由高产木质纤维素酶的海洋微生物组成的双菌种固定化体系的构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菌丝球由于具有一定的机械强度、多孔网状、表面光滑均匀的独特结构特征,因此被作为一种新型的生物质载体而备受关注。以菌丝球作为固定化微生物的新型生物质载体,采用混合菌种固定化技术,形成固定化菌丝球,建立多菌种共生的微生态环境,使各种固定化微生物协同发挥作用,极大地扩展了微生物在环境生物技术领域的应用范围。本研究以本实验室筛选获得的两株具有木质纤维素降解能力的海洋真菌为基础,构建了一种新型的双菌种固定化体系---固定化菌丝球,并对该体系在造纸废水处理中的应用进行初探,取得了如下的结果:
     首先从我国浙江东部沿海海域采集到的样品中初步分离出8株具有纤维素降解活力的真菌,筛选出25株具有木质素降解活力的真菌。经过进一步复筛,分别获得一株能产较高纤维素酶的菌株和一株能产较高漆酶的菌株。经菌落形态鉴定以及rDNA-ITS序列鉴定,能产较高纤维素酶的海洋真菌鉴定为微紫青霉属(Penicillium janthinellum),并命名为P1;另一株产较高漆酶的海洋真菌鉴定为内生拟盘多毛孢菌属(Pestalotiopsis sp.),并命名为J63。
     第二,鉴于文献中有关内生拟盘多毛孢菌产漆酶的研究报道很少,因此本文对海洋内生拟盘多毛孢菌J63产漆酶进行了较为全面的发酵性能考察。重点考察了培养基的组成(碳源、氮源的种类,不同铜离子浓度以及铜离子的加入时间、不同盐浓度)、培养条件(温度,起始pH)以及外加诱导剂等对产漆酶的影响。实验结果表明在最优的发酵条件下,可得到漆酶酶活5719.7U/L,要高于许多真菌产漆酶的能力。而且该菌株具有广域耐盐性,因此是一株非常具有竞争力的产漆酶菌株。
     第三,为了充分利用废弃资源,重点选用了7种农业废弃物(稻草粉、麸皮、水葫芦、甘蔗渣、豆荚粉、玉米芯和柚子皮)为底物进行固体发酵生产漆酶,其中水葫芦更是被称为全球十大害草之一。实验结果表明J63菌株利用农业废弃物生产漆酶的潜力巨大,其中以稻草粉发酵产漆酶的能力最强,其次为水葫芦,实现了环境友好型高效低成本生产漆酶。
     第四,通过紫外诱变和离子注入诱变对J63菌株进行菌种改造,经过初筛和复筛,得到两株正突变菌株A6和B21,其第5天产酶酶活比出发菌株J63分别提高了38.4%和35.5%。而且,菌株A6在耐热性与耐盐性上都有显著提高,酶活分别为出发菌株J63的5-6倍,这将为菌株A6在未来的实际工业应用中创造非常有利的条件。
     第五,海洋真菌微紫青霉菌P1在一定的液体培养条件下能够形成具有空间网状结构的菌丝球。本研究以菌丝球为载体,通过包埋固定化方法将海洋真菌内生拟盘多毛孢菌J63孢子进行固定,构建了一种新型双菌种全细胞固定化体系。此体系既具有纤维素降解能力,同时还具有木质素降解能力。通过正交试验设计,得到了最优的固定化条件:P1菌丝球的量为10g(湿重);J63孢子浓度为2×109个/mL;共固定化时间为2d。
     第六,考察了固定化菌丝球对造纸废水进行生物处理的影响效果,重点研究了不同浓度外加碳源、不同浓度外加氮源、固定化菌丝球用量、温度和初始pH的影响。实验表明,固定化菌丝球可以非常有效地对造纸废水进行生物处理,在10h的处理时间内,生物降解率达到99%以上。而且,经过6批次的循环处理使用,生物降解率仍高达96.4%。表明固定化菌丝球可以较长时间地维持活性,持续、高效地处理废水。在废水处理的过程中,发现菌丝球出现再生长现象。经过6批次废水处理后的固定化菌丝球直径有3.7mm,是未经废水处理的固定化菌丝球直径的1.6倍。经固定化菌丝球处理过的废水由原本呈深绿色、浑浊不清、含有大量细微的不溶性纤维样物质、有恶臭的水变成了无色、澄清、无异味的水。
     最后,将固定化菌丝球和P1菌丝球分别应用于处理模拟染料废水的脱色研究。在脱色培养10d后,两者都能有效地对染料进行脱色,固定化菌丝球的脱色率比P1菌丝球的脱色率高出近20%。再一次证明了,这种新型的共固定化体系在实际的工业应用中比单纯的菌丝球生物处理具有更加优越的性能,应用范围更加广泛。
It is noteworthy that mycelia pellet possesses a unique structural characteristic, poly-porous network and high surface area, which has been noticeably exploited as a new kind of biological carrier. Using the mycelium pellet as a biological carrier in the immobilized microorganisms, the resulting immobilized pellet has been formed by adopting the "mixed bacteria self-immobilization technology", which establishes a micro-ecology environment made up of mixed bacteria group in a small community, in order that letting all kinds of immobilized microorganisms play their roles together. This sort of immobilized pellet has greatly expanded its appliance in the wastewater treatment. In our research, two strains of marine-derived fungi, isolated by ourselves, which can secrete lignocelluloses, were utilized to construct a novel two-specie whole-cell immobilization system, then applied this system into wastewater treatment.
     Firstly, we isolated and screened25strains of fungi which are of the capability of degradation of lignin, and8strains of fungi capable to degrade cellulose from sediment, sea-grass and sea-mud samples collected from East China Sea. After further round of screen, a pure culture which secreted higher laccase and another pure culture which produced higher cellulase were picked out. Through the identification of colony morphology and rDNA-ITS, the strain which secreted higher laccase was identified as Pestalotiopsis sp. and named it J63; another strain produced higher cellulase was identified as Penieillium janthinellum, named it P1.
