甘蓝型油菜抗裂角性状分析及其QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在收获过程中油菜裂角落粒所造成的产量损失率通常在10%-30%。为了减少收获过程中的损失,培育抗裂角、适合机械化生产需要的油菜品种已经成为当务之急。甘蓝型油菜是我国生产上应用的主要油菜类型,育种实践要求首先进行甘蓝型油菜抗裂角的基础理论研究。本研究主要内容包括:建立抗裂角检测体系和量化指标、筛选抗裂角种质资源、研究影响抗裂角的因素、构建抗裂角作图DH群体和对该性状进行QTL定位。主要研究结果如下:
     1甘蓝型油菜抗裂角检测方法的建立和抗裂角品种(系)的筛选
     1.1对随机碰撞法进行了改进,采用抗裂角指数作为抗裂角性状的定量指标,为该性状的定量研究奠定了基础。研究发现抗裂角指数在甘蓝型油菜种质资源中存在广泛变异(0.0000-0.7675),变异系数高达114.4%。在229份品系中,极易裂角和易裂角品系分别占59.38%和32.75%。筛选出抗裂角品系(抗裂角指数在0.7以上)2个(H155和98009)。
     1.2研究表明,通过改进后的随机碰撞测试(RIT)检测的抗裂角指数是稳定可靠的。品种(系)间的抗裂角指数差异达到极显著水平,重复间、年份间以及品种(系)与年份的互作差异不显著。
     1.3相关分析结果表明,决定角果空间分布的性状(果柄与主花序轴朝上夹角、果柄与角果朝上夹角和果柄长度)与抗裂角指数间不存在相关性。角果密度与抗裂角指数间存在极显著的负相关。抗裂角指数与角果长度、角果宽度、角喙长度、角皮厚度和角粒数间均呈现极显著的正相关。
     1.4抗裂角品种与易裂角品种的角皮结构存在明显差异。抗裂角品种H155的壳状果瓣的内皮层细胞排列紧密、木质化程度高、多层薄壁细胞也发生了木质化,而且其壳状果瓣中维管束多、木质化程度高增强了壳状果瓣的机械强度。易裂角品种Qva的壳状果瓣比抗裂角品种的壳状果瓣的机械强度低,更易于破裂。
     2影响甘蓝型油菜角果抗裂特性的因素分析
     2.1遗传因素是决定抗裂角指数差异的决定因素。研究表明,相同品种(系)抗裂角指数在重复间差异不显著,品种间差异极显著,年份和地点间差异也不显著。
     2.2不同部位的角果抗裂角指数存在差异,变异系数在18.67%-93.57%之间。多数品种都是以下部第一分枝角果的抗裂指数最大。从第二分枝往上的分枝的角果的抗裂角指数差异不大。主花序中下部角果抗裂角指数相近,顶部角果的抗裂角指数分别比中部和下部角果小55.04%和60.43%。多数品种的主花序下部角果抗裂能力最强。
     2.3抗裂角品种(系)与易裂角品系在含水量降低的过程中,抗裂角指数的变化存在差异。在角果脱水过程中,易裂角品系Qva的抗裂角指数迅速下降,而抗裂角品系在脱水初期和后期抗裂角指数下降都较慢。研究发现角果相对含水量与抗裂角指数间呈一次直线回归关系(y=0.0149x-0.4779,R2=0.4284),即油菜的抗裂角指数随角果相对含水量的增加直线上升。
     3油菜游离小孢子培养技术的改进
     3.1将取样时间从初花后提前到初花前9天,产胚量达到15.60-34.08个/花蕾,与传统取样时间产胚量没有显著差异。采用在活体植株上摘取适合大小的花蕾替代在室内折断的花序上摘取花蕾,二者培养的出胚率差异不显著。但是该方法可以让较小的花蕾继续生长,大幅度减少供体植株数量,保证取样花蕾具有相同遗传背景。
     3.2利用13%蔗糖溶液替代传统的B5培养基作为小孢子提取液,二者提取的小孢子出胚率差异不显著。可以节省试剂和配置培养基所消耗的人力。改进后的培养程序直接将悬浮在NLN培养基中的小孢子置于32℃的培养箱中暗培养至有胚状体出现,使得出胚时间较传统方法提前4天,而胚状体产量几乎相同。
     4甘蓝型油菜遗传连锁图谱构建及抗裂角性状的QTL定位
     4.1H155(P1)、P2(Qva)及F1、F2、BC1F1、BC2F1的抗裂角指数呈连续分布。DH系的抗裂角指数的次数分布偏向易裂角亲本,呈现连续复合正态分布,抗裂角性状是受微效基因控制的数量性状。
     4.2利用JoinMap3.0进行连锁分析,构建了一张包含175个标记位点的遗传连锁图谱。这些标记分布在19个连锁群上,覆盖甘蓝型油菜1382.8cM,平均标记间距7.9cM。连锁群的遗传距离从33.5cM到107.7cM不等,连锁群上的标记从4个到20个
     4.3当LOD>2.0时,在郑州点检测到9个抗裂角性状有关的QTL,分别位于N1、N7、N8、N15和N18五个连锁群上,对表现型的总贡献率达到49.0%。这9个QTL间存在上位性互作,对表现型的贡献率达到45.9%。郑州点QTL及其互作效应对表现型的贡献率为94.9%。在武汉试点检测到4个与抗裂角指数有关的QTL,它们分别位于N1、N4、N7和N18四个连锁群上,对表现型的总贡献率为38.6%。这4个QTL间存在上位性互作,而且对表现型的互作达到12.8%。武汉点QTL及其互作效应对表现型的贡献率为51.4%。
     4.4在郑州检测出的3个QTL在武汉被重复检出。在郑州检测出的位于N1连锁群的qSSRI2在武汉重复检出(qSSRI10)。在郑州检测出的位于N7连锁群的qSSRI4也在武汉重复检出(qSSRI12)。在郑州检测出的位于N18连锁群的qSSRI9在武汉重新检出(qSSRI13)。
     4.5本研究定位的QTL结果与Raman等(2011)利用关联分析检测出的SSR标记结果一致性较好。而Raman等(2011)的结果与拟南芥和芸薹属作物的育角果开裂有关的转录组学分析结果一致(Jaradat et al.,2010)。
During harvesting of rapeseed, the silique shatter loss proportion usually reaches up to10%to30%. In order to decrease the yield loss caused by silique shatter, it is necessary to breed varieties with silique-shatter resistance, which are suitable for combine harvesters. Since Brassica napus is the main rapeseed type used in production in China, breeding practice requires that theoretical researches of silique-shattrer resistance be carried out in advance.
     This study firstly improved random impact test (RIT) and set up silique-shatter resistance index (SSRI) as a measurement for this trait. Then a slilque-shatter resistant line H155and a slilque-shatter susceptible line Qva were selected from the Brassica germplasm. Silique-shatter resistant trait and their influencing factors were also studied.During construction of DH mapping population, microspore cultural techniques were improved for higher efficiency and lower costs. A linkage map with19linkage groups was constructed and13QTLs which were related to silique-shatter resistance were mapped. These results can be helpful in molecular assistant selection in rapeseed silique-shatter resistant breeding.The main results in this study are listed as followings.
