转基因番茄标记基因剔除及翻译起始因子4E基因顺化植物的病毒抗性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物遗传改良依赖于向植物基因组导入外源DNA片段。虽然基因工程赋予植物很多通过常规育种途径无法实现的优良性状,人们对转基因作物及其植物产品心存疑虑。植物转基因研究中抗性标记基因可以提高转化体的筛选效率。其中70%转基因植物中采用卡那霉素抗性标记基因。然而,对抗性标记基因潜在的生物安全性疑虑阻碍了植物转基因研究的发展,同时现有可利用的标记基因种类有限性也阻碍了转基因作物的长期利用。解决抗性标记基因安全性问题的策略有标记回避和标记剔除两类,前者是在转化阶段不使用抗性标记基因或采用安全标记基因筛选转基因植株;后者则采用抗性标记基因筛选获得转化体后剔除标记基因。在剔除策略中,可诱导的自主剔除途径显现出较好的利用前景。棉铃虫是一种寄主极广的农业大害虫,在蔬菜生产区主要危害番茄。苏云金芽孢杆菌(Bacillus thuringiensis)毒蛋白(insecticidal crystal protein,ICP)基因是目前应用最为广泛的抗虫基因。本研究内容之一旨在以番茄为受体,通过构建化学诱导剔除载体系统用于从抗虫转Bt基因植物中剔除标记基因。
     对作物遗传改良的另外一个疑虑是关于外源基因。对于这种顾虑使得研究人员考虑是否能够向植物基因组导入植物自身基因,而不含其他物种基因,即顺化基因植物(cisgenic plant),以区别于转基因植物(Transgenic plant)。植物病毒病给世界各地的农作物生产造成严重损失。随着植物翻译起始因子特别是eIF4E的研究深入,植物抗病毒研究将面临新的课题。病毒侵染寄主植物并在植物体内进行自我复制和增殖需要借助寄主自身蛋白质合成机制。通过植物基因工程途径,干扰病毒利用植物mRNA翻译蛋白质的过程,可抑制病毒在寄主植物内的复制和增殖,不仅可获得抗病毒植物材料,而且可加深对植物-病毒互作分子机理的认识。鉴于此,本研究第二部分内容通过克隆真核翻译起始因子4E相关基因,利用基因失活和正义表达顺式调控植物自身eIF4E表达,提高植物对马铃薯Y病毒属病毒的抗性,探讨eIF4E介导的抗病毒性的作用机理。
     本实验主要开展以下研究:
     1.利用位点特异重组系统Cre/lox和化学诱导系统XVE相结合构建标记基因剔除载体p35C,在该系统中,反式激活因子XVE、重组酶基因cre、标记基因nptⅡ构建于识别序列loxP正向重复之间,AVE由位于左侧loxP上游的花椰菜花叶病毒35S启动子驱动,cre由β-雌二醇特异诱导的启动子驱动,在右侧loxP下游构建无启动子的cryIAc基因。β-雌二醇诱导处理后,β-雌二醇与反式激活因子XVE结合,启动cre基因表达,Cre重组酶识别loxP正向重复位点,发生重组反应,导致两个loxP之间的cre、nptⅡ以及XVE同时剔除,将剩下一个loxP位点,同时将cryIAc基因置于35S启动子驱动下。在载体p35G中,目的基因为gfp,用于通过绿色荧光蛋白检测标记基因的剔除。
     2.通过农杆菌介导的方法进行番茄遗传转化。p35G载体转化番茄中,19个抗性芽,经过于β-雌二醇诱导后,有2个再生芽可以观测到绿色荧光蛋白的表达,表明该诱导自主剔除系统适用于番茄转化。通过p35C载体将cryIAc导入番茄品种“中蔬五号”获得抗性芽,将抗性芽转移至含有2μMβ-雌二醇诱导培养基中生根。选取携带单拷贝转基因番茄植株进行鉴定,对4个转基因株系的T1进行分析,重组频率一般在12%~39%之间,完全重组的频率8%~30%,将标记基因nptⅡ和cre基因剔除。重组区域序列分析与预期的重组反应一致。其中株系C4所发生的重组皆为不完全重组。另外,利用λ噬菌体的两个重组位点attP构建正向重复序列,置于标记基因两侧,结果表明在转基因当代和T1代均未检测到重组植株,可能是由于重组加强序列影响其重组效率。
     3.部分转cryIAc基因植株的Northern blot结果表明,多数转基因植株cryIAc的正常转录。
     4.在转基因番茄叶片中表达量为3500 ng g~(-1) FW~6300 ng g~(-1) FW,而在果实中CryIAc含量较叶片低,介于2400 ng g~(-1) FW~4400 ng g~(-1) FW之间。对转基因植株的抗虫性初步鉴定表明,对棉铃虫具有较强的抗性。幼虫校正死亡率在70%~90%之间,转基因株系的抗虫指数在80%~90%之间。
     5.分别从克隆了番茄品种“中蔬五号”和抗病辣椒的真核翻译起始因子4E编码基因。中蔬五号番茄所获得的eIF4E与报道的序列有3个碱基差异,而辣椒eIF4E与报道序列一致。
     6.构建了辣椒eIF4E正义(超量)表达载体(pCA4S)及番茄eIF4E RNAi抑制表达载体(pLE4D)。
     7.以番茄品种“中蔬五号”为受体,通过农杆菌介导的方法用pCA4S和pLE4D两种载体进行遗传顺化,获得卡那霉素抗性顺化植株13株。PCR检测和Southernblot结果表明,目标基因已整合到番茄基因组中。pCA4S载体同时用于辣椒品种苏椒五号的遗传顺化,4株再生辣椒PCR检测呈阳性,初步确认基因已整合到番茄基因组。由于在此实验中所用目的基因eIF4E来自番茄和辣椒自身,我们暂且称所获得的基因工程植株为基因顺化植株(cisgenic plants),尽管它们还携带非植物自身基因。
     8.通过半定量RT-PCR对基因顺化番茄进行eIF4E表达分析,表明pCA4S顺化番茄中eIF4E得到超量表达,而pLEAD顺化番茄中eIF4E表达受不同程度抑制。
     9.利用摩擦接种对番茄顺化植株进行PVY和CMV攻毒感染。通过对接种后的病毒病病情调查和病毒RNA的半定量RT-PCR分析,结果表明,pLE4D和pCA4S顺化植株相对于对照均获得不同程度的病毒抗性。其中pCA4S顺化植株的抑制病毒效果较差,而pLE4D顺化植株的效果较好。就不同病毒而言,无论是正义表达eIF4E或者eIF4E RNA干涉,对PVY抗性的调控效果比CMV调控效果好。
     10.对本实验中获得的基因顺化辣椒材料以及本实验室所创建转基因顺化辣椒进行PVY和CMV攻毒感染。结果表明pLE4D和pCA4S转化植株相对于对照均获得不同程度的病毒抗性。
Crop genetic engineering relies on the introduction of foreign DNA into plant genomes. Although genetically engineered traits provide valuable alternatives to those available through conventional breeding, there is public concern about the consumption of foods derived from transgenic plants. The selectable marker genes are required to ensure the efficient plant genetic transformation, 70 percent of which are genes conferring kanamycin resistance. The presence of antibiotic or herbicide resistant selective marker genes in transgenic plants causes the concerns of the potential hazards on ecological environment and human health. At the same time, the limited number of selectable marker gene prevents the retransformation for genetic engineering. Basically, there are two strategies available for generating marker-free transgenic plants, that is, marker gene avoidance or marker gene excision. The first approach is carry out plant transformation using safer markers or without markers at all. The second approach is marker gene elimination after selections. Among the marker gene elimination strategies, inducible auto-excision presents the most promising choice. Cotton bollworm (Helicoverpa armigera Hubner) is severe insect pest, mainly destroying tomatoes. Insecticidal crystal protein from Bacillus thuringiensis is the most widely-used endotoxin for insect-control. One of the main purposes of this thesis was to construct a chemical-inducible marker-free system for tomato and eliminate the selectable marker gene from Bt transgenic tomato.