     Secondly, to the best of our knowledge production of laccase by Pestalotiopsis sp. was rarely documented. So, this work primarily investigated comprehensively the fermentation properties of marine-derived fungus Pestalotiopsis sp. J63, mainly focusing on the effect of production of laccase by the components of medium (including carbon source, nitrogen source, Cu2+concentration, different salinities etc.), cultivation condition (including temperature, initial pH) and extra-added inducers. Results showed that under the optimum fermentation condition the capability of producing laccase can reach at5719.7U/L, which is superior to other fungi's capability. Additionally, strain J63is a halotolerant microorganism. Therefore, strain J63is considered as a pretty competitive strain to produce a large amount of laccase.
     Thirdly, in order to fully explore the waste resources, seven agricultural wastes, containing rice straw powder, wheat bran, bean-pod powder, sugarcane bagasse, corn cob powder, water hyacinth and the peel of pomelo, were picked out as substrate to produce laccase under solid-state fermentation. Among them, Water hyacinth is viewed as one of the most harmful grasses in the world. So, there is a far-reaching influence if it can turn wastes into wealth. Results demonstrated that the potential of utilizing agricultural wastes to produce laccase is fairly tremendous, in which the capability of production of laccase by utilization of rice straw powder excelled others, reaching10700U/g. The runner-up is water hyacinth,7593.3U/g. These achievements met the goal of production of laccase in a manner of environmental-friendly means.
     Fourthly, through UV-mutagenesis and ion implantation mutagenesis for mutation breeding, two of positive mutant strains, A6and B21, were screened after two rounds of screening procedures. Their laccase ability increased38.4%and35.5%in comparison with parent strain J63in the5th day of fermentation respectively. Furthermore, strain A6improved notably either in thermostability or in halotolerancy, whose laccase enzyme activity is5-6fold as high as its parent strain J63. This is very beneficial to apply in practical industrial sectors.
     Fifthly, marine-derived fungus Penicillium janthinellum P1can form mycelia pellets in a specific liquid culture. Mycelia pellet has been exploited as biological carrier for whole-cell immobilization due to its unique structural characteristic---polyporous and high specific area. This study constructed a novel two-specie whole-cell immobilization system which using P1mycelia pellets as carrier, which was achieved simply by inoculating the marine-derived fungus Pestalotiopsis sp. J63spores into culture medium containing another fungus Penicillium janthinellum P1pre-grown mycelia pellets. This so-constructed immobilization system possesses the ability not only to degrade lignin but also to degrade cellulose. Optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design at biomass of P1pellets,10g (wet weight); concentration of J63spore, 2×109/mL; and immobilization time,2d.
     Sixthly, our work investigated the effect of biological wastewater treatment by utilization of immobilized pellets, mainly concentrating on different concentrations of extra carbon source and nitrogen source, different dosages of immobilized pellets, temperature and initial pH. Results demonstrated that immobilized pellets can be fairly effective to biodegrade paper mill effluent in a ten-hour batch run. Biodegradation capacity exceeded99%. Furthermore, biodegradation capacity still retained96.4%after6batches of consecutive treatment. This exhibited that immobilized pellets are capable to maintain very active for dealing with effluent efficiently and persistently for a longer time. During wastewater treatment, re-growth phenomenon of immobilized pellets occurred. The average diameter of immobilized pellets treated by6batches of semi-successive effluent treatment, was3.7mm, which is1.6fold as large as those untreated immobilized pellets. After treatment, the wastewater, originally feculent, turned out to be clarified and odourless, without visible particles.
     At last, immobilized pellets and P1mycelia pellets were applied to treat simulated dye solution Azure B respectively. It was revealed that both P1mycelia pellets and immobilized pellets can effectively decolorize Azure B. However, the decolorization capability of immobilized pellets improved notably, by26%, compared with mycelia pellets during a10-day treatment. This further confirmed that this co-immobilization system was more advantageous than single mycelia pellets in industrial application.
引文
[1]Sanchez O.J., Cardona C.A.. Trends in biotechnological production of fuel ethanol from different feedstock. Bioresource Tecnology,2008,99:5270-5295.
    [2]王超,章超桦.酶解纤维素类物质生产燃料酒精的研究进展.纤维素科学与技术,2003,11:52-59.
    [3]Qu Y.B., Zhu M.T., Liu K.. Study on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnollgy Journal,2006,1:1235-1240.
    [4]Fang X., Shen Y., Zhao J.. Status and prospect of lignocellulosic bioethanol production in China. Bioresource Tecnology,2010,101:4814-4819.
    [5]Eun J.S., Beauchemin K.A.. Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Animal Feed Science and Technology,2007,132: 298-315.
    [6]Lutzen N.W., Nielsen M.H., Oxenboell K.M.. Cellulase and their applications in the conversion of lignocelluloses to fermentable sugars. Philosophical Transactions of Royal Society,1983,300:283-291.
    [7]Baek S.H., Kim S., Lee K.. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme and Microbial Technology,2012,51:366-372.
    [8]Henrissat B.. Cellulases and their interaction with cellulose. Cellulose,1994,1:169-196.
    [9]Zhang Y.H.P, Lynd L.. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology adn Bioengineering,2004,88:797-824.
    [10]Yoshida H.. Chemistry of lacquer(Urusht):Part 1. Journal of Chemical Society,1983,43:472-482.
    [11]Wong D.W.S.. Structure and action mechanism of ligninolytic enzymes. Applied Bioresource Technology,2011,27:731-735.
    [12]靳蓉,张飞龙.漆酶的结构与催化反应机理.中国生漆,2012,4:6-15.
    [13]Chen J., Wang Q., Hua Z.. Research and application of biotechnology in textile industries in China. Enzyme and Microbial Technology,2007,40:1651-1655.
    [14]Banat I.M., Nigam P., Singh D.. Microbial decolorization of textile-dye-containing effluents:A review. Bioresource Technology,1996,58:217-227.
    [15]Murugesan K., Kim Y.M., Jeon J.R.. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials,2009,168:523-529.