     1Setting up a test system for silique-shatter resistance and screening silique shatter resistant lines
     1.1Random impact test (RIT) was improved and silique-shatter resistance index (SSRI) was also firstly set up for evaluating silique-shatter resistant ability in rapeseed. Results indicated that there were extensive variance of SSRI in Brassica napus germplasm, which SSRI ranged from0.000to0.7675and the coefficient of variance (CV) was as high as114.4%. In the screened germplasm, about59.38%were silique-shatter sensitive accessions,32.75%were silique-shatter susceptible accessions. Only4.01%accessions with more than0.5of SSRI. Two silique-shatter resistant accessions (H155and98009) with more than0.7of SSRI were obtained.
     1.2Results showed that SSRI detected by RIT were stable and credible.The differences of SSRI among accessions reached1%significant level. However the differences among years and replications did not reached significant level.
     1.3Results of simple correlation analysis revealed that SSRI had no correlation with the angle between stalks and inflorescences, angles between stalks and silique and stalk length.All these parameters decide silique distribution in space and are directly related to scraping and silique shatter loss during harvesting. Silique number per cm along inflorescences and branches had significant (1%) negative correlation with SSRI. Silique length, silique width, beak length, valve thickness and seed number per silique had significantly (1%) positive correlation with SSRI.
     1.4There were differences in the valve structures between silique-shatter resistant accession H155and silique-shatter susceptible accession Qva.Compared with Qva, the cells in endopericarp of H155arranged more tightly and the cell wall lignified more seriously, and even the thin-walled cells in mesocarp were lignified and formed thick lignified layer.There were more vascular boundles in the valves of H155, which enhanced the mechanical strength.
     2Influencing factors analysis of silique-shatter resistance in Brassica napus
     2.1Results revealed that genetic differences were the crucial influencing factors of silique-shatter resistance.The SSRI of the same accessions among different replications did not reached to signifficant level. The SSRI of different accessions got to signifficant difference. The SSRI CV of silique from different branches ranged from18.67%to93.57%.Except for Ningyou No.10, siliques from the first branch had the biggest SSRI for other4accessions.The SSRI of siliques from the second branch and other above branches had not significant difference.
     2.2SSRI differed because of siliques from different portions in plants in different accessions, which CV of SSRI ranged from18.67%to93.57%. For most accessions, the siliques from the first branch had the largest SSRI. Siliques from the second branche and upper branches hand similr SSRI.Siliques from middle portion and lower portion had similar SSRI. SSRI of siliques from top portion were less than those from middle and lower portion in inflorescence by55.04%and60.43%, respectively. Siliques from the lowest portion had the largest SSRI.
     2.3There were difference of SSRI changes during dehydration bentwen silique-shatter resistant accessions and silique-shatter susceptible accessions.Compared with silique-shatter resistant accessions, SSRI of silique-shatter susceptible accessions decreased more sharpy. Results implied that water content in silique had linear regression relationship with SSRI (y=0.0149x-0.4779).The coefficient of determination (R2) was0.4284. Consequently SSRI enhanced while water content in silique increased.
     3Technique improvements in isolated microspore culture
     3.1Sampling time was put forward from traditional time (3days after anthesis) to9days before anthesis. Results showed the embryo yields were not significantly different from improved sampling time to that by traditional sampling time.The improved sampling time could increase total sampling time by12days and the total suitable sampling time was doubled.
     3.2In improved sampling method, suitable buds were harvested from donor plants in field and small buds were left to grow up and one donor plant could be used for several times. In addition, buds from the same donor plants had the same genetic background.
     3.313%sugar solution substituted B5medium as extraction solution. Results confirmed that embryo yield with improved extraction solution was not significantly different from that of B5medium. Sugar solution could save reagents and labour for preparation B5medium.
     3.4In the improved microspore incubation procedure, the microspores were directly incubated at32℃in dark till the embryos were visible. Compared with the traditional incubation procedure, the embryos were visible on the tenth day, which decreased the time for embryo visibility by four days.
     4Construction of linkage map and QTLs mapping of silique shatter resistance
     4.1The frequency distributions of SSRI in P1(H155), P2(Qva), F1,F2, BC1F1and BC2F1were continuous.The proportion of silique-shatter susceptible plants in populations of F1, F2, BC1F1and BC2F1were high and no plants had higher nor lower SSRI than those of both parents. The SSRI frequency distributions of ZZ DH lines in Zhengzhou and Wuhan were similiar and they distorted to silique-shatter susceptible parent Qva. The SSRI distribution of ZZ DH lines belong to muliti-normal distrbution and it was continuous. Therefore silique-shatter resistance trait was controlled by quantitative minor-effect additive genes and environmental factors affected it.
     4.2A linkage map with175polymorphic loci and19linkage groups was constructed, which covered1382.8cM and its mean marker interval was7.9cM. The genetic distance of linkage groups ranged from33.5cM to107.7cM and the number of markers in linkage groups varied from4to20.
     4.3QTL analysis of silique-shatter resistance was conducted with composite interval mapping method of Windows QTLCart V2.5software and the mean SSRI in Zhengzhou and Wuhan. Nine QTLs were obtained in Zhengzhou and four QTLs were obtained in Wuhan(LOD>2.0). In Zhengzhou,9QTLs were located in N1, N7, N8, N15and N18linkage groups, respectively. These QTLs could explain49.0%phynotype. There were epistatic interactions among these QTLs and their contribution to phynotype was about45.9%. These QTLs and their epistatic interactions in Zhengzhou could totally explain94.9%variance. In Wuhan,4QTLs were located in N1, N4, N7and N18linkage groups, respectively.These QTLs could explain38.6%phynotype. There were also epistatic interactions among these QTLs and their contribution to phynotype was about12.8%. These QTLs and their epistatic interactions in Wuhan could totally explain51.4%variance.
     4.4There were three QTLs which were detected both in Wuhan and in Zhengzhou. qSSRI2detected in Zhengzhou and qSSRI10detected in Wuhan were all located in N1linkage group and their positions were adjacent. qSSRI4from Zhengzhou and qSSRI12from Wuhan were all located in N7linkage group. Their positions were also adjacent. qSSRI9from Zhengzhou and qSSRI13from Wuhan were located in N18linkage group. Their positions were also adjacent.
     4.5The results of QTL mapping in this study were consistent with the results of association analysis of Raman et al (2011).And the results of Raman et al (2011) aggreed with the findings of a comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica(Jaradat et al.,2010).