     Another major concern raised by transgenic crops is related to exogenous genes of interest. This concern educes the question of whether crops can be improved by inserting only native DNA into their genomes and to generated cisgenic plants. The virus disease cause severe losses in crop production worldwide. The growing knowledge on eukaryotic initiation factor 4E has provided the novel strategy for genetic engineering for virus resistance. The protein translation mechanism in host is required for virus infection and multiplication. Interfering the process of virus utilizing of the protein translation via genetic engineering not only improves the virus resistance of host plants, but also helps to deepen insights into molecular interaction of plant-virus. So another part of this thesis was to clone the eukaryotic initiation factor 4E from tomato and pepper, and regulate the elF4E expression in tomato and pepper via sense and RNAi strategy. This would not only improve virus resistance in plants but also help to elucidate the function of elF4E in plant virus interaction.
     Main experiments were carried out as follows:
     1 A chemical-inducible auto-excision marker free vector system, p35C, was constructed with Cre/loxP site-specific recombination system and an inducible expression system XVE. In vector p35C, three elements including the transactivator XVE, cre and the coding sequence of the neomycin transferaseⅡwere located between the two direct repeats of loxP. XVE was driven by cauliflower mosaic virus 35S promoter upstream of loxP. Cre was driven byβ-estradiol-inducible promoter. Downstream of the next loxP was the crylAc. Upon induction byβ-estradiol, the XVE was activated, and drive the cre expression and DNA recombination between two loxP sites, leading to excision ere, nptll and XVE. Only one intact loxP site would be left and cryIAc would be put directly downstream the CaMV 35S promoter. In the vector p35G, the gfp serves as the trait gene for detect maker gene excision by visualizing green fluorescence.
     2 Agrobacterium-mediated transformation was carried out on tomato (ZS5) transformation with p35G. Among 19 kanamycin resistant shoots, 2 shoots exhibited green fluorescence, indicating the suitability of this vector for tomato transformation. CrylAc was introduced into ZS5 tomato via p35C, and kanamycin resistant shoots were obtained. The shoots were transferred to inductive rooting media containing 2μMβ-estradiol. Trangenic tomato with single transgene locus was selected for further analysis. T1 progeny analysis was carried out, showing that Cre/loxP-mediated DNA recombination occurrence was 12%~39%, and complete recombination frequency was 8%~30%. Sequence analysis of the recombination region showed the precise and complete recombination at the loxP sites. But in some transgenic lines, e. g. C4 had incomplete recombination. In addition, the attP site fromλbacteriophage was constructed on both sides of nptⅡand introduced into tomato genome for investigation of the recombination occurrence. However, the results showed that the recombination did not happen either in primary transformants or T1 progeny probably because of absence of transformation boost sequence.
     3 Northern blot analysis was carried out to detect crylAc expression level in transgenic tomato with DNA recombination. And results showed that the cryIAc was significantly transcripted in all transgenic lines tested.
     4 The CryIAc content in leaves and fruit were assayed by ELISA, and the content was 3500 ng g~(-1) FW~6300 ng g~(-1) FW in leaves and 2400 ng g~(-1) FW~4400 ng g~(-1) FW in fruits. In vitro insect assay showed that the transgenic lines were conferred improved resistance to cotton bollworm (Helicoverpa armigera Hubner) larva with resistance index between 80%-90%, and insect adjusted mortality was 70%-90%.
     5 Eukaryotic initiation factor 4E (eIF4E) from tomato ZS5 and pepper Yolo Y was cloned. Tomato elF4E had three nucleotide differences from the reported gene, and pepper eIF4E sequence was the same as the reported gene.
