]. Journal of Global Optimization,Accepted.
    [58]Huang, X. X., Yang X. Q. and Teo, K. L., Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints [J]. Journal of Global Optimization, Vol.36, pp.637-652,2006.
    [59]Izmailov, A. F. and Solodov, M. V., Optimality conditions for irregular inequality-constrained problems [J]. SIAM J. Control Optim., Vol.40, pp.1280-1295,2001.
    [60]Izmailov, A. F. and Solodov, M. V.,Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications [J]. Mathematical Programming, Vol.89, pp.413-435,2001.
    [61]Jimenez, B., Strict efficiency in vector optimization, [J]. Journal of Mathe-matical Analysis and Applications, Vol.265, pp.264-284,2002.
    [62]Jimenez, B., Strict minimality conditions in nondifferential multiobjective pro-gramming, [J]. Journal of Optimization Theory and Applications, Vol.116, pp.99-116,2003.
    [63]Jeyaumar, V., Lee, G. M. and Dinh, D., Lagrange multiplier conditions char-acterizing the optimal solution sets of cone-constrained convex programs [J]. Journal of Optimization Theory and Applications, Vol.123, pp.83-103,2004.
    [64]Jiang, B., Zhang, J. and Huang, X. X., Levitin-Polyak well-posedness of gener-alized quasivariational inequalities with functional constraints [J]. Nonlinear Analysis:Theory, Methods and Application, Vol.70, pp.1492-1503,2009.
    [65]Jittorntrum, K. and Osborne, M. R., Strong uniquness and second order con-vergence in nonlinear discrete approximation [J]. Numerical Mathematics, Vol. 34, pp.439-455,1980.
    [66]Jourani, A., Hoffman's error bounds, local controbility and sensitivity analysis [J]. SIAM J. Control and Optim., Vol.38, pp.947-970,2000.
    [67]Klatte, D. and Li, W., Asymptotic constraint qualifications and global error bounds for convex inequalities [J]. Mathematical Programming, Vol.84, pp. 137-160,1999.
    [68]Konsulova, A. S. and Revalski, J. P., Constrained convex optimization problems-well-posedness and stability [J]. Numerical Functional Analysis and Optimization,Vol.15, pp.889-907,1994.
    [69]Levitin, E. S. and Polyak, B. T., Convergence of minimizing sequences in con-ditional extremum problems [J]. Soviet Math. Dokl.,Vol.7, pp.764-767,1966.
    [70]Lewis, A. S. and Pang, J. S., Eror bounds for convex inequality systems [J]. In J. P. Crouzeix (ed.), Proceedings of the fifth symposium on generalized con-vexity, Luminy-Marseille,1996.
    [71]Li, S. J. and Li, M. H., Levitin-Polyak well-posedness of vector equilibrium problems [J]. Mathematical Methods of Operational Research, Accepted.
    [72]Li, W., Abadie's constraint qualification, metric regularity and error bounds for differential convex inequalities [J]. SIAM J. Optim., Vol.7, pp.966-978, 1997.
    [73]Li, W. and Wang X., On convergence of the Gauss-Newton method for convex composite optimization [J]. Mathematical Programming, Vol.91, pp.349-356, 2002.
    [74]Lignola, M. B., Well-posedness and L-well-posedness for quasivariational in-equalities [J]. Journal of Optimization Theory and Applications, Vol.128, pp. 119-138,2006.
    [75]Lignola, M. B. and Morgan, J.,a-well-posedness for Nash equilibria and for optimization with Nash equilibrium constraints [J]. Journal of Global Opti-mization, Vol.36, pp.439-459,2006.
    [76]Lignola, M. B. and Morgan, J.,Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution [J]. Journal of Global Optimization, Vol.16, pp.57-67,2000.
    [77]Long, X. J., Huang, N. J. and Teo, K. L., Levitin-Polyak Well-posedness for equilibrium problems with functional constraints [J]. Journal of Inequalities and Applications, Accepted.
    [78]Loridan, P., Well-posedness for vector optimization, recent developments in well-posed variational problems, mathematicas and its apllications [M]. Kluwer, Dordrecht,1995.
    [79]Lucchetti, R., Well-posedness towards vector optimization [J]. Lecture Notes Economy and Mathematical Systems, Springer,Berlin, Vol.294,1986.
    [80]Lyusternik, L. A., On conditional extra of functionals[J]. Mat. Sb., Vol.41, pp.390-401,1934.
    [81]Marcotte, P. and Zhu, D. L., Weak sharp solutions of variational inequalities [J]. SIAM J. Optim., Vol.9, pp.179-189,1998.
    [82]Marcotte, P. and Zhu, D. L., Erratum:weak sharp solutions of variational inequalities [J]. SIAM J. Optim., Vol.10, pp.942-942,2000.
    [83]Mordukhovich, B. S., Variational analysis and generalized differentiation I [M]. Springer, Berlin,2006.
    [84]Morgan, J., Approximations and well-posedness in multicriteria games [J]. An-nals of Operational Research, Vol.137, pp.257-267,2005.