    [16]Larsson S., Cassland P., Jonsson L.J.. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in Hgnocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology,2001,67:1163-1170.
    [17]龙纪雪,毛连山,余世袁.木聚糖酶中纤维素酶对麦草浆生物漂白的影响.中国造纸,2006,30:19-22.
    [18]Breitung J., B Rruns N.D., Steinbach K... Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Applied Microbiology and Biotechnology,1996,44:795-800.
    [19]Murugesan G.S., Angayarkanni J., Swaminathan K... Effect of tea fungal enzymes on the quality of black tea. Food Chemistry,2002,79:411-418.
    [20]Pieper D.H.. Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology,2005,67:170-191.
    [21]董玉瑛,冯霄.持久性有机污染物分析和处理技术研究进展.环境污染治理技术与设备,2003,4:49-55.
    [22]Haddadin M.S.Y., Haddadin J., Arabiyat O.I.. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporinm. Bioresource Technology,2009,100: 4773-4782.
    [23]Brijwani K., Oberoi H.S., Vadlani P.V.. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry,2010,45: 120-128.
    [24]Hart T.D., Kinsey G., Kelley J.. Strategies for the isolation of celluloytic fungi for composing of wheat straw. World Journal of Microbiology and Biotechnology,2002,18:471-480.
    [25]Andreas U., Gabriele K., Stephan W.. Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microbial Ecology,2008,55: 512-522.
    [26]Chakraborty N., Sarkar G.M., Lahiriu S.C.. Cellulose degrading capabilities of cellulolytic bacteria isolated from the intestinal fluids of the silver cricket. The Environmentalist,2000,20:9-11.
    [27]Kato S., Haruta S., Gui Z.J.. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. International Journal of Systematic and Evolutionary Microbiology,2004,54:2043-2047.
    [28]Xu G., Goodell B.. Mechanisms of wood degradation by brown-rot fungi:chelator-mediated cellulose degradation and binding of iron by cellulose. Journal of Biotechnology,2001,87:43-57.
    [29]曲音波.木质纤维素降解酶系的基础和技术研究进展.山东大学学报(理学版),2011,46:160-170.
    [30]Lee K., Moon S.H.. Electroenzymatic oxidation of veratryl alcohol by lignin.peroxidase. Journal of Biotechnology,2003,102:261-268.
    [31]Nishida T., Tsutsumi Y., Liyoshi Y.. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. The Japan Wood Research Society,1998,44:222-229.
    [32]Archibald F.S.. Lignin peroxidase-activity is not important in biological blfaching and delignification of unblfached kraft pulp by trametes-versicolor. Applied and Environmental Microbiology,1992,58: 3101-3109.
    [33]王超,章超桦.酶解纤维素类物质生产燃料酒精的研究进展.纤维素科学与技术,2003,11:52-59.
    [34]Dwivedi U.N., Singh P., Pandey V.P.. Structure-function relationship among bacterial, fungal and plant laccases. Journal for Molecular Catalysis B-enzymatic,2011,68:117-128.
    [35]Peter F.S.. Identification of thermophilic bacteria in solid-waste composting. Applied and Environmental.Microbiology,1985,906-913.
    [36]Godden B., Ball A.S., Helvenstein P., Macarthy A.J., Penninckx M.J.. Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of Genenal Microbiology,1992,138:2441-2448.
    [37]Singh A., Bajar S., Bishnoi N.R.. Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. Journal of Hazardous Materials,2010, 176:1079-1082.
    [38]Kuhad R.C., Singh A., Eriksson K.E.L.. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology,1997,57:46-125.
    [39]Zeng G.M.,Yu H.Y., Huang H.L.. Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation. World Journal of Microbiology and Biotechnology,2006,22:317-324.
    [40]Silva-Stenico M.E., Vengadajellum C.J., Janjua H.A.. Degradation of low rank coal by trichoderma atroviride ES11. Journal of Industrial Microbiology and Biotechnology,2007,34:625-631.
    [41]Kramer K.J., Kanost M.R., Hopkins T.L., Jiang, H.B.. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron,2001,57:385-392.
    [42]张力,邵喜霞,韩大勇.白腐真菌木质素降解酶系研究进展.畜牧与饲料科学,2009,30:35-37.
    [43]Robinson T., Chandran B., Nigam M.. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme and Microbial Technology,2001,29:575-579.
    [44]Stuardo M., Larrondo L., Vasquez M.. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium. FEMS Microbiology Letters,2005,242:37-44.
    [45]Raziye O.U., Nurdan Kp.. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochemistry,2005,40:83-87.
    [46]Alexandre G., Zhulin I.B.. Laccases are widespread in bacteria. Trends in Biotechnology,2000,18: 41-42.
    [47]Kaal E.E.J., Field J.A., Joyce T.W.. Ncreasing ligninilytic enzyme activities in several white-rot basidiomycetes by nitrogensufficient media. Bioresource Technology,1995,53:133-139.
    [48]Baldrian P., Snajdr J.. Production of ligninolytic enzymes by litter- decomposing fungi and their ability to decolorize synthetic dyes. Enzyme and Microbial Technology,2006,39:1023-1029.
    [49]Jaszek M., Zuchowski J., Dajczak U.E., Ligninolytic enzymes can participate in a multiple response system to oxidative stress in white- rot basidiomycetes:Fomes fomentarius and Tyromyces pubescens. International Biodeterioration and Biodegradation,2006,58:168-175.
    [50]Novotnya C., Svobodovaa K., Erbanovaa P.. Ligninolytic fungi in bioremediation:extracellular enzyme production and degradation rate. Soil Biology and Biochemistry,2004,36:1545-1551.
    [51]Wesenberg D., Kyriakides I., Agathos S.N.. White- rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances,2003,22:161-187.
    [52]Song F.Q., Tian X.J., Li Z.Q., Yang G.L., Chen B., Hao J.J, Zhu, J.. Diversity of filamentous fungi in organic layers of two forests in Zijin Mountain. Journal of Forestry Research,2004,15:273-279.