     6 Sense construct for pepper eIF4E (pCA4S) and RNAi construct for tomato eIF4E (pLE4D) was respectively constructed.
     7 Agrobacterium-mediated transformation was carried out on tomato (ZS5) with pCA4S and pLE4D respectively. Thirteen kanamycin resistant plants were obtained. PCR and Southern blot analysis showed the integration of the exogenous gene in tomato genome, pCA4S was also used for pepper transformation, and PCR analysis provided the preliminary confirmation of exogenous gene integration in 4 regenerated plants. Because the trait gene, eIF4E, used in this study was from tomato and pepper's own genome, we called the genetically modified plants obtaind as cisgenic plants, although they still contain non-plant-native genes.
     8 Semi-quantitative RT-PCR was carried out to analysis eIF4E expression in cisgenic plants. Overexpression was observed in cisgenic plants with pCA4S, while gene silence was detected in cisgenic plants with pLE4D.
     9 Cisgenic tomato plants were challenged with PVY and CMV through rub-inoculation. Through the symptom investigation and semi-quantitative RT-PCR of virus RNA, it was showed that two kinds of cisgenic plants were conferred improved virus resistance. And the cisgenic plants with pLE4D showed more resistance than that with pCA4S. As to different virus, cisgenic plants showed more resistance to PVY than to CMV.
     10 Cisgenic pepper plants with pCA4S were challenged with PVY and CMV through rub-inoculation. It was shown that cisgenic plants were conferred improved resistance to virus.
引文
1 方中达编著.植病研究法(第三版).北京:中国农业出版社,1998
    2 郭三堆,崔洪志.中国抗虫棉GFM CrylA杀虫基因的合成及表达载体构建.中国农业科技导报,2000,2:21-26
    3 康保珊,张锐,潘登奎,王远,郭三堆.转基因双价抗虫棉中CrylAc基因与CpTI基因的共表达.棉花学报,2005,17:131-136
    4 欧阳波.几种病程相关基因转化番茄的研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    5 汤银珠.抗病虫基因转化辣椒的研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    6 王苏燕,叶寅等.转基因转基因油菜中核酶介导对花椰菜叶病毒的高度抗病性.中国科学(C辑),1997,27:426-431
    7 叶志彪,李汉霞,刘勋甲等.利用转基因技术育成耐贮藏番茄—华番一号.中国蔬菜,1999,1:6-10
    8 Aleman-Verdaguer M E, Goudou-Urbino C, Dubern J, Beachy RN, Fauquet C. Analysis of the sequence diversity of the P1, HC, P3, NIb and CP genomic regions of several yam mosaic potyvirus isolates: implications for the intraspecies molecular diversity of potyviruses. J General Virol, 1997, 78:1253-1264
    9 Alexander L, Lyznik K V, Thomas K H. FLP-mediated recombination of FRT sites in the maize gene. Nucleic Acids Res, 1996,24:3784-3789
    10 Aoyama T, Chua N-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J, 1997, 11:605-612
    11 Bailey-Serres J. Selective translation of cytoplasmic mRNAs in plants. Trends in Plant Sci, 1999,4:142-148
    12 Barbara H, Avaraham A, Levy Holger P. Elimination of selection markers from transgenic plants. Curt Opin Plant Biotech, 2001, 12:139-143
    13 Baulcombe, D C, Saunders G R, Bevan M W, Mayo M A, Harrison B D. Expression of biologically active viral satellite RNA from nuclear genome Of transformed plants.Nature, 1986, 321:446-449
    14 Bazzini A A, Asurmendi S, Hopp H E, Beachy R N. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer hetcrologous interference to PVX and TMV infection, respectively. J Gen Virol, 2006,87:1005-12
    15. Benedetti A D, Graff J R. eIF4E expression and. its role in malignancies and metastases. Oncogene, 2004, 23: 3189-3199
    16 Bohner S, Lenk I, Rieping M, Herold M, Gatz C. Transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression. Plant J 1999,19:87-95
    17 Bokros C L, Hughdal J D, Kim H H, Hanesworth V R, van Heerden A, Browning K S, Morejohn L C. Function of the p86 subunit of eukaryotic initiation factor (iso)4F as a microtubule-associated protein in plant cells. Proc Natl Acad Sci USA, 1995, 92:7120-7124
    18 Borgstrom B, Johansen I E. Mutations in Pea seedborne mosaic virus genome-linked protein Vpg alter pathotype-specific virulence in Pisum sativum. Mol Plant-Microbe Interact, 2001,14:707-714
    19 Breitler J C, Meynard D, Van Boxtel J, Royer M, Bonnot F, Cambillau L, Guiderdoni E. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res, 2004,13:271-87
    20 Browning K S, Webster C, Roberts J K M, Ravel J M. Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J Biol Chem , 1992, 267:10096-10100
    21 Browning K S. Plant translation initiation factors: it is not easy to be green. Biochem Soc Trans, 2004, 32:589-591
    22 Browning K S. The plant translational apparatus. Plant Mol Biol, 1996,32:107-144
    23 Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B. Expression profiling of the maize flavonoid pathway genes controlled by estradio-inducible transcription factors CRC and P. Plan Cell, 2000,12:65-80
    24 Cao J, Zhao J-Z, Tang J D, Shelton A M, Earle E D. Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet, 2002,105:258-264
    25 Cao M X, Huang J Q, Yao Q H, Liu S J, Wang C L, Wei Z M. Site-specific DNA excision in transgenic rice with a cell-permeable cre recombinase. Mol Biotechnol, 2006,32:55-63
    26 Carberry S E, Darzynkiewicz E, Goss D J. A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochemistry, 1991, 30:1624-1627
    27 .Can J P, Gal-On A, Palukaitis P, Zaitlin M. Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology, 1994, 199:439-447
    28 Carrington, J C, Freed D D, Leinicke A J. Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell, 1991,3:953-962
    29 Chen S, Li X, Liu X, Xu H, Meng K, Xiao G, Wei X, Wang F, Zhu Z. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Plant Cell Rep, 2005,23:625-31
    30 Christou P, Capell T, Kohli A, Gatehouse J A, Gatehouse A M. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci, 2006 [Epub ahead of print]
    31 Clark B W, Phillips T A, Coats J R. Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem, 2005,15,53: 4643-53