    [85]Munkres, J. R.,Topology [M]. Prentice-Hall, Engle-wood Cliffs,1975.
    [86]Osborne, M. R. and Womersley, R. S., Strong uniquness in sequential linear programming [J]. J. Aust. Math. Soc. Ser. B, Vol.31, pp.379-384,1990.
    [87]Pang, J. S., Error bounds in mathematical programming [J]. Mathematical Programming, Vol.79, pp.299-332,1997.
    [88]Polyak, B. T., Sharp minima[J]. Institue of control sciences lecture notes, Moscow, USSR,1979; Presented at the IIASA workshop om generalized la-grangians and their applications, IIASA, Laxenburg, Austria,1979.
    [89]Revalski,J. P., Hadamard and strong well-posedness for convex programs [J]. SIAM J. Optim., Vol.7, pp.519-526,1997.
    [90]Robinson, S. M., An application of error bounds for convex programming in a linear space [J]. SIAM J. Control, Vol.13, pp.271-273,1975.
    [91]Robinson, S. M., Stability theory for systems of inequalities.Ⅱ. Differentiable nonlinear systems [J]. SIAM J. Numer. Anal., Vol.13, pp.497-513,1976.
    [92]Rockafellar, R. T., Convex Analysis [M]. Princeton University Press, Prince-ton,1970.
    [93]Rockafellar, R. T., Conjugate Duality and Optimization [M]. SIAM,1974.
    [94]Rockafellar, R. T. and Wets, R. J. B., Variational Analysis [M]. Springer, New York, 1988.
    [95]Rudin, W., Functional analysis [M]. McGraw-Hill, New York,1973.
    [96]Sharpiro, A., On uniqueness of lagrange multipliers in optimization problems subject to cone constraints [J]. SIAM J. Optim., Vol.7, pp.508-518,1997.
    [97]Sharpiro, A. and Sun, J., Some properties of the augmented lagrangian in cone constrained optimization [J]. Mathematics of Operations Research, Vol.29, pp.479-491,2004.
    [98]Studniarski, M., Weak sharp minima in multiobjective optimization[J]. Con-trol and Cybernetics, Vol.36, pp.925-937,2007.
    [99]Studniarski, M. and Ward, D. E., Weak sharp minima:characterizations and sufficient conditions [J]. SIAM J. Control Optim., Vol.38, pp.219-236,1999.
    [100]Tykhonov, A. N., On the stability of the functional optimization problem[J]. USSR Compt. Math. Phys., Vol.6, pp.28-33,1966.
    [101]Wu, Z. Y. and Wu, S. Y., Weak sharp solutions of variational inequalities in Hilbert spaces[J]. SIAM J. Optim., Vol.14, pp.1011-1027,2004.
    [102]Xu, Z., Zhu, D. L. and Huang, X. X.,Levitin-Polyak well-posedness in gen-eralized vector variational inequalitiy problems with functional constraints [J]. Mathematical Methods of Operational Research, Vol.67, pp.505-524,2008.
    [103]Zheng, X. Y. and Ng, K. F., Error bound moduli for conic convex systems on Banach spaces [J]. Mathematics of Operations Research, Vol.29(2), pp.213-228, 2004.
    [104]Zheng, X. Y. and Ng, K. F., Linear regularity for a collection of subsmooth sets in Banach spaces[J]. SIAM J. Optim., Vol.19, pp.62-76,2008.
    [105]Zheng, X. Y. and Ng, K. F., Strong KKT conditions and weak sharp min-ima in convex-composite optimization[J]. Mathematical Programming, Ser. A, published online,DOI 10.1007/s10107-009-0277-6, April 17,2009.
    [106]Zheng, X. Y. and Yang, X. Q., Weak sharp minima for semi-infinite opti-mization problems with applications [J]. SIAM J. Optim., Vol.18, pp.573-588, 2007.
    [107]Zheng, X. Y. and Yang, X. Q., Weak sharp minima for piecewise linear mul-tiobjective optimization in normed space[J]. Nonlinear Analysis, Vol.68, pp. 3771-3779,2008.
    [108]Zheng, X. Y. and Yang, X. Q., The structure of weak pareto solution sets in piecewise linear multiobjective optimization in normed spaces [J]. Preprint, available on http://myweb.polyu.edu.hk/mayangxq/.
    [109]Zheng, X. Y., Yang, X. M. and Teo, K. L., Sharp minima for multiobjective optimization in Banach spaces[J]. Set-Valued Anal., Vol.14, pp.327-345,2006.
    [110]Zolezzi, T., Well-posedness criteria in optimization with applicaiton to the cal-culous of variations [J]. Nonlinear Analysis:Theory, Methods and Applications Vol.25, pp.437-453,1995.
    [111]Zolezzi, T., Extended well-posedness of optimization problems[J]. Journal of Optimization Theory and Applications, Vol.91, pp.257-266,1996.
    [112]Zolezzi, T., Well-posedness and optimization under pertabations[J]. Annals of Operational Research, Vol.101, pp.351-361,2001.