引文
1. 王亦菲,陆瑞菊,孙月芳等.大田油菜游离小孢子培养高频胚状体诱导及植株再生.中国农学通报[J],2002,18(1):20-23
    2. 王晓武,方智远,孙培田,刘玉梅,杨丽梅.一个甘蓝显性雄性不育基因的RAPD标记.园艺学报[J],1998,25(2):197-198
    3. 王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报[J],2000,26(5):575-578
    4. 王峰,官春云.甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析.遗传[J],2010,32(3):271-277
    5. 文雁成,王汉中,沈金雄,刘贵华,张书芬.用SRAPs标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学[J],2006,39(2):246-256
    6. 石淑稳,周永明,吴江生,刘后利.甘蓝型油菜小孢子培养、试管苗继代越夏和田间移栽配套技术的研究及其在油菜育种中的应用.中国农学通报[J],2001,17(2):57-59
    7. 卢钢,曹家树,陈杭,向殉.白菜几个重要园艺性状的QTLs分析.中国农业科学[J],2002,35(8):969-974
    8. 刘后利主编.实用油菜栽培学[M].上海:上海科学技术出版社
    9. 刘志文,刘雪平,傅廷栋,涂金星.甘蓝型油菜小孢子培养的胚诱导和加倍效率的研究.华中农业大学学报[J],2005,24(4):339-342
    10.刘春林,官春云,李枸,阮颖,廖晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报[J],2000,27(10):918-924
    11.刘雪平,刘志文,涂金星,陈宝元,傅廷栋.甘蓝型油菜小孢子培养技术的几项改进.遗传[J],2003,25(4):433-436
    12.孙超才,王伟荣,李延莉,钱小芳.适应机械收获的双低油菜新品种沪油17的选育.中国油料作物学报[J],2005,27(3):16-17
    13.何余堂,李殿荣.甘蓝型杂交油菜抗裂角性的初步研究.陕西农业科学[J],1996,3:30-31
    14.李会珍,张志军.油菜抗裂角性研究进展.中国油料作物学报[J],2003,25(1):89-91
    15.吴江生,石淑稳,周永明,刘后利.甘蓝型双低油菜品种华双3号的选育和研究.华中农业大学学报[J],1999,18(1):1-4
    16.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报[J],2003,25(3):79-81
    17.杨立勇,范志雄,杨光圣.甘蓝型油菜小孢子培养中几项技术改进.中国油料作物学报[J],2005,27(1):14-18
    18.张洁夫,戚存扣,栗根义,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜遗传图谱构建与无花瓣性状QTL定位.作物学报[J],2007a,33(8):1246-1254
    19.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜含油量的遗传与QTL定位.作物学报[J],2007b,33(9):1495-1501
    20.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型主要脂肪酸组成的QTL定位.作物学报[J],2008,34(1):54-60
    21.张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报[J],2000,42(5):485-489
    22.沈金雄.甘蓝型油菜杂种优势极其遗传分析.[博士学位论文].武汉:华中农业大学,2003
    23.官春云.甘蓝型油菜小孢子培养和双单倍体育种研究:供体植株和小孢子密度对小孢子培养的影响.作物学报[J],1995,21(6):665-670
    24.易斌,陈伟,马朝芝,傅廷栋,涂金星.甘蓝型油菜产量及相关性状的QTL分析.作物学报[J],2006,32(5):676-682
    25.涂金星,傅廷栋,郑用琏,杨光圣,马朝芝,杨小牛.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫杆基因与可育基因连锁的分子证据.作物学报[J],1999,25(6):669-673
    26.郑少清,朱成,曾广文.油菜角果开裂敏感性形成的研究.浙江大学学报[J]:农业与生命科学版,1999,25(5):462-466
    27.金梦阳,李加纳,付福友,张正圣,张学昆,刘列钊.甘蓝型油菜含油量及皮壳率的QTL分析.中国农业科学[J],2007,40(4):677-684
    28.钟维瑾,方光华.温度对甘蓝油菜花粉胚状体的诱导及其类型的影响.中国油料 [J],1990,3:11-16
    29.顾慧,戚存扣.甘蓝型油菜抗倒伏性状的QTL分析.江苏农业学报[J],2009,25(3):484-489
    30.梅德胜,张垚,李云昌,胡琼,李英德,徐育松.油菜油分、蛋白质和硫甙含量相关性分析及QTL定位.植物学报[J],2009,44(5):536-545
    31.蒲晓斌,蒋良材,张启行,张锦芳.油菜抗裂果性研究简述.植物遗传资源科学[J],2002,3(1):49-54
    32.谭小力,张洁夫,杨莉,张志燕,周佳,姜松,戚存扣.油菜角果裂角力的定量测定.农业工程学报[J],2006,22(11):40-43
    33.蔡长春,傅廷栋,陈宝元,涂金星.甘蓝型油菜遗传连锁图谱的构建及开花期的QTL分析.中国油料作物学报[J],2007,29(1):1-8
    34. Ahmad I, Day JP, MacDonald MV, Ingram DS. Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to Chlorsulfuron and Alternaria brassicicola. Annals of Bot,1991,67:519-521
    35. Alvarez J, Smyth D. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development,1999,126: 2377-2386
    36. Appelovist L A. Lipids in Cruciferae. IV. Fatty acid patterns in single seeds and seed populations of various Cruciferae and different tissues of Brassica napus L. Hereditas,1969,61:9-14
    37. Batley J, Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Kaur S, Li X, Ling AE, Love C et al:Identification and characterization of simple sequence repeat markers from Brassica napus expressed sequences. Mol Ecol Notes,2007,7(5):886-889
    38. Bell CJ, Ecker JR. Assignment of 30 microsatellite loci to the linkage map of Arabodopsis.Genomics,1994,19(1):137-144
    39. Bin H, Sharon B, Roger K, Brian M, Wilf K. Plant regeneration from microspore-derived embryos of Brassica napus:Effect of embryo age, culture temperature, osmotic pressure, and abscisic acid. In Vitro Cellular & Developmental Biology-Plant,2007,27:28-31
    40. Bin H. Genetic manipulation of microspores and micro spore-derived embryos. In Vitro-Plant,2008,28:53-58
    41. Bin H, Sharon B, Roger K, Daina S, Wilf K, Brian M. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep,2004,8:594-597
    42. Bohuvn A J R, keith D J, Parkin I A P, sharpe A G, Lydiate D J. Alignment of the conserved C genomes of Brassica oleracea and Brassiea napus. Theor Appl Genet, 1996,833-839
    43. Bowman J, Baum S, Eshed Y, Putterill J, Alvarez J. Molecular genetics of gynoecium development in Arabidopsis. Current Topics in Developmental Biology,1999, 45:155-205
    44. Brummell D, Harpster M. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology,2001:47,311-340
    45. Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome,1999,42:(3) 387-402
    46. Camargo L E A, Savides L, Jung G, Nienhuis J, Osborn T C. Location of the self-incompatibility loci in an RFLP and RAPD map of Brassica oleracea. J Hered, 1997,88:57-59
    47. Catherine A. Whitelaw, Wyatt Paul, Elizabeth S. Jenkins, Vivien M. Taylor and Jeremy A. Roberts. An mRNA encoding a response regulator protein from Brassica napus is up-regulated during pod development.Journal of Experimental Botany,1999, 50(332):335-341
    48. Chandler, Laurent Corbesier, Patrick, Patrick Spielmann, Josef Dettendorer, Dietmar Stahl, Klaus Apel and Siegbert Melzer.Modulating flowering time and prevention of pod shatter in oilseed rape. Molecular Breeding,2005,15:87-94
    49. Chauvaux N, Child R, John K, Ulvskov P, Borkhardt B, Prinsec E, Van Onckelen H. The role of auxin in cell separation if the dehiscence zone of oilseed rape pods. Journal of Experimental Botany,1997,48:1423-1429
    50. Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F:Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations.Theor Appl Genet,2007,115:849-858
    51. Cheng XM, Xu JS, Xia S, Gu JX, Yang Y, Fu J, Qian XJ, Zhang SC, Wu JS, Liu K: Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118(6):1121-1131
    52. Chevre A M, Barret P, Eber F, Dupuy P. Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg(Leptosphaeria maculans). Ⅰ. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet,1997,95:1104-1111
    53. Cheung W Y, Champagne G, Hubert N, Landry B S. Comparision of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet,1997a,94: 569-582
    54. Cheung W Y, Friensen L, Rakow G F W, Seguin-Swartz G, Landry B S. A RFLP-based linkage map of mustard(Brassica juncea L.) Czern and Coss. Theor Appl Genet,1997b,94:841-851
    55. Child R D, Chauvaux N, John K, Ulvskov P and Van Onckelen H A. Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. Journal of Experimental Botany,1998,49(322):829-838
    56. Child R D, Summers J E, Babij J, Farrent J W, Bruce D M. Increased resistance to pod shatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. Journal of Experimental Botany,2003, 54:1919-1930