    [53]Chandra R., Raj A., Purohit H.J., Kapley A.. Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere.,2007,67:839-846.
    [54]赵大鹏,张伟周,薛燕芬,马延和.一个产木质素酶的嗜碱细菌新种.微生物学报,2004,44:720-723.
    [55]Fitz-Gibbon S.T., Ladner H., Kim U.J.. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proceeding of the National Academy of Science of the United States of America,2002,99:984-989.
    [56]Alexandra G., Zhulin I.B.. Laccases are widespread in bacteria. Trends in Biotechnology,2000,18: 41-42.
    [57]Zhang Y., Himme I.M., Mielenz J.. Outlook for cellulase improvement:screening and selection strategies. Biotechnology Advances,2006,24:452-481.
    [58]方诩,秦玉琪,李雪芝,王禄山,汪天虹,朱明田,曲音波.纤维素酶与木质纤维素生物降解转化的研究进展.生物工程学报,2010,25:864-869.
    [59]Singhania R.R., Sukumaran R.K., Patel A.K.. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology,2010,46:541-549.
    [60]Farkas V.. Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia. Microbiological,1981,2:129-132.
    [61]Toyama H.. Construction of cellulose perproducing strains derived from polyploids of Trichoderma reesei. Microbios,1999,100:7-18.
    [62]Reczey K., Szengyel Z., Eklund R.. Cellulase production by T.reesi. Bioresource Technology,1996,57: 25-30.
    [63]Le-Crom S., Schackwitz W., Pennacchio L..Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America,2009,106:16151-16156.
    [64]Montenecourt B.S.. Trichoderma reesei cellulases. Trends in Biotechnology,1983,1:156-160.
    [65]Gritzali M., Brown R.D.. The cellulase system of Trichoderma:relationship between purified extracellular enzymes fro m induced or cellulose grown cells. Advances in Chemistry Series,1979,181: 237-260.
    [66]Esterbauer H., Steiner W., Labudova I.. Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology,1991,36:51-65.
    [67]Hou Y.H., Wang T.H., Long H.. Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold adaptive Penicillium chrysogenum FS010. Acta Biochimica et Biophysica Sinica,2007,39:101-107.
    [68]Cheng Y., Song X., Qin Y.. Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. Journal of Applied Microbiology,2009,107:1837-1846.
    [69]曲音波,高培基,王祖农.青霉的纤维素酶抗降解物阻遏突变株的选育.真菌学报,1984,3:238-242.
    [70]刘纯强,蔡勉,马雪梅.斜卧青霉p-葡萄糖苷酶抗产物抑制突变株的选育.微生物学研究与应用,1993,613:5-8.
    [71]黄乾明,谢君,张寒飞,杨菲,杨婉身.漆酶高产菌株的诱变选育及其产酶条件.菌物学报,2006,25:263-272.
    [72]Record E., Punt P.J, Chamkha M.. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. European Journal of Biochemistry, 2002,269:602-609
    [73]杨建强,刘刚,汤国营,戴红梅,朱厚础.改构的野生革耳漆酶基因在毕赤酵母中的表达和活性鉴定.生物技术通讯,2005,16:255-258.
    [74]Cheng Y.F., Song X., Qin Y.. Genome shuffling improves production of cellulase by penicillium decumbens JU-A10. Journal of Applied Microbiology,2009,107:1837-1846.
    [75]Christopher F., Thurston.. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Applied and Environment Microbiology,2000,66:3357-3362.
    [76]Duran N., Rosa M.A., D'Annibale A.. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports:a review. Enzyme and Microbial Technology,2002,31:907-931.
    [77]Torres J., Svistunenko D., Karlsson B.. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate. Journal of the American Chemical Society,2002,124:963-967.
    [78]Pozdnyakova N.N., Rodakiewicz-Nowak J., Turkovskaya O.V.. Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme and Microbial Technology,2006,39:1242-1249.
    [79]Keum Y.S., Li Q.X.. Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere,2004,56:23-30.
    [80]Takagi S., Shirota C., Sakaguchi K... Exoenzymes of Trametes versicolor can metabolize coplanar PCR congeners and hydroxy PCB. Chemosphere,2007,67:S54-S57.
    [81]Hu X.K., Zhao X.H., Huang H.M.. Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere,2007,66:1618-1626.
    [82]Canas A.I., Alcalde M., Plou F.. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environmental Sicence and Technology,2007, 41:2964-2971.
    [83]Koschorreck K., Richter S.M., Swierczek A.. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Archives of Biochemistry and Biophysics,2008,474:213-219.
    [84]Hirai H., Nakanishi S., Nishida T.. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi. Chemosphere,2004,55:641-645.
    [85]Maruyama T., Komatsu C., Michizoe J.. Laccase-mediated degradation and reduction of toxicity of the postharvest fungicide imazalil. Process Biochemistry,2007,42:459-461.
    [86]Ayed L., Mahdhi A., Cheref A.. Decolorization and degradation of azo dye methyl red by an isolated Sphingomonas paucimobilis:Biotoxicity and metabolites characterization. Desalination,2011,274: 272-277.
    [87]Abadulia E., Tzanov T., Costa, S.. The structure and function of fungal laccases. Microbiology,1994, 140:19-26.
    [88]Champagne P.P., Ramsay J.A.. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Applied and Environment Microbiology,2005,69:276-285.
    [89]Brenna O., Blanchi E.. Immobilized laccase for phenolic removal in must and wine. Biotechnology Letters,1994,16:35-40.
    [90]Minussi R.C., Pastore G.M., and Duran N.. Potential applications of laccase in the food industry. Food Science and Technology,2002,13:205-216.
    [91]李燕红,赵辅昆.纤维素酶的研究进展.生命科学,2005,17:392-397.
    [92]邵伟,仇敏,吴炜.纤维素酶对玉米发酵产酒精影响的研究.中国酿造,2009,3:91-92.
    [93]梁敏,邹东恢,王少艳.纤维素酶的研究进展与前景展望.食品研究与开发,2005,25:202-204.