    32 Cooper B, Lapidot M, Heick J A, Dodds J A, Beachy R N. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Urology, 1995,206:307-313
    33 Crickmore N, Zeigler D R, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998, 62:807-13
    34 Dale E C, Ow D W. Gene transfer and subsequent removal of the selection gene from the host genome. Proc NatlAcad Sci USA, 1991,88:10558-10562
    35 Daley M, Knauf V C, Summerfelt K R, Turner J C. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep, 1998,17:489-496
    36 Daniell H, Muthukumar B, Lee S B. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet, 2001, 39:109-116
    37 David K M, Perrot-Rechenmann C. Characterization of a tobacco Bright Yellow 2 cell line expressing the tetracycline repressor at a high level for strict regulatiuon of transgene expression. Plant Physiol, 2001, 125:1548-1553
    38 Day A, Kode V, Madesis P, Iamtham S. Simple and efficient removal of marker genes from plastids by homologous recombination. Methods Mol Biol, 2005, 286:255-70
    39 De Cosa B, Moar W, Lee S B, Miller M, Daniell H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol, 2001,19:71-74
    40 De Neve M, De Buck S, Jacobs A. T-DNA integration patterns in co-transformed plant cells suggests that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J, 1997,11:15-29
    41 De Vetten N, Wolters A M, Raemakers K, Van Der Meer I, Ter Stege R, Heeres E, Heeres P, Visser R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotech, 2003, 21: 439-442
    42 De Veylder L, Beeckman T, Van Montagu M, Inze D. Increased leakiness of the tetracycline-inducible Triple-Op promoter in dividing cells renders it unsuitable for high inducible levels of a domainant negative CDC2aAt gene. J Exp Bot, 2000, 51:1647-1653
    43 De Wit P J G M. Molecular characterization of gene for gene system in plant fungus interaction and the application of avirulence genes in control of plant pathogens. Ann Rev Phytopathol, 1992, 30: 391-418
    44 Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res, 2005,14:989-994
    45 Diez J, Ishikawa M, Kaido M, Ahlquist P. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc Natl Acad Sci USA, 2000, 97: 3913-3918
    46 Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol, 2005,58:659-68
    47 Duprat A, Caranta C, Revers F, Menand B, Browning K S, Robaglia C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J, 2002,32:927-934
    48 Ebinuma H, Sugita K, Endo S, Matsunaga E, Yamada K. Elimination of marker genes from transgenic plants using MAT vector systems. Methods Mol Biol, 2005, 286:237-254
    49 Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A. Systems for the removal of a selection marker and their recombination with a positive marker. Plant Cell Rep, 2001,20:383-392
    50 Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene as selectable marker. Proc NatlAcadSci USA, 1997,94:2117-2121
    51 Edith B, Paul S. Integrity and rights of plants: ethical notions in organic plant breeding and propagation. J Agr Environ Ethic, 2005,18:479-493
    52 Eggenberger A L, Hill J H. Analysis of resistance-breaking determinants of soybean mosaic virus. Phytopatholog, 1997, 87: S27
    53 Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant 7,2002,30:115-122
    54 Felenbok B. The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J Biotechnol, 1991, 17:11-17
    55 Fellers J, Wan J, Hong Y, Collins G B, Hunt A G. In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. J Gen Virol, 1998,79:2043-2049
    56 Feng D, Liu X, Chen S, Xu H, Wei X, Xu J, Zhu Z. Virus-induced PVX coat protein gene silencing and methylation in transgenic tobaccos. Acta Bota Sin, 46:116-123
    57 Flynn A, Proud C G. The role of eIF4 in cell proliferation. Cancer Surv, 1996, 27: 293-310
    58 Fraser R S S. The genetics of plant-virus interactions: Implications for plant breeding. Euphytica, 1992, 63:175-185
    59 Gallie D R, Browning K S. eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structure mRNAs. J Biol Chem, 2001,276:36951-36960
    60 Gao Z, Johansen E, Eyers S, Thomas C L, Ellis T H N, Maule A J. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant 7, 2004,40:376-385
    61 Gardner J F, Nash H A. Role of Escherichia coli IHF protein in lambda site-specific recombination. J Mol Biol, 1986, 191:181-189
    62 Gatz C, Frohberg C, Wendenburg R. Stringent repression and homogeneous derepression by tetracycline tobacco plants. Plant J, 1992, 2: 397-404
    63 Gatz C, Lenk I. Promoters that respond to chemical inducers.Trend Plant Sci, 1998, 3:352-358
    64 Gatz C. Chemical control of gene expression. Annu Rev Plant Physiol Plant Mol Biol, 1997,48:89-108
    65 Gatz C. Chemically inducible promoters in transgenic plants. Curr Opin Biotechnol, 1996, 7:168-172
    66 Germundsson A, Valkonen J P. P1- and VPg-transgenic plants show similar resistance to Potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing-based resistance. Virus Res, 2006, 116:208-13
    67 Gibb K S, Hellmann G M, Pirone T P. Nature of resistance of a tobacco cultivar to tobacco vein mottling virus. Mol Plant- Microbe Interact, 1989,2: 332-339
    68 Gingras A C, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem, 1999, 68: 913-963
    69 Gingras A C, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes & development, 2001,15:807-826
    70 Girijashankar V, Sharma H C, Sharma K K, Swathisree V, Prasad L S, Bhat B V, Royer M, Secundo B S, Narasu M L, Altosaar I, Seetharama N. Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep, 2005, 24:513-522
    71 Gleave A P, Mitra D S, Morris B A M. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol, 1999,40:223-235
    72 Goldsbrough A P, Lastrella C N, Yoder J I. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology, 1993,11:1286-1292