    57. Choi S, Teakle G, Plaha P, Kim J, Allender C, Beynon E, Piao Z, Soengas P, Han T, King G et al:The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet,2007,115(6):777-792
    58. Chyi Y S, Hoenecke M E, Sernyk, J L. A linkage map of based on restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome, 1992,35:746-757
    59. Coupe S, Taylor J, Isaac P, Roberts J. Identification and characterization of a proline-rich mRNA that accumulates during pod-development in oilseed rape (Brassica napus L.). Plant Molecular Biology,1993:23,1223-1232
    60. Coupe S, Taylor J, Isaac P, Roberts J. Characterization of an mRNA that accumulates during pod-development in oilseed rape pods. Plant Molecular Biology,1994,24: 223-227
    61. D'Agostino IB, Kieber JJ. Phosphorelay signal transduction:the emerging family of plant response regulators. Trends in Biochemical Sciences,1999,24:452-456
    62. Dal Degan F, Child R, Svendsen I, Ulvskov P. The cleavable N-terminal domain of plant endopolygalactruonases from clade B may be involved in a regulated secretion mechanism. Journal of Biological Chemistry,2001,276:35279-35304
    63. David T, Nikolaus W, Edward U, Keith P, Wilfred K, William S, Ron W, Maurice M, Larry H. Storage-protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta,2004,181:18-26
    64. Davies G C, Bruce D M. Fracture mechanics of oilseed rape pods. J Mat Sci,1997, 32:5895-5899
    65. Dunwell JM, Cornish M, Courcel AGL. Influence of genotype, plant growth temperature and anther Incubation temperature on microspore embryo production in Brassica napus ssp. Oleifera. J. Experimental Bot,1985,36:679-689
    66. Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed (Brassica napus) Ⅱ:localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet,1995,91:972-977
    67. Eric BS, Marc PC, Gerry LB, Jayanti DP, Beversdorf WD. The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep,2004,7:83-87
    68. Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y:Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet,2010,121(7):1289-1301
    69. Fan Z, Armstrong KC, Keller WA. Development of microspores in vivo and in vitro in Brassica napus L. Protoplasma,2005,147:191-199
    70. Ferrandiz D E, Heck G R, Perry S E, Patterson S E, Bleeker A B, Fang S C. The embryo MADS domain factor AGL15 acts post-embryonically. Inhibition of perianth senescence and abscission via constitutive expression. The Plant Cell,2000 a,12: 183-98
    71. Ferrandiz C, Liljegren S, Yanofsky M. FRUITFULL negatively regulates the SHATTERPROOF genes during Arabidopsis fruit development. Science,2000 b,289: 436-438
    72. Ferrandiz C, Pelaz S, Yanofsky MF.1999. Control of carpel and fruit development in Arabidopsis. Annual Reviews in Biochemistry,1999,68:321-354
    73. Ferreira M E, Williams P H and Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet,1994,89:615-621
    74. Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet,1995a,90:727-732
    75. Ferreira M E, Williams P H, Osborn T C. Mapping of a loci controlling resistance to Alvugo candida in Brassica napus using molecular markers. Phytopathology,1995b, 85:218-220
    76. Flanagan CA, Hu Y, Ma H. Specific expression of the AGLIMADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. The Plant journal,1996,10:343-353
    77. Foisset N, Delourme R, Barret P, Renard M. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet,1995,91:756-761
    78. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet,1996,93:1017-1025
    79. Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D. From Arabidopsis thaliana to Brassica napus:development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet,2002,107(8), 1196-1206
    80. Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN: Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome,2007,50:840-854
    81. Garlicka, W. Wstepne Badania nad Anatomia Pekajacych I Trudno Pekajacych Luszczyn Rzepaku. Hodowla Roslin, Aklimatyz. Nasiennictwo,1961,5:233-256
    82. Gonzalez-Carranza Z, Lozoya-Gloria E, Roberts J. Recent developments in abscission:shedding light on the shedding process. Trends in Plant Science, 1998,3:10-14
    83. Gu HH, Hagberg P, Zhou WJ. Cold pretreatment enhances microsporegenesis in oilseed rape (Brassica napus L.). Plant Growth Regul,2004,42:137-143
    84. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis, encodes a bHLH protein. Development,1998,125:1509-1517
    85. Hafizur R, Krishnaraj S, Trevor AT. Selection for salt tolerance in vitro using microspore-derived embryos of Brassica napus cv. topas, and the characterization of putative tolerant plants. In Vitro Cellular & Developmental Biology-Plant,2007,31:116-121
    86. Hallorn G M, Collins W J. Physiological predetermination of the order of breakdown of hardseededness in subterranean clover (Trifolium subterraneum L.). Annual Botany,1974,38:1039-1044
    87. Heisler M, Atkinson A, Bylstra Y, Walsh R, Smyth D. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development,2001,128:1089-1098
    88. Henrissat B, Coutinho P, Davies G. A census of carbohydrate-active enzymes in the genome of Arabdopsis thaliana. Plant Molecular Biology,2001,47:55-72
    89. Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S. A novel loci for club root resistance in Brassica rapa and its linkage markers. Theor Appl Genet, 2004,108:639-643
    90. Hoag, D.L. Determination of the susceptibility of soybeans to shatter. Transactions of the A.S.A.E,1975,18(6):1174-1179
    91. Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape(Brassica napus). Genome,2003,46:454-460
    92. Hu J, Li G, Struss D, Quiros C F. SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed(Brassica napus). Plant Breed,1999,118:145-150
    93. Hu J, Sadowski J, Osborn T C Landry B S, Quiros C F. Linkage group alignment from four independent Brassica oleracea RFLP maps. Genomes,1998,41:226-235
    94. Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC:Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet,2009,120(1):31-43
    95. Iva S, Martina V, Miroslav K, Ivana M, Miroslav G. Efficiency of microspore culture for doubled haploid production in the breeding project "Czech winter rape". Czech J. of Genetics and Plant Breeding,2006,42:58-72
    96. Jan C, Jan C, Yvonne N, Hans D, Michiel LC. Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep,2004,13:267-271
    97. Jakubiec J, Grochowski L. Polowa i laboratoryjna ocena odpornosci dwoch odmian rzepaku jarego na pekanie luszczyn. Zesz. NaukSGGW-Rolnictwo,1963,7:49-65
    98. Janeja H S, Banga S S, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility in Brassica napus. Thero Appl Genet,2003,107:148-154