    [94]Brenna O., Blanchi E.. Immobilized laccase for phenolic removal in must and wine. Biotechnology Letters,1994,16:35-40.
    [95]Alocilja E.C., Radke S.M.. Market analysis of biosensors for food safety. Biosensors and Bioelectronics, 2003,18:841-846.
    [96]Adanyi N., Varadi M., Kim N.. Development of new immunosensors for determination of contaminants in food. Current Applied Physics,2006,6:279-286.
    [97]Term L.A., White S.F., Tigwell L.J.. The application of biosensors to fresh produce and the wider food industry. Journal of Agricultural and Food Chemistry,2005,53:1309-1316.
    [98]Patel. P.D.. (Bio)sensors for measurement of analytes implicated in food safety:a review. TrAC Trends in Analytical Chemistry,2002,21:96-115.
    [99]Liu Y., Che Y., Li Y.. Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method. Sensors and Actuators B,2001,72:214-218.
    [100]Rasooly L., Rasooly A.. Real time biosensor analysis of Staphylococcal enterotoxin A in food. International Journal of Food Microbiology,1999,49:119-127.
    [101]Carlson M.A., Bargeron C.B., Benson R.C.. An automated, handheld biosensor for aflatoxin. Biosensor and Bioelectrons,2000,14:841-848.
    [102]Gomes S.A.S.S., Rebelo M.J.F.. A new laccase biosensor for polyphenols determination. Sensors,2003, 3:166-175.
    [103]Millifan C, Ghindilis A.. Laccase based sandwich scheme immunosensor employing mediatorless electrocatalysis. Electroanalysis,2002,14:415-419.
    [104]Mikolasch A., Wurster M., Lalk M.. Novel β-Iactam antibiotics synthesized by amination of catechols using fungal laccase. Chemical and Pharmaceutical Bulletin,2008,56:902-907.
    [105]Mikolasch A., Matthies A., Lalk M.. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes. Applied Microbiology and Biotechnology,2008,80:389-397.
    [106]Giurg M., Piekielska K., Gebala M.. Catalytic oxidative cyclocondensation of o-aminophenols to 2-amino-3H-phenoxazin-3-ones. Synthetic Communication,2007,37:1779-1789.
    [107]Hahn V., Mikolasch A., Manda K.. Laccase-catalyzed carbon-nitrogen bond formation:coupling and derivatization of unprotected 1-phenylalanine with different para-hydroquinones. Amino Acids,2009,37: 315-321.
    [108]Eckenrode F., Peczynskaczoch W., Rosazza J.P.. Microbial transformations of natural anti-tumor agents.18. conversions of vindoline with copper oxidases. Journal of Pharmaceutical Sciences,1982,71: 1246-1250.
    [100]Lee D.H., Lee D.J.. Biofuel economy and hydrogen competition. Energy and Fuels,2008,22: 177-181.
    [110]Bockris J.M.. The origin of ideas on a hydrogen economy and its solution to the decay of the environment. International Journal of Hydrogen Energy,2002,27:731-740.
    [[111]Wang W,, Wang P., Hu R.. A novel screening method of cellulase-producing bacteria. Prikl. Biokhim. Microbiology,2011,47:58-60.
    [112]Soccol C.R., Vandenberghe L.P., Medeiros A.B.. Bioethanol from lignocelluloses:Status and perspectives in Brazil. Bioresource Technology,2010,101:4820-4825.
    [113]Li R.Q.. Complex use of wastes containing cellulose. China Environment Science,2002,22:24-27.
    [114]熊鹏钧,文建军.交替假单胞菌(Pseudoalteromonas sp.)DY3菌株产内切葡聚糖酶的性质研究及基因克隆.生物工程学报,2004,20:233-237.
    [115]游银伟,汪天虹,岳寿松.海洋青霉(Penicillium sp.)FS010441的形态学观察和产纤维素酶性质初步研究.山东农业科学,2005,1:11-13.
    [116]Xue D.S., Chen H.Y., Ren Y.R., Yao S.J.. Enhancing of the activity and thermostability of the thermostable β-glucosidase from a marine Aspergillus niger at high salinity. Process Biochemistry,2012, 47:606-611.
    [117]Raghukumar C., Mohandass C., Kamat S.. Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavusisolated from a marine habitat. Enzyme and Microbial Technology,2004,35:197-202.
    [118]Rafaella C.B., Lucia R.D., Manuela S., Lara D.S.. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology,2010,46: 32-37.
    [119]D'Souza-Ticlo D., Sharma D., Raghukumar C. A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived fungus. Marine Biotechnology,2009,11:725-737.
    [120]Feng H.Y., Yu Z.L., Chu P.K.. Ion implantation of organism. Materials Science and Engineering Reports,2006,54:49-120.
    [121]陈恒雷,吕杰,曾宪贤.离子束诱变育种研究及应用进展.生物技术通报,2005:10-12.
    [122]虞龙,张宁.离子注入微生物诱变育种的研究与应用进展.微生物学杂志,2005,25:80-83.
    [123]张震宇.造纸工业环境保护现状、进步与发展要求.中华纸业,2009,30:57.
    [124]Bajpai P.. Biological bleaching of chemical pulps. Critical Reviews in Biotechnology,2004,24:1-58.
    [125]苗庆显,秦梦华,徐清华.废纸造纸废水处理技术的现状与发展.中国造纸,2005,24:55-58.
    [126]Durai G., Rajasimman M.. Biological treatment of tannery wastewater-a review. Journal of Environmental Science and Technology,2011,4:1-17.
    [127]Sirtori C., Zapata A., Oiler I., Gemjak W., Malato S.. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research,2009,43: 661-668.
    [128]Pankaj Chowdhury., Viraraghavan T., Srinivasan A.. Biological treatment process for fish processing wastewater-a review. Bioresource Technology,2012,101:439-449.
    [129]Satyendra K., Garg M.T.. Strategies for decolorization and Detoxification of pulp and paper mill effluent. Review of Environment Contamination and Toxicology,2012,212:113-136.