    73 Golemboski D B, Lomonossoff G P, Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA, 1990, 87:6311-15
    74 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA, 1992, 89: 5547-5551
    75 Gossen M, Freundlieb S, Bender G, Mueller G, Hillen W, Bujard H. Transcriptional activation by tetracycline in mammalian cells. Science, 1995,268:1766-1769
    76 Granger C, Cyr R J. Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana. Plant Cell Rep, 2001, 20:227-234
    77 Granger C, Cyr R J. Microtubule reorganization in tobacco BY-2 cells stably expressing GFB-MBD. Planta, 2000, 210:502-509
    78 Gray W M, del Pozo J C, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby W L,Y ang M, Ma H, Estelle M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev, 1999,13:1678-1691
    79 Guo H-S,Fei J-F, Xie Q, Chua N-H. A chemical-regulated inducible RNAi system in plants. Plant J, 2003,34:383-392
    80 Hajimorad M R, Ding X S, Flasinski S, Mahajan S, Graff E, Haldman-Cahill R, Carrington J C, Cassidy B G. NIa and NIb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. Virology, 1996, 224:368-379
    81 Haldrup A, Ptersen S G, Okkels F T. The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol, 1998,37:287-296
    82 Hamilton R I, Defense triggered by previous invaders: Virus. In Horsefll J G, Gowling E B. Plant Disease: An advanced treatise 5. New York: Academic press 1980,279-303
    83 Hansen G, Wright M S. Recent advances in the transformation of plants. Trends Plant Sci, 1999,4:226-231
    84 Hoa T T C, Bong B B, Huq E, Hodges T K. Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet, 2002, 104: 518-525
    85 Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev,19S9, 53:242-255
    86 Hong Y, Levay K, Murphy J F, Klein P G, Shaw J G, Hunt A G. A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology, 1995, 214:159-166
    87 Huang S, Gilbertson L A, Adams T H, Malloy K P, Reisenbigler E K, Birr D H, Snyder M W, Zhang Q, Luethy M H. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res, 2004, 13:451-461
    88 Huntley C C, Hall T C. Interference with brome mosaic virus replication in transgenic rice. Molecular Plant-Microbe Interactions, 1996,9:164-170
    89 Ishikawa M, Diez J, Restrepo-Hartwig M, Ahlquist P. Yeast mutations in multiple complementation groups inhibit brome mosaic virus RNA replication and transcription and perturb regulated expression of the viral polymerase-like gene. Proc Natl Acad Sci USA, 1997, 94:13810-13815
    90 Janssen B J, Gardner R C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol, 1990, 14:61-72
    91 Jepson I, Martinez A, Sweetman J P. Chemical-inducible gene expression systems for plants-a review. Pestic Sci, 1998, 54:360-367
    92 Joersbo M, Donaldson I., Kreiberg J, Petersen S G, Brunstedt J, Okkels F T. Analysis of mannose selection used for transformation of sugar beet. Mol Breed,1998,4:111-117
    93 Joersbo M, Okkels F T. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep, 1996,16:219-221
    94 Joshi B, Lee K, Maeder D L, Jagus R. Phylogenetic analysis of elF4E-family members. BMC Evol Biol, 2005,5:48
    95 Kang B C, Yearn I, Frantz J D, Murphy J F, Jahn M M. The pvr1 locus in Capsicum encodes a translation initiation factor elF4E that interacts with Tobacco etch virus VPg. Plant J, 2005, 42:392-405
    96 Kang B C, Yeam I, Jahn M M. Genetics of plant virus resistance. Annu Rev Phytopathol, 2005,43:581-621
    97 Kawaguchi R, Bailey-Serres J. Regulation of translational initiation in plants. Curr Opin Plant Biol , 2002,5,460-465
    98 Keenan R J, Stemmer W P C. Nontransgenic crops from transgenic plants. Nature Biotech, 2002,20:215-216
    99 Keller K E, Johansen I E, Martin R R, Hampton R O. Potyvirus genome-linked protein (VPg) determines Pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol Plant-Microbe Interact, 1998, 11:124-130
    100 Khan R S, Chin D P, Nakamura I, Mii M. Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Plant Cell Rep, 2006 Apr 8; [Epub ahead of print]
    101 Kilby N J, Davies G J, Snaith M R. FLP recombinase in transgenic plants:constituve activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J, 1995,8:637-652
    102 Klaus S M, Huang F C, Golds T J, Koop H U. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol, 2004, 22:225-229
    103 Komari, T., Y. Hiei, Y. Saito, N. Murai, and T. Kumashiro. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformation free from selection marker. Plant J, 1996,10:165-174
    104 Kopertekh L, Juttner G, Schiemann J. PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol Biol, 2004,55:491-500
    105 Kunkel T, Niu Q W, Chan Y S, Chua N H. Inducible isopenteny transferase as a high efficiency marker for plant transformation. Nature Biotech, 1999,17:916-919
    106 Lebel E G, Masson J, Bogucki A, Paszkowski J. Transposable elements as plant transformation vectors for long stretches of foreign DNA. Theor Appl Genet, 1995,91:899-906
    107 Lellis A D, Kasschau K D, Whitham S A, Carrington J C. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol, 2002,12:1046-1051
    108 Leonard S, Chisholm J, Laliberte J F, Sanfac,n H. Interaction in vitro between the proteinase of Tomato ringspot virus (genus Nepovirus) and the eukaryotic translation initiation factor iso4E from Arabidopsis thaliana. J Gen Virol, 2002, 83:2085-2089
    109 Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG , Laliberte J-F. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol, 2000,74: 7730-7737
    110 Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin M G, Laliberte J-F. Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly (A)-binding protein in planta. J Gen Virol, 2004, 85:1055-1063
    111 Li X H, Valdez P, Olvera R E, Carrington J C. Function of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol, 1997, 71:1598-1607.