    99. Jaradat M R, Ruegger M, Bowling A, Butler H, Sun Y, Skokut T and Cutter A. A comparative transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integerating genotypic, interspecies and developmental comparisions.Proceeding of the 17th Crucifer Genetics Workshop, Sep 5-9th,2010, Saskatoon, Canada, pp:103
    100. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for 'Polima' cytoplasmic male sterility in canola(Brassica napus L.) using DNA markers. Theor Appl Genet,1997,95:321-328
    101. Jean M, Brown G G, Landry B S. Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the'Polima'CMS of canola (Brassica napus L.). Theor Appl Genet,1998,97:431-438
    102. Jenkins E, Paul W, Coupe S, Bell S, Davies E and Roberts J. Characterization of an mRNA encoding a polyalacturonase expressed during pod development in oilseed rape(Brassica napus L.). Journal of Experimental Botany,1996,47:111-115
    103. Jenkins E, Paul W, Craze M, Whitelaw C, Weigand A, Roberts J. Dehiscence-related expression of an Arabidopsis thaliana gene encoding a polygalacturonase in transgenic plants of Brassica napus. Plant, Cell and Environment,1999,22:159-167
    104.Jiaqin Shi, Ruiyuan Li, Dan Qiu, Congcong Jiang, Yan Long, Colin Morgan, Ian Bancroft, Jianyi Zhao and Jinling Meng.Unraveling the complex trait of crop yield with qutanitative trait loci mapping in Brassica napus.Genetics,2009,182(3):851-861
    105. Jinn T, Stone J, Walker J. HAESA, an Arabidopsis leucinerich repeat receptor kinase, controls floral organ abscission. Genes and Development,2000,14,108-117
    106.Josefsson E. Investigations on shattering resistance of cruciferous oil crops. Z Pflanzenzuchtg,1968,59:384-396
    107. Johnso-Flanagan A M, Spencer M S. Ethylene production during development of mustard (Brassica juncea) and canola (Brassica napus) Seed.Plant physiology, 1994,106:601-606
    108.Kadkol G P, Macmillan R H, Burrow R P, Hallooran G M. Evaluation of Brassica genotypes for resistance to shatter:Ⅰ. Development of a laboratory test. Euphytica, 1984,33:63-73
    109. Kadkol G P. Brassica shatter-resistance research update.In:Proceedings of the 16th Austrialian Research Assembly on Brassicas Confereence, Bllarat Victoria.14-16 September,2009,pp.104-109
    110. Kadkol G P, Macmillan R H, Burrow R P and Halloran G M. Evaluation of Brassica genotypes for resistance to shatter. II.Variance in siliques strength within and between accessions. Euphytica,1985,34:915-924
    111.Kadkol G O, Beilharz V C and Halloran G M. Anatomical Basis of Shatter Resistance in Rapeseed and Mustard. Aust. Plant Breed. Conf.1983, Adelaide, South Australia
    112.Kerarsey M J. Higher recombination frequencies in female compared to male meiosis in Brassica oleracea. Theor Appl Genet,1996,92:363-367
    113.Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet,1992,84:544-554
    114. Kim H, Choi SR, Bae J, Hong CP, Lee SY, Hossain MJ, Van Nguyen D, Jin M, Park BS, Bang JW et al:Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009,10:432
    115.Klima M, Vyvadilova M,Kucera. Production and utilization of doubled haploids in Brassica oleracea vegetables. Horticultural Sci,2004,31:119-123
    116. Kohler C, Merkle T, Roby D, Neuhaus G. Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Plant cell,2001,213:327-332
    117. Konishi T, Abe K,Matsuura P,yano Y. Distored segregation of the esterase isozyme genotypes in bayley(Hordeum vulgare L.). Jpn J Genet,1990,65(6):411-416
    118.Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR:Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theoretical and Applied Genetics 1995,91(2):206-211
    119. Lagercrantz U, Lydiate D J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meiosis. Genome,1995,38:255-264
    120. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228
    121.Landry B S, Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552
    122.Landry B S, Hubert N, Crete R, Chang M S, Lincoln S E, Etho T. Agenetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome,1992,35:409-420
    123. Laurie B, Stephen Y, Bin H. Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp.Oleifera. Plant Cell Rep,2004,11:215-218
    124. Leng Q, Mercier R, Yao W, Berkowitz G. Cloning and first functional characterization of a plant cyclic nucleotide cation channel. Plant Physiology,1999, 121:753-761
    125. Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K: Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in<i>Brassica oleracea</i>. Molecular Breeding 2010:1-12
    126. Li Xin, Daniel Renshaw, Huaan Yang, Guijun Yan.Development of a co-dominant DNA marker tightly linked to gene tardus conferring reduced pod shattering in narrow-leafed lupin (Lupinus angustifolius L.).Euphitica,2010,176:49-58
    127. Li Y, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C:QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Australian Journal of Agricultural Research,2007,58(8):759
    128. Lichter R. Induction of haploid plants from isolated pollen of Brassica napus L. Pflanzenphysiol,1982,105:427-734
    129.Liljegen S J. SHATTERPROOF MADS -box genes control seed dispersal in Arabidopsis. Nature,2000,404:766-770
    130.Liljegren S, Ditta G, Eshed Y, Savidge B, Bowman J, Yanofsky M. Control of fruit dehiscence in Arabidopsis by the SHATTERPROOF MADS-box genes. Nature, 2000a,404:766-769
    131.Liljegren S, Kempin S, Chen A, Roeder A, Guimil S, Khammungkhune T, Yanofsky M. A bHLH gene, IN DEHISCENT1, is required for fruit dehiscence and mediates the fruitfull phenotype. In:11th International conference on Arabidopsis research. Madison,2000b, WI. USA:University of Madison Press
    132.Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M. Improved microspore culture and doubled-haploid plant regeneration in the brown condiment mustard (Brassica juncea). Plant Cell Rep,2001,20:126-130
    133.Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard(Brassica juncea). Genome,2002,45(6):1203-1215
    134. Lishter R.Induction of haploid plant from isolated pollen of Brassica napus L. Pflanzenphysiol,1982,105:427-434
    135.Lyttle TW.Segregation distors.Annu Rev Genet,1991,25(2):511-557
    136. Liu Liezhao, Meng Jinling,Lin Na, Chen Li,Tang Zhanglin,Li Jiana. QTL mapping of seed coat color for yellow seeded Brassica napus. 遗传党报[J], 2006,33(2):181-187
    137. Liu Xueping, Tu Jinxing, Liu Zhiwen, Chen Baoyuan, Fu Tingdong. Construction of a molecular marker linkage map and its use for QTL analysis of erucic acid content in Brassica napus L. 作物学报[J],2005,31(3):275-282