    [130]Hamzeh Y., Ashori A., Marvast E.H., Rashedi K., Olfat A.M.. A comparative study on the effects of Coriolus versicolor on properties of HDPE/wood flour/paper sludge composites. Composites Part B: Engineering,2012,43:2409-2412.
    [131]Shumaila K., Shaukat A.M., Asgher F.A.. Comparative study on decolorization of reactive dye 222 by white rot fungi Pleurotus ostreatus IBL-02 and Phanerochaete chrysosporium IBL-03. African Journal of Microbiology Research.2012,6:3639-3650.
    [132]Begum N.A., Menezes G.B., Moo-Young H.K.. Treatment of pulp and paper mill wastewater. Water Environment Research,2012:1502-1510.
    [133]Rocha-Santos T., Ferreira F., Silva L., Freitas A.C., Pereira R., Diniz M.. Effect of tertiary treatment bu fungi on organic compounds in kraft pulp mill effluent. Environment Science and Pollution Research, 2012,17:866-874.
    [134]Binupriya A.R., Sathishkumar M., Kavitha D., Swaminathan K., Yun S.E.. Aerated and rotated mode decolorization of a textile dye solution by native and modified mycelial biomass of Tmmetes versicolor. Journal of Chemical Technology and Biotechnology,2007,82:350-359.
    [135]Shedbalkar U., Dhanve R., Jadhav J.. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials,2008,157:472-479.
    [136]Lucas M., Mertens V., Corbisier A.M., Vanhulle S.. Synthetic dyes decolourisation by white-rot fungi: Development of original microtitre plate method and screening. Enzyme and Microbial Technology, 2008,42:97-106.
    [137]Erkurt E.A., Unyayar A., Kumbur H.. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochemistry,2007,42:1429-1435.
    [138]Nelson J.M., Griffin E.G.. Adsorption of invertase. Journal of the American Chemical Society,1916, 38:1109-1115.
    [139]Chibata L, Tosa T., Sato, T.. Immobilized L-aspartic acid. Methods in Enzymology,1974,34: 405-411.
    [140]陶璐璐.丹参愈伤组织细胞固定化及其转化产物的特征.生物工程学报,1990,6:218-223.
    [141]Seo T.Y., Eum K.W., Han S.O., Kim S.W., Kim J.H., Song K.H., Choe J.. Immobilized cell microchannel bioreactor for evaluating fermentation characteristics of mixed substrate consumption and production formation. Process Biochemistry,2012,47:1011-1015.
    [142]Lu L., Zhao M., Li G.F., Wang T.N., Li D.B., Xu T.F.. Decolorization of synthetic dyes by immobilized spore from Bacillus amyloliquefaciens. Catalysis Communications,2012,26:58-62.
    [143]Champagne P.P., Ramsay J.A.. Dye decolorization and detoxification by laccase immobilized on porous glass beads. BioTesource Technology,2010,101:2230-2235.
    [144]Zhou L.C., Li Y.F., Bai X., Zhao G.H. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(Ⅱ) from aqueous solution. Journal of Hazardous Material,2009,167:1106-1113.
    [145]Marica R., Ljiljana M., Stvetlana N.. Bioethanol production by immobilized Sacharomyces cerevisiae var. Ellipsoideus cells. African Journal of Biotechnology,2009,8:464-471.
    [146]Takaya T., Koda R., Adachi D., Nakashima K., Wada J., Bogaki T., Ogino C., Kondo A.. High efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae. Applied Microbiology and Biotechnology,2011,90:1171-1177.
    [147]Plessas S., Bekatorou A., Koutinas A.A., Soupioni M,. Banat I.M., Marchant R... Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresoure Technology,2007,98:860-865.
    [148]De-Bashan L.E., Bashan Y.. Immobilized microalgae for removing pollutants:Review of practical aspects. Bioresource Technology,2010,101:1611-1627.
    [149]Koch D., Soltmann C., Grathwohl G.. Bioactive ceramics-new processing technologies for immobilization of microorganisms for filtration and bioreactor applications. Key Engineering Materials, 2007,(336-338):1683-1687.
    [150]De-Bashan L.E., Hernandez J.P., Morey T., Bashan Y.. Microalgae growth-promoting bacteria as "helpers" for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Resource,2004,38:466-474.
    [151]Moreno-Garrido I., Codd G.A., Gadd G.M., Lubian L.M.. Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Ciencias Marinas,2002,28:107-119.
    [152]Park C, Lee B., Han E.J., Lee J., Kim S.. Decolorization of acid black 52 by fungal immobilization. Enzyme and Microbial Technology,2006,39:371-374.
    [153]Kheirghadam E., Hossein A., Yakhchali B., Tabandeh F., Rodriguez-Couto S.. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environmental Science and Pollution Resource,2010,17:145-153.
    [154]Wu J., Yu H.Q.. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions. Bioresource Technology,2007,98:253-259.
    [155]Papagianni M.. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances,2004,22:189-259.
    [156]Kim Y.M., Kim J.H.. Formation and Dispersion of Mycelial Pellets of Streptomyces coelicolor A3(2). The Journal of Microbiology,2004,42:64-67.
    [157]Lin P. J., Grimm L.H., Wulkow M., Hempel D.C., Krull R.. Population balance modeling of the conidial aggregation of Aspergillus niger. Biotechnology and Bioengineering.2008,99:341-350
    [158]Wucherpfennig T., Kiep K. A., Driouch H., Wittmann C., Krull R... Morphology and Rheology in Filamentous Cultivations. Advances in Applied Microbiology,2010,72:89-136
    [159]高敏.生物质载体菌丝球的形成机制及脱色效能的研究.哈尔滨工业大学硕士学位论文,2006.
    [160]Moore J., Bushell M.E.. The effect of morphology and oxygen uptake on penicillin production by Aspergillus nidulans in submerged culture. Mycological Research,1997,101:1237-1241.