    112 Lodge J K. Broad-spectrum virus resistance in transgenic plants expression pokeweed antiviral protein. Pro Natl Acad Sci USA, 1993,90:7087-7093
    113 Lombari P, Ercolano E, El Alaoui H, Chiurazzi M. A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Rep, 2003, 21: 771-777
    114 Lomonossoff. Pathogen-derived resistance to plant virus. Ann Rev Phytopathol, 1995,33:323-343
    115 Love J, Scott A C, Thompson W F. Stringent control of transgene expression in Arabidopsis thaliana using Top10 promoter system. Plant J, 2000, 21:579-588
    116 Luo H, Kausch A P. Application of FLP/FRT site-specific DNA recombination system in plants. Genet Eng (NY), 2002,24:1-16
    117 Lusk J L, Sullivan P. Consumer acceptance of genetically modified foods. Food Technol, 2002, 56: 32-37
    118 Lutz K A, Bosacchi M H, Maliga P. Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J, 2006,45:447-456
    119 Ma Z, Yang H, Wang R, Tien P. Construct hairpin RNA to fight against rice dwarf virus. Acta Bota Sin, 2004,46:332-336
    120 Maeser S, Kahmann R. The Gin recombinase of Phage Mu can catalyze site-specific recombination in plant protoplasts. Mol Gen Genet, 1991,230:170-176
    121 Maghuly F, Leopold S, da Camara Machado A, Borroto Fernandez E, Ali Khan M, Gambino G, Gribaudo I, Schartl A, Laimer M. Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep, 2006, 25:546-53.
    122 Malyshenko S I, Kondakova O A, Nazarova J V, Kaplan I B, Taliansky M E, Atabekov J G Reduction of tobacco mosaic virus accumulation in transgenic plants producing nonfunctional viral transport proteins. J Gen Virol, 1993, 74:1194-1156
    123 Manjunath S, Williams A J, Bailey-Serres J. Oxygen deprivation stimulates Ca~(2+)-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots. Plant J,1999,19:21-30
    124 Marcotrigiano J, Gringras A C, Sonenberg N, Burley S K. Co-crystal structure of the messenger RNA 5' cap binding protein (eIF4E) bound to 7-methyl-GDP. Cell, 1997, 89:951-961
    125 Martinez A, Sparks C, Hart CA, Thompson J, Jepson I. Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J, 1999,19:97-106
    126 Matzke M A, Matzke A J M. Plant Gene Silencing. Hardbound: Kluwer Academic Publishers, 2000,121-418
    127 McKendrick L, Pain V M, Morley S J. Translation initiation factor 4E. Int J Biochem Cell Biol, 1999:31:31-35
    128 McNellis T W, Mudgett M B, Li K, Aoyama T, Horvath D, Chua N-H, Staskawicz B J. Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J, 1998,14:247-257
    129 Merrick W C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev, 1992, 56:291-315
    130 Meyer P. Removal of specific DNA regions from transgenes - a necessary step to improve the precision of transgene technology? AgBiotechNet, 2000, 2: ABN 060
    131 Minich W B, Balasta M L, Goss D J, Rhoads R E. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA, 1994, 91: 7668-7672
    132 Mlotshwa S, Verver J, Sithole-Niang I, Prins M, Van Kammen A B, Wellink J. Transgenic plants expressing HC-Pro show enhanced virus sensitivity while silencing of the transgene results in resistance. Virus Genes, 2002,25:45-57
    133 Mori M, Fugihara N, Mise K, Furusawa I. Inducible high-level mRNA amplification system by viral replicase in transgenic plants. Plant J, 2001,27:79-86
    134 Moury B, Morel C, Johansen E, Guilbaud L, Souche S, Ayme V, Caranta C, Palloix A, Jacquemond M. Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol Plant-Microbe Interact, 2004,17:322-329
    135 Murphy J F, Rhoads R E, Hunt A G, Shaw J G. The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology , 1990,178: 285-288
    136 Negrotto D, Jolley M, Beer S, Wenck A R Hansen G The use of phosphomannose isomerase as a selectable marker to recover transgenic maize (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep, 2000,19:798-803
    137 Nicaise V, German-Retana S, Sanjuan R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiol, 2003,132:1272-282
    138 Nicolas O, Dunnington S W, Gotow L F, Pirone T P, Hellmann G M. Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virolog, 1997, 237:452-459
    139 Nielsen K M. Transgenic organisms: time for conceptual diversification? Nat Biotechnol, 2003, 21: 227-228
    140 Noueiry A O, Chen J, Ahlquist P. A mutant allele of essential, general translation initiation factor DEDl selectively inhibits translation of a viral mRNA. Proc Natl Acad Sci USA, 2000,97:12985-12990
    141 Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C. Visulization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arobidopsis thaliana. Mol Gen Genet, 1995,247:653-660
    142 Ow D W. Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol, 2002,48:183-200
    143 Ow D W. Topic 12: Maker genes. Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. Switzerland: Headquarters of the World Health Organization, 2000:1-6
    144 Padidam M, Gore M, Lu D L, Smirnova O. Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res, 2003,12:101-109
    145 Padidam M. Chemically regulated gene expression in plants. Curr Opin in Plant Biology, 2003, 6:169-177
    146 Pain V M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem, 1996,236:747-771
    147 Parkhi V, Rai M, Tan J, Oliva N, Rehana S, Bandyopadhyay A, Torrizo L, Ghole V, Datta K, Datta SK. Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm. Mol Genet Genomics, 2005, 274:325-336
    148 Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C. Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet, 2002, 105:855-861
    149 Periasamy M, Niazi F R, Malathi V G Multiplex RT-PCR, a novel technique for the simultaneous detection of the DNA and RNA viruses causing rice tungro disease. J Virol Methods, 2006,134:230-236