    138. Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet,2001,103:491-507
    139. Loof B. Platzfestigkeit als zuchtproblem bei olipflanzen der familie Cruciferae. Zeitschlift fur Planzenzuchtung,1961,46:405-416
    140. Loof B, Jonsson R. Results of investigations on resistance to shedding in rape. Sveriges Utsadesforesnings Tidskrif,1970,80:193-205
    141. Lowe AJ, Moule C, Trick M, Edwards KJ:Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics 2004,108(6):1103-1112
    142. Lu G. Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed(Brassica napus). Plant Breed,2004,123 (3):262-265
    143.Lutman P.J. The occurrence and persistence of volunteer oilseed rape (Brassica napus). Aspects of Applied Biology,1993,35:29-36
    144.Mandel MA, Yanofsky MF. 1995. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristens and is negatively regulated by APETALA1. The Plant Cell,7:1763-1771
    145.Manzanares-Dauleux M J, Delourme E, Baron F. Mapping of one major gene and of QTLs involved in resistance to club root in Brassica napus. Theor Appl Genet,2000, 101:885-891
    146. Mao L, Begum D, Chung H, Budiman M, Szymkowiak E, Irish E, Wing R. JOINTLESS is a MADS box gene controlling flower abscission zone development. Nature,2000,406:910-913
    147. Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG:Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea.Theor Appl Genet,2006,113:1211-1220
    148.Matsumoto E, Yasui C, Ohi M, Tsukada M. Linkage analysis of RFLP markers for club root resistance and pigmentation in Chinese cabbage (Brassica rapa ssp Pekinensis). Euphytica,1998,104:79-86
    149.Meakin P.1988. The physiology of bud abscission and pod shatter in oilseed rape (Brassica napus L.). PhD thesis. University of Nottingham
    150. Meakin P, Roberts J. Induction of oilseed rape pod dehiscence by Dasineura brassica. Annals of Botany,1991,67:193-197
    151. Meakin P, Roberts J. Dehiscence of fruit in oilseed rape(Brassica napus L.):Ⅰ. Anatomy of pod dehiscence. Journal of Experimental Botany,1990a,41:995-1002
    152. Meakin P, Roberts J. Dehiscence of fruit in oilseed rape (Brassica napus L.):Ⅱ. The role of cell wall degrading enzymes. Journal of Experimental Botany,1990b,41: 1003-1011
    153. Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC:QTL analysis on plant height and flowering time in Brassica napus. Plant Breeding,2009,128(5):458-465
    154.Mongkolporn O, Kadkol G P, Pang E C K, Taylor P W J. Identification of RAPD markers linked to recessive genes conferring siliques shatter resistance in Brassica rapa. Plant Breed,2003,122:479-484
    155. Morgan C L, Adbroode Z L, Bruce D M, Child R, Arthur A E. Breeding oilseed rape for shattering resistance. Journal of Agricultural Sciences, Cambridge,2000, 135:347-359
    156. Morgan C L, Bruce D M, Child R, Ladbrooke Z L, Arthur A E. Genetic variance for pod shatter resistance among rape developed from synthetic B. napus. Field Crops Research,1998,58:153-165
    157.Murayama S, Habuchi T, Yamagishi H, Terachi T. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis. Euphytica,2003,129 (1):61-68
    158. Murray MG, Thomson WE Rapid isolation of weight DNA. Nucleic Acid Res,1980,8(19):4321-4326
    159.Nemhauser J, Feldman L, Zambryski P. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development,2000,127:3877-3888
    160.Nitsch C, Nitsch JP. The induction of flowering in vitro in stem segments of Plubago indica L. Planta,1967,72:355-370
    161.Nozaki T, Kumzaaki A, Koba T. Linkage analysis among loci for RAPD, isozymes and some agronomic traits in Brassica campestris. Euphytica,1997,95:115-123
    162. Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M:Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet,2007,114:595-608
    163. Oplinger E S, Hardman L L, Gritton E T, Doll J D, Kelling K A. Alternative field crops manual, canola (rapeseed). Ext. Bull. Nov.1989. University of Winscosin, Madison, WI
    164. Orr W, Johnson AM, Keller WA, Singh J. Induction of freezing tolerance in micro spore-derived embryos of winter Brassica napus. Plant Cell Rep,2004,8: 579-581
    165.Osborn T C, Kole C, Parkin I A, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics,1997,146(3):1123-1129
    166.Panjabi P, Jagannath A, Bisht N, Padmaja KL,Sharma S, Gupta V, Pradhan AK, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113
    167. Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995,38: 1122-1131
    168. Patterson S. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiology,2001,126:494-500
    169.Pechan PM, Keller WA. Induction of microspore embryogenesis in B. napus L. by gama irradiation and ethanol stress. In Vitro Cell Dev-pl,1989,25:1037-1074
    170.Pechan PM, Smykal P. Androgenesis:Affecting the fate of the male gametophyte. Physiol Plant,2001,111:1-8
    171.Pechan PM.Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep,2004,8:387-390
    172. Peterson M, Sander L, Child R, van Onckelen H, Ulvskov P, Borkhardt B. Isolation and characterization of a pod dehiscence zone-specific polygalacturonase from Brassica napus. Plant Molecular Biology,1996,31:517-527
    173.Piao Z Y, Deng Y Q, Choi S R, Park Y J, Lim Y P. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage {Brassica rapa ssp. pekinensis).Theor Appl Genet,2004,108:1458-1465
    174.Picart J A, Morgan D G. Pod development in relation to pod shattering. Aspect Appl. Biol.,1984,6:101-110
    175.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P:Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 2005,111(8):1514-1523
    176. Pilet M L, Delourme R, Foisset N, Renard M. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998,97:398-406
    177.Pinyopich A, Ditta G, Yanofsky M. Roles of SEEDSTICK MADS-box gene during ovule and seed development. In:12th International conference on Arabidopsis research.2001, Madison, WI, USA:University of Wisconsin Press
    178.Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet,2003,106:607-614
    179. Prince J.S., Hobson R.N., Neale M.A.,Bruce D.M. Seed losses on commercial harvesting of oilseed rape. Journal of Agricultural Engineering Research, 1996,65:183-191
    180. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E et al:A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics,2006,114(1):67-80
    181. Quick, GR. A quantitative shatter index for soybeans. Expl. Agric.,1974,10: 149-158
    182.Quijada PA, Udall JA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):1. Identification of genomic regions from winter germplasm. Theor Appl Genet,2006, 113:549-561