    [161]Sharma A., Padwal-Desai S.R.. On the relationship be tween pellet size and aflatoxin yield in Aspergillus parasiticus. Biotechnology and Bioengineering,1985,27:1577-1580.
    [162]Prosser J.I., Tough A.J.. Growth mechanisms and growth kineics of filamentous microorganism. Biotechnology,1991,10:253-274.
    [163]Filipovic-Kovacevic Z., Sipos L., Briski F.. Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions. Food Technology andBiotechnology,2000,38:211-216.
    [164]Chen G.Q., Zhang W.J., Zeng G.M., Huang J.H., Wang L., Shen G.L.. Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater. Journal of Hazardous Materials,2011,186:2138-2143.
    [165]李清彪,吴涓,杨宏泉,邓旭,卢英华.白腐真菌菌丝球形成的物化条件及其对铅的吸附.环境科学,1999,20:33-38.
    [166]张一竹,王清棋.橘青霉菌丝球形成条件及其处理废水的应用.氨基酸和生物资源,2003,25:44-46.
    [167]刘效梅,辛宝平.开放系统中4株丝状真菌的成球生长及其对染料的吸附脱色.环境科学,2005,26:172-178.
    [168]Yesilada O., Asma D., Cing S.. Decolorization of textile dyes by fungal pellets. Process Biochemistry, 2003,38:933-938.
    [169]Roble N., Ogbonna J., Tanaka H.. A novel circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica) sponge for the byconversion of raw cassava starch to ethanol. Applied Microbiology and Biotechnology,2003,60:671-678.
    [170]Binupriya A.R., Sathishkumar M., Swaminathan K., Ku C.S., Yun S.E.. Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes. Bioresource Technology,2008,99:1080-1088.
    [171]黄锦丽,龙敏南,傅雅婕.产酸克雷伯氏菌的吸附固定及其产氢研究.厦门大学学报.2005,9(4):710-714
    [172]Si Zhang, Ang Li, Fang Ma. Biological improvement on combined mycelial pellet for aniline treatment by tourmaline in SBR process. Bioresource Technology,2011,102:9282-9285
    [173]Rapp P., Grote E., Wagner F. Formation and Location of 1,4-β-Glucanases and 1,4-β-Glucosidases from Penicillium janthinellum. Applied and Environment Microbiology,1981,41,857-866.
    [174]Oliveira L. A., Porto A. L. F., Tambourgi E. B.. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresource Technology,2006,97, 862-867.
    [175]Adsul M. G., Bastawde K. B., Varma A. J., Gokhale D. V.. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresource Technology,2007,98, 1467-1473.
    [176]WEI Ming-Ken, T. H.-Y., LIANG Ling, HUANG Su, LI You-Zhi. Characteristics of high resistance to heavy metal salts and uptake of Cu2+ and Zn2+ ions of Penicillium janthinellum. Mycosystema,2006,25, 616-623.
    [177]Li L., Liu R., Ye M., Hu X., Wang Q., Bi K., Guo D.. Microbial metabolism of evodiamine by Penicillium janthinellum and its application for metabolite identification in rat urine. Enzyme Microbiology Technology,2006,39,561-567.
    [178]Xue C., Li T., Deng Z., Fu H., Lin W. Janthinolide A-B, two new 2,5-piperazinedione derivatives from the endophytic Penicillium janthinellum isolated from the soft coral Dendronephthya sp. Die Pharmazie-An International Journal of Pharmaceutical Sciences,2006,61,1041-1044.
    [179]Smetanina O. F., Kalinovsky A. I., Khudyakova Y. V.. Indole Alkaloids Produced by a Marine Fungus Isolate of Penicillium janthinellum Biourge. Journal of Natural Products,2007,70,906-909.
    [180]Kishi K., Hildebrand D.P., Someren M.K.V., Gettemy J., Mauk A.G., Gold M.H.. Site-directed mutations at phenylalanine-190 of manganese peroxidase:effects on stability, function, and coordination. Biochemistry 1997,14(36):4268-4277.
    [181]蒋挺大.木质素.第一版.化学工业出版社,2001:1-33.
    [182]宋安东,张百良,吴坤等.杂色云芝产木质纤维素酶及对稻草秸秆的降解.过程工程学报,2005,5(4):414-419.
    [183]曾涛,陈汉清,曾会才.木质素酶及其生产菌的筛选育种.2009,28(3):578-582
    [184]应用与环境生物学报2004,10(5):639-642.
    [185]管筱武,张甲耀等.木质素降解酶及其调控机理研究的进展.上海环境科学,1998,17(12):46-49.
    [186]黄峰,方靖,卢雪梅.纤维二糖脱氢酶对锰过氧化物酶降解木素的促进作用.科学通报,2001,48(18):1532-1528.
    [187]Elisashvili V., Kachlishvili E., Tsiklauri N.. Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 2009,25:331-339.
    [188]Mishra V., Kumar S.. Kinetic studies of laccase enzyme of Corilous versicolor MTCC138 in an inexpensive culture medium. Biochemical Engineering Journal,2009,46:252-256.
    [189]Rebelo, Barreto, Xavier, A.M., Mora, Tavares, A.P., Ferreira, R.. Trametes versicolor growth and laccase induction with by-products of pulp and paper industry. Electronic Journal of Biotechnology, 2007,10:444-451.
    [190]Hao I, Song F., Huang F., Yang C.L., Zhang Z.J., Zheng Y, Tian X.J.. Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp and its decolonization of azo dye. Journal of Industry Microbiology and Biotechnology,2007,34:233-240.
    [191]Cambira M.T., Ragusa S., Calabrese V., Cambria A.. Enhanced laccase production in white-rot fungus Rigidoporus Hgnosus by the addition of selected phenolic and aromatic compounds. Applied Biochemistry and Biotechnology,2011,163:415-422.
    [192]Stajic M., Persky L., Friesem D.. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and Microbial Technology,2006,38: 65-73.
    [193]Dittmer J.K., Patel N.J., Dhawale S.W.. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiology Letters,1997,149:65-70.