    150 Pestova T V, Kolupaeva V G, Lomakin I B, Pilipenko E V, Shatsky I N, Agol V I, Hellen C U. Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA, 2001, 98:7029-7036
    151 Peter D H, Chua N H. Excision of selectable marker genes from transgenic plants. Nature Biotech, 2002, 20: 575-580
    152 Picard D, Kao C C, Hudak K A. Pokeweed antiviral protein inhibits brome mosaic virus replication in plant cells. J Biol Chem, 2005, 280, 20069-20075
    168 Romeis J,. Meissle M, Bigler F. Transgenic crops expressing Bac.illus thuringiensis toxins and biological control. Nat Biotechnol, 2006, 24:63-71
    169 Rommens C M, Humara J M, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K. Crop improvement through modification of the plant's own genome. Plant Physiol,2004, 135:421-431
    170 Rommens C M, Humara J M, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K. Crop improvement through modification of the plant's own genome. Plant Physiol,2004 a, 135:421-431
    171 Rommens C M. All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci, 2004 b, 9:457-464
    172 Roslan H A, Salter M G, Wood C S, White M R H, Croft K P, Robson F, Coupland G, Doonan J, Laufs P, Tomsett A B, Caddick M X. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J, 2001,28:225-235
    173 Ruffel S, Caranta C, Palloix A, Lefebvre V, Caboche M, Bendahmane A. Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene, 2004,338:209-216
    174 Ruffel S, Dussault M H, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (elF4E). Plant J, 2002, 32:1067-1075
    175 Ruffel S, Gallois J L, Lesage M L, Caranta C. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-elF4E gene. Mol Gen Genomics, 2005, 274:346-353
    176 Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi P P. The translation factor elF4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med, 2004, 10:484-486
    177 Russell S H, Hoopes J L, Odell J T. Directed excision of a transgene from the plant genome. Mol Gen Genet, 1992,234:49-59
    178 Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 1998,92:93-103.
    179 Sato M, Nakahara K, Yoshii M, lshikawab M, Uyeda I. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett, 2005, 579:1167-1171
    180 Schaad M C, Anderberg R J, Carrington J C. Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology, 2000,273:300-306
    181 Schaad M C, Carrington J C. Suppression of long distance movement of tobacco etch virus in a nonsusceptible host. J Virol, 1996,70:2556-2561
    182 Schaad M C, Haldeman-Cahill R, Cronin S, Carrington J C. Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol, 1996,70:7039-7048
    183 Schaad M C, Lellis A D, Carrington J C. VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Virol, 1997, 71: 8624-8631
    184 Schaad, M C, Haldeman-Cahill R, Cronin S, Carrington J C. Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol, 1996,70: 7039-7048
    185 Schaart J G Towards consumer-friendly cisgenic strawberries which are less susceptible to Botrytis cinerea. Ph.D. thesis, Wageningen University, Wageningen, the Netherlands, 2004
    186 Schaart J. Towards consumer-friendly, cisgenic strawberries which are less susceptible to Botrytis cinerea. Abstract, Application of biotechnology in breeding cultivars suitable for sustainable fruit production, 2005 Skierniewice, Poland
    187 Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci USA, 1981,78:2893-2897
    188 Schwartz D C, Parker R. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol, 2000,20:7933-7942
    189 Scutt C P, Zubko E, Meyer P. Techniques for the removal of marker genes from transgenic plants. Biochimie, 2002, 84:1119-1126
    190 Shillito R D, Saul M W, Paszkowski J, Mueller M, Potrykus I. High efficiency direct gene transfer to plants. Biotechnology, 1985,3:1099-1103
    191 Siriluck I, Anil D. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nature Biotech, 2000, 18:1172-1176
    192 Sonenberg N, Gingras A-C. The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol, 1998,10:268-275
    193 Sonenberg N, Morgan M A, Merrick W C, Shatkin A J. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA. Proc Natl Acad Sci USA, 1978, 75: 4843-4847
    194 Srivastava V, Anderson O D, Ow D W. Single-copy transgenic wheat generated through the resolution of complex intergration patterns. Proc Natl Acad Sci USA, 1999,96:1117-11121
    195 Srivastava V, Ow D W. Marker-free site-specific gene integration in plants. Trends Biotechnol, 2004, 22:627-629
    196 Strudwick S, Borden K L. The emerging roles of translation factor eIF4E in the nucleus. Differentiation, 2002, 70:10-22
    197 Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. The Plant J, 2000, 22:461-469
    198 Sugita K, Matsunaga E, Ebinuma H. Effective selection system for generating maker-free transgenic plants independent of sexual crossing. Plant Cell Rep, 1999,18:941-947
    199 Tabashnik B E, Dennehy T J, Carriere Y. Delayed resistance to transgenic cotton in pink bollworm. Proc Natl Acad Sci USA, 2005,102:15389-15393
    200 Tepfer M. Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol, 2002,40:467-491
    201 Thach, R E. Cap recap: the involvement of eIF-4F in regulating gene expression. Cell, 1992, 68:177-180
    202 Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673-4680
    203 Topisirovic I, Kentsis A, Perez J M, Guzman M L, Jordan C T, Borden KLB. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol Cell Biol, 2005,25:1100-1112
    204 Truve E. Transgenic potato plants expressing mammalian 2', 5'-oligoudeny late synthetase are protected from potato virus X infection under field conditions. Bio/Technology, 1993,11:1048-1052