    183. Rai U K, Nair G G. Breeding value of radiation induced morphological mutants of B juncea L. Indian oilseeds Journal,1959,3(4):237-244
    184. Rajani S, Sundaresan V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology,2001,11:1914-1922
    185.Rajcan I, Kasha K J, Kott LS and Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed(Brassica napus L.). Euphytica,1999,105:173-181
    186. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK. Mapping of yield influencing QTL in Brassica juncea:implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet,2007,115:807-817
    187. Radoev M, Becker HC, Ecke W:Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics,2008,179(3):1547-1558
    188. Ramsay L D. The construction of substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative loci. Genome,1996, 39:558-567
    189. Ranman R, Ranman H, Kadkol G, Combes N, Taylor B and Luckett D. Genome-wide association analyses of loci for shatter resistance in Brassicas. In Proceedings of the 17th Austrialian research assembly on Brassicas, Wagga Wagga, NSW,Austrialia,pp:36-41
    190. Roberts J A, Whitelaw CA, Gonzalez-Carranza ZH, McManus MT. Cell separation processes in plants:models, mechanisms and manipulation. Annuals of Botany,2000, 86:223-235
    191. Roberts J A, Elliot K A, Gonzalez-Carranza Z A. Abscission, dehiscence, and other cell separation processes. Annual Reviews in Plant Physiology and Plant Molecular Biology,2002,53:131-158
    192.Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G, Manzanares-Dauleux M J. Isolate-specific and broad-spectrum QTLs are involved in the control of club root in Brassica oleracea. Theor Appl Genet,2004,108: 1555-1563
    193.Roeder AHK, Liljegren SJ, Eshed Y, Bowman JL, Alonso JM, Ecker JR, Yanofsky MF.2001.Enhancer trap lines YJ161 and YJ115 are expressed in the developing fruit. In:12th International conference on Arabidopsis research. Madison, WI, USA: University of Wisconsin Press
    194. Roy N N. A Method of rating for shattering resistance in Brassica napus. Aust. Plant Breed. Conf.1983, Adelaide, South Australia
    195.Rudko T. Proba zastosowania testu zginania do oceny podatnosciluszczyn rzepaku jarego na pekanie.Acta Agrophysica,2000,37:193-198
    196.Rudko T., Piekarz J., Lamorski K. Device for evaluation of the rape pods cracking susceptibility. Physics, chemistry and biogeochemistry in soil and plant studies. Institute of Agrophysics PAS, Lublin,2004,120-121
    197. Sabry G. Elias and Larry O. Copeland. Physiological and Harvest Maturity of Canola in Relation to Seed Quality. Agronomy Journal,2001,93:1054-1058
    198. Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape(Brassica napus) and Arabidopsis thaliana:evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Molecular Biology,2001,46: 469-479
    199. Savidge B, Rounsley SD, Yanofsky MF. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell,1995,7:721-733
    200. Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape(Brassica napus L). Theor Appl Genet,2002,101:897-901
    201.Seiki S, Norio K, Sumrio.Effect of low temperature pretreatment of buds or inflorescence on isolated micropore culture in Brassica rapa (syn. B. campestris). Breeding Science,2002,52:23-26
    202. Sessions A, Nemhauser J, McColl A, Roe J, Feldmann K, Zambryski P. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development, 1997,124:4481-4491
    203.Sharpe A G, Parkin I A P, Keith D J, Lydiate D J. Frequent on reciprocal translocations in the amphidiploids genome of oilseed rape(Brassica napus). Genome,1995,38:1112-1121
    204.Shengchu Wang, C.J. Basten, P.C. Gaffney and Z.B. Zeng. Windows QTL Cartographer 2.5.Bioinformatics Research Center, North Carolina University, Raleigh, N.C.,2005
    205. Slocum M K, Figdore S S, Kennard W C, Suzuki J Y, Osborn T C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor Appl Genet,1990,80:57-64
    206. Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. The Plant Cell,1990,2:755-767
    207. Smith LB, King GJ:The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Molecular Breeding,2000,6(6):603-613
    208. Soengas P, Hand P, Vicente JG, Pole JM, Pink DA:Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet,2007,114:637-645
    209. Song K M, Suzuki J Y, Slocum M K, Williams P H, Osborn T C. A linkage map of Brassica rapa (syn.Campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet,1991,82:296-304
    210. Spence J V Y, Gates P, Harris N. Pod shatter in Arabidopsis thaliana, Brassica napus and B. juncea. Journal of Microscopy,1996,181:195-203
    211.(?)stergaard L, Roeder A, Liljegren S, Eshed Y, Bowman J, Alonso J, Ecker J, Yanofsky M.2001. Enhancer traps lines with GUS expression in developing Arabidopsis fruits. In:the 12th International conference on Arabidopsis research. Madison, WI, USA:University of Wisconsin Press
    212.0stergaard L, Kempin S A, Bies D, Klee H J, Martin F,Yanofsky M. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnology Journal,2006,4(1):45-51
    213.Stackelberg M von, Lindemann S, Menke M, Riesselmann S, Jacobsen H J. Identification of AFLP and STS markers closely linked to the def loci in pea. Theor Appl Genet,2003,106:1293-1299
    214. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssed R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes and Development,1995,9:1797-1810
    215. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S:Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana:The genetic origin of clubroot resistance. Genetics 2006,173(1):309-319
    216. Szot B, Tys J. Metodica badan mechanicznych wlasci luszczyn i lodyg rzepaku.Zesz. Probl. Post. Nauk Roln..1987,321:193-202
    217. Szot B, Tys J. The influence of the SPODAM DC preparation on agro-physical properties of rape silique and seed losses at maturation and harvest. In:Proceedings of the 8th International Rapeseed Congress, Saskaton, Canada,1991a,1272-1277
    218. Szot B, Tys J, Szpryngiel M, Grochowica M. Determination of the reasons for rapeseed losses at combine harvesting and some methods of their limitation. Zeszyty problemowe postepow nauk rolniczych,1991 b,389:221-232
    219. Szymkowiak E, Irish E. Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. The Plant Cell,1999,11:159-175
    220. Takahata Y, W.Brown DC, Keller WA. Effect of donor plant age and inflorescence age on microspore culture of Brassica napus L. Euphytica,2004,58:51-55
    221.Takanori S, Takeshi N, Masashi H. Plant regeneration from isolated microspore cultures of Chinese cabbage (Brassica campestriss pp. pekinensis). Plant Cell Rep, 2004,8:486-488