    [194]Palmieri G., Giardina P., Bianco C Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied Environment Microbiology,2000,66:920-924.
    [195]张玉,洪枫.优化培养条件对提高香菇漆酶产量的研究.林产化学与工业,2006,26:74-78.
    [196]Froehner S.C., Eriksson K.E.. Induction of neurospora crassa laccase with protein synthesis inhabitors. Journal of Bacteriology,2002,206:69-74.
    [197]Schneider-Poetsch T., Ju J., Eyler D.E.. Inhabit of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology,2010,6:209-217.
    [198]Kimura M., Nambara E.. Stored and neosynthesized mRNA in Arabidopsis seeds:effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology,2010,73:119-129.
    [199]庞锐,潘丽军,姜绍通,吴学凤.N+注入诱变选育混合糖发酵L-乳酸高产菌株.食品科学,2010,31:248-253.
    [200]罗水衷,姜绍通,郑志,蒋诗平,胡锦艳.同步辐射软X射线Nk对产L-乳酸米根霉的诱变效应.核农学报,2006,20:375-378.
    [201]Su C.X., Zhou W., Fan Y.H.,. Mutation breeding of chitosanase-producing strain Bacillus sp.S65 by low-energy ion implantation. Journal of Industry Microbiology Biotechnology,2006,33:1037-1042.
    [202]Huang W.D., Wang X.Q., Yu Z.L., Zhang Y.H.. Research into keV N+irradiated glycine. Nuclear Instruments and Methods in Physics Research B,1998,140:373-379.
    [203]王晓娟,王斌,冯浩.木质纤维素类生物质制备生物乙醇研究进展.石油与天然气化工,2007,36:452-461.
    [204]Holm L.G., Plucknett D.L., Pancho J.V.. The world's worst weeds distribution and biology. Honolulu: The University Press of Hawaii,1977:609.
    [205]Carina C.G., Cecilia M.P.. Water hyacinths as a resource in agriculture and energy production:a literature review. Waste Management,2007,27:117-129.
    [206]Aguilar J.A.. Biological control of waterhyacinth in Sinaloa, Mexico with the weevils Neochetina eichhomiae and N.bruchi. Biocontrol,2003,48:595-608.
    [207]Martinezjimenez M., Charudattan R.. Survey and evaluation of mexican native fungi for potential biocontrol of waterhyacinth. Journal of Aquatic Plant Management,1998,36:145-148.
    [208]Kathiresan R.M.. Allelopathic potential of native plants against water hyacinth. Crop Protection,2000, 19:705-708.
    [209]高恩丽,张树江,夏黎明.云芝发酵产漆酶及其对靛蓝脱色的研究.高校化学工程学报,2007,21:111-115.
    [210]Sanchez C. Lignocellulosic residues:biodegradation and bioconversion by fungi. Biotechnology Advances,2009,27:185-194.
    [211]Umata H.. Germination and growth of Erythrorchis ochobiensis (Orchidaceae) accelerated by monokaryons and dikaryons of Lenzites betulinus and Trametes hirsuta. Mycoscience,1999,40: 367-371.
    [212]Miguel A., Miren Z., Julio P., Antonio B., Plou F.J.. Combinatorial Saturation Mutagenesis by In Vivo Overlap Extension for the Engineering of Fungal Laccases. Combinatorial Chemistry and High Throughput Screening,2006,9:719-727.
    [213]Koschorreck K., Schmid R.D., Urlacher V.B.. Improving the functional expression of a Bacillus licheniformis laccase by random and site-direction mutagenesis. BMC Biotechnology,2009,9; 12.
    [214]Bulter L., Alcalde M., Sieber V., Meinhold P., Schlachtbauer C., Arnold F.H.. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Applied and Environmental Microbiology,2003,69:5037.
    [215]Hofrichter M., Ziegenhagen D., Vares T.. Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of H2O2. FEBS Letters,1998,434:362-366.
    [216]张红梅,徐淑霞,吴坤.漆酶产生菌的原生质体诱变选育.郑州轻工业学院学报(自然科学版),2005,20:14-16.
    [217]Xu A., Yao J.M., Yu L.X.. Mutation of gluconobacter oxydans and bacillus megaterium in a two-step process of L-ascorbic acid manufacture by ion beam. Journal of Applied Microbiology,2004,96: 1317-1323.
    [218]Zhou X.H., Ge C.M., Yao J.M.. Optimization of L-lactic acid production of Rhizopus oryzae mutant RLC41-6 by ion beam implantation at low-energy. Plasma Science and Technology,2005,7:3078-3080.
    [219]翟国伟,邹桂花,陶跃之.60Co-γ射线辐照高粱的生物学效应及适宜诱变剂量的研究.中国农学通报,2012,26:119-123.
    [220]Rapp P., Grote, E., Wagner F.. Formation and Location of 1,4-β-Glucanases and 1,4-P-Glucosidases from Penicillium janthinellum. Applied and Environmental Microbiology,1981,41 (4):857-866.
    [221]Oliveira L.A., Porto A.L.F., Tambourgi, E.B. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresource Technology,2006,97(6): 862-867.
    [222]Adsul M.G., Bastawde K.B., Varma A.J., Gokhale D.V. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresource Technology,2007,98 (7): 1467-1473.
    [223]Li L., Liu R., Ye M.. Microbial metabolism of evodiamine by Penicillium janthinellum and its application for metabolite identification in rat urine. Enzyme and Microbial Technology,2006,39 (4): 561-567.
    [224]Smetanina O.F., Kalinovsky A.I., Khudyakova Y.V.. Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge. Journal of Natural Products,2007,70 (6):906-909.
    [225]Breuil C., Saddler J. Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzyme and Microbial Technology, 1985,7,327-332.
    [226]Mikiashvili N., Elisashvili V., Wasser S.. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnology Letters,2005,27:955-959.
    [227]张国权,史一一,魏益民,欧阳韶晖.荞麦淀粉的真菌淀粉酶酶解动力学研究.农业工程学报,2007,23:42-46.