    205 Tsujimoto Y, Numaga T, Ohshima.K, Yano M A, Ohsawa R, Goto D, Naito S, Ishikawa, M. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J, 2003, 22:335-343
    206 Unger E, Cigan A M, Trimnell M, Xu R-L, Kendall T, Roth B, Albertsen M. A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize. Transgenic Res, 2002,11:455-465
    207 Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beukeleer M, Dean C, Zabeau M, Montagu Van M, Leemans J.Transgenic plants protected from insect attack. Nature, 1987, 328:33-37
    208 van der Want J P, Dijkstra J. A history of plant virology. Arch Virol, 2006, [Epub ahead of print]
    209 Vergunst A C, Schrammeijer B, den Dulk-Ras A, de Vlaam C M T, Regensburg-Tuink T J, Hooykaas P J J. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science, 2000,290:979-982
    210 Verzaux E, Pel M, van Arkel G, Ruyter-Spira C, Vleeshouwers V, Visser R, Jacobsen E, van der Vossen E. Towards cisgenic late blight resistant potato varieties; cloning and characterization of relevant R genes from wild Solanum species. Abstract, Annual meeting of Oomycete Molecular Genetics Network. 2006, De Wageningse Berg, Wageningen, the Netherlands
    211 Vilela C, Velasco C, Ptushkina M, McCarthy J E. The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex. EMBO J, 2000,19:4372-4382
    212 Voloudakis A E, Aleman-Verdaguer M E, Padgett H S, Beachy R N. Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion and assembly mutants of the tobacco etch potyvirus coat protein. Arch Virol, 2005, 50:2567-2582
    213 Wang M B, Metzlaff M. RNA silencing and antiviral defense in plants. Curr Opin Plant Biol, 2005, 8:216-222
    214 Wang X, Flynn A, Waskiewicz A J, Webb B L, Vries R G, Baines I A, Cooper J A, Proud C G. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem, 1998, 273:9373-9377
    215 Wang Y, Chen B, Hu Y, Li J, Lin Z. Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system. Transgenic Res, 2005,14:605-14
    216 Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991, 32:269-296
    217 Weeks T, Rommens C M. Refined plant transformation. 2003, World patent application 2003/ 079765 A2
    218 Whalen S G, Gingras A C, Amankwa L, Mader S, Branton P E, Aebersold R, Sonenberg N. Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J Biol Chem , 1996,271:11831-11837
    219 Williams S, Friedrich L, Dincher S, Carozzi N, Kessmann H, Ward E, Ryals J. Chemical regulation of Bacillus thuringiensis d-endotoxin expression in transgenic plants. Biotechnol, 1992,10:540-543
    220 Wisniewski L A, Powell P A. Local and systemic spread of tobacco mosaic virus in transgenic tobacco plants. The Plant Cell, 1990,2:559-567
    221 Wittmann S, Chatel H, Fortin M G, Laliberte J F. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997,234:84-92
    222 Wright C F, Hamer D H, McKenney K. Autoregulation of the yeast copper metallothionein gene depends on metal binding. J Biol Chem 1988, 263:1570-1574
    223 Wu H, Sparks C, Amoah B, Jones H D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep, 2003, 21: 659-668
    224 Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol, 2002,76: 2491-2497
    225 Yamanaka T, Ohta T, Takahashi M, Meshi T, Schmidt R, Dean C, Naito S, Ishikawa M. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci USA, 2000,97:10107-10112
    226 Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kqzuka R, Naito S, Ishikawa M. The Arabidopsis Cucumovirus Multiplication 1 and 2 loci encode translation initiation factors 4E and 4G J Virol, 2004, 78: 6102-6111.
    227 Yoshizumi T, Nagata N, Shimada H, Matsui M. An Arabidopsis cell cycle-dependent kinase-related gene, CDC2b, plays a role in regulating seedling growth in darkness. Plant Cell, 1999,11:1883-1896
    228 You S J, Liau C H, Huang H E, Feng T Y, Prasad V. Prasad, Hsiao H-h, Lu J-C, Chan M T. Sweet pepper ferredoxin-like protein gene as a novel selection marker for orchid transformation. Planta, 2003,217: 60-65
    229 Zaidi M A, Mohammadi M, Postel S, Masson L, Altosaar I. The Bt gene cry2Aa2 driven by a tissue specific ST-LS1 promoter from potato effectively controls Heliothis virescens. Transgenic Res, 2005,14:289-298
    230 Zhang C L, Chen D F, McCormac A C, Scott N W, Elliott M C, Slater A. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Mol Biotechnol, 2001,17:109-117
    231 Zhang S, Chen L, Goff S A. Regulation of gene expression by small molecules in rice. Novartis Found Symp, 2001, 236:85-96
    232 Zhao J Z, Cao J, Collins H L, Bates S L, Roush R T, Earle E D, Shelton A M. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA, 2005,102:8426-8430
    233 Zhao J-Z, Cao J, Li Y, Collins H L, Roush R T, Earle E D, Shelton A M. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology, 2003, 21:1493-1497
    234 Zou L P, Li H X, Ouyang B, Zhang J H, Ye Z B. Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci, 2006,170: 120-127
    235 Zubko E, Scutt C, Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nature Biotech, 2000,18: 442-445
    236 Zuo J, Chua N H. Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotech, 2000,11:146-151
    237 Zuo J, Niu Q W, Moller SG, Chua N H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotech, 2001,19:157-161
    238 Zuo J, Niu Q-W, Frugis G, Chua N-H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359
    239 Zuo J, Niu Q-W, Ikeda Y, Chua N-H Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Current Opinion Biotech, 2002, 13: 173-180
    240 Zuo J, Niu Q-W, Nishizawa N, Wu Y, Chua N-H. KORRIGAN, an Arabidopsis endo-1-4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell, 2000, 12: 1137-1152
    241 Zuo J, Niu Q-W, Chua N-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J, 2000, 24: 265-273