    222. Tanhuanpaa P. Identification and mapping of resistance gene analogs and a white rust resistance loci in Brassica rapa ssp. Oleifera. Theor Appl Genet,2004,108: 1039-1046
    223. Thompson K F, Hughes W G. Breeding varieties. In:Scarisbrick D H, Daniels R W (Editors), Oilseed rape.1986, Collins Professional and Technical, pp.32-82
    224. Thurling, N. Application of the ideotype concept in breeding for higher yield in oilseed brassica. Field Crops Research,1991,26:201-219
    225. Timothy M. Squices, Marco L.H. Gruwel, Rong Zhou, Shahab Sokhansanj, Suzanne R. Abrams, and Adrian J. Cuter. Dehydration and dehiscence in siliques of Brassica napus and Brassica rapa. Canadian Journal of Botany,2003,81:248-254
    226. Tomaszewska Z. Badania Morfologicznei Anatomiczne Luszczyn kilku Odmian Rzepaku i Rzepiku Ozimego Oraz Przyczyny i Mechanizm ich Pekania. Hodowla RoslinAkimatyz. Nasiennictwo,1964; 8:147-180
    227.Tomaszewski, Z.& I. Koczowska. Metoda hodowli rzepiku ozimego TK-67. Biuletyn Institutu Hodowli IAklimatyzacji Roslin,1971,5:73-75
    228.Touraev A, Vicente O, Heberle-Bors E. Initiation of embryogenesis by stress. Trends Plant Sc,.1997,2:297-302
    229. Truco M J, Quiros C F. Structure and organization of the B genome based on a linkage map in Brassica nigra. Theor Appl Genet,1994,89:590-598
    230. Tys J, Bengtsson L. Estimation of rape silique resistance to cracking and rapeseed shattering resistance for some selected varieties and lines of spring rape. In: Proceedings of the 8th International Rapeseed Congress, Saskaton, Canada,1991. pp 18-48
    231. Tys J. An evaluation of the mechanical properties of winter rape siliques in respect of their susceptibility to cracking. Zeszyty problemowe postepow nauk rolniczych, 1985,304:185-194
    232.Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):2. Identification of alleles from unadapted germplasm.Theor Appl Genet,,2006,113: 597-609
    233.Uzunova M, Ecke W, Weissleder K, Robbelen G. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet,1995,90:194-204
    234.Uzunova MI, Ecke W:Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breeding,1999,118(4): 323-326
    235. Van Ooijen J, Voorrips R:JoinMap(R) 3.0, Software for the calculation of genetic linkage maps.Plant Research International, Wageningen, The Netherlands 2001:1C51
    236.Varshney A, Mohapatra T, Sharma R P. Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet, 2004,109:153-159
    237.Venkateswari J, Kanrar S, Kirti P B, Malathi V G, Chopra V L. Molecular cloning and characterization of FATTY ACID ELONGATION1 (BjFAEl) gene of Brassica juncea. J Plant Biochem Biotechnol,1999,8(1):53-55
    238. Voskerusa, J. Zvyresenych vyzkumnych ukolu v odvetvi olejnin. Vestnik Ceskoslovenske Akademie Zemedelskie,1971,18 (12):538-541
    239. Wang R, Ripley V L, Rakow G. Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed,2007, 126(6):588-595
    240. Wang S, Basten C, Zeng Z:Windows QTL Cartographer 2.5 Available at http:// statgen. ncsu. edu/qtlcart. WQTLCart htm (verified 5 Apr 2011) 2007
    241. Weeks S A, Wolford J C, Kleis E W. A tensile testing method for determining the tendency of soybean pods to dehisce. Trans. ASAE,1975,18,471-474
    242. Wen Jing, Yi Bin, Qi LiPing, Pu Yuan Yuan, Shen JinXiong, Ma ChaoZhi, Tu JinXing, Fu TingDong, Zeng XinHua, Zhu LiXia, Chen YanLi. Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. Theor Appl Genet,2011,122(2):421-428
    243. Whitehead R, Wright HC. The incidence of weeds in winter oilseed rape in Great Britain. Aspects of Applied Biology,1989,23:211-218
    244. Whitelaw C, Paul W, Jenkins E, Taylor V, Roberts J. An mRNA encoding a response regulator protein from Brassica napus is up-regulated during plant development. Journal of Experimental Botany,1999,50:335-341
    245.Xiaomao Cheng, Jinsong Xu, Shu Xia, Jianxun Gu,Yuan Yang, Jie Fu, Xiaoju Qian, Shunchang Zhang, Jiangsheng Wu, Kede Liu. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118(6):1121-1131
    246. Xu F S, Wang Y H, Meng J. Mapping boron efficiency gene(s) in Brassic napus using RFLP and AFLP markers. Plant breed,2001,120:319-324
    247. Xu JS, Qian XJ, Wang XF, Li RY, Cheng XM, Yang YA, Fu J, Zhang SC, King GJ, Wu JS et al:Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics,2010,11:594
    248. Yang DG, Seppo P. High-frequency embryogenesis in Brassica campestris microspore culture. Plant Cell, Tissue and Organ Cult,2006,46:219-225
    249. Yoshihito T, Hisashi K, Norihiko K. Microspore culture of radish (Raphanus sativus L.):influence of genotype and culture conditions on embryogenesis. Plant Cell Rep, 2005,16:163-166
    250. Young T, Gallie D. Programmed cell death during endosperm development. Plant Molecular Biology,2000,44,283-301
    251. Yu IC, Parker J, Bent AF. Gene-for-disease resistance without the hypersensitive response in Arabidopsis dndl mutant. Proceeding of the National Academy of Sciences,1998,USA95:7819-7824
    252.Zaki M, Dickinson H. Modification of cell development in vitro-the effect of colchicines on anther and isolated microspore culture in Brassica napus. Plant Cell, Tissue and Organ Cult,1995,40:255-270
    253.Zeng XH, Wen J, Wan ZJ, Yi B, Shen JX, Ma CZ, Tu JX, Fu TD. Effects of Bleomycin on microspore embryogenesis in Brassica napus and detection of somaclonal variance using AFLP molecular markers. Plant Cell, Tiss Organ Cult, 2010,101:23-29
    254. Zhang L, Yang G, Liu P, Hong D, Li S, He Q:Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet,2011,122(1):21-31
    255. Zhao JP, Simmond DH, Newcomb W. High frequency production of doubled haploid plants of Brassica napus cv. Topas derived from colchicines-induced microspore embryogenesis without heat shock. Plant Cell Rep,1996,15:668-671
    256. Zhao J, Meng J. Detection of loci controlling seed gulcosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed,2003a,122: 19-23
    257. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia Sclerotioram in rapeseed(Brassica napus L.). Theor Appl Genet,2003b, 106:759-764
    258. Zhao JP, Simmond DH, Newcomb W. Induction of embryogenesis with colchicines instead of heat in microspores of Brassica napus L. cv. Topas. Planta,2004, 198(3):433-439
    259.Zhao Jianyi, Becker Heiko, Ding Houdong, Zhang Yaofeng, Zhang Dongqing, Ecke Wolfgang. QTL of three agronomically important traits and their interactions with environment in a European×Chinese rapeseed population遗传学报[J],2005,32(9):969-978
    260. Zhou WJ, Tang GX, Hagberg P. Efficient production of doubled haploid plant by immediate colchicines treatment of isolated microspores in winter Brassica napus. Plant Growth Regul,2002,37:185-192