降解纤维素菌种筛选及纤维素降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用纤维素的最佳方法是微生物降解转化,鉴于目前纤维素降解菌株酶活力低、纤维素酶诱导产酶及纤维素降解机理不完全清楚等限制纤维素资源有效利用的情况下,为了有效利用纤维素这种可再生能源,筛选高效降解菌,研究菌株产酶机制以及纤维素降解机理仍然具有重要的理论和实践意义。
     本文从57份土样中,通过分离纯化得到97株菌株。对其进行刚果红鉴别培养基和滤纸条液体培养法初筛,并结合复筛得到2株纤维素酶活较高的菌株。经形态学鉴定H-11为简青霉(Penicillium simplicissimum),C-08为绿色木霉(Trichoderma viride)。
     研究了几种影响二菌株发酵产酶的因素,液体发酵结果表明:麸皮和稻草为适合碳源,两者比例H-11为4:3,C-08为5:2;最适有机氮源为豆饼粉,而无机氮源分别是KNO3和(NH4)2SO4。H-11产酶最适为豆饼粉,而C-08产酶的(NH4)2SO4:豆饼粉比例为1:5。最适产酶碳源和氮源比例,H-11为7:1,C-08为5:1;最适百分含量,都为3.6%;最适产酶pH,H-11为3.6,C-08为3.2;最适温度都为30℃;最适产酶时间H-11为144h,C-08为96h。
     固态发酵结果表明:秸秆粉和麸皮为2∶4最适合产酶;尿素和氨态氮适合H-11产酶。氨态氮适合C-08产CMCase,NO3-利于产Xylanase,其中NH4NO3最好;料水比1∶1比较适合H-11产CMCase,1∶1.5适合产Xylanase。料水比1∶2适合C-08产CMCase,1∶2.5适合产Xylanase;H-11随底物粒度的降低CMCase增加,在60~100目时产Xylanase最低。稻草粉粒度40~100目时,适合C-08产CMCase,此范围外适合产Xylanase;初始pH为3和4时则适合H-11菌株产CMCase和Xylanase。pH值为4适合C-08产酶;孢子接种量为7~8×107孢子/mL时适合两株菌产酶;28℃适合H-11产酶,在低于28℃时适合C-08产酶;发酵时间H-11为60h,C-08为72h。
     固定化研究表明,制备小球的最适海藻酸钠溶液浓度为5%。麸皮汁较适合菌株产酶,H-11比C-08产酶能力强。菌株间亲和性不强。H-11则在pH为3和4时,更适合产CMCase和Xylanase,C-08产酶适宜pH为7。固定化细胞产酶能力强于游离细胞。Tween-80有利于提高菌株的产酶活力。
     利用液体培养和洗涤菌丝诱导培养法研究了碳源对菌株的诱导特性。结果发现D-甘露糖对H-11有较好的诱导作用,葡萄糖对C-08有较好的产酶作用。葡萄糖促使H-11、C-08产生FPase、CMCase、C1和β-Gase,各种酶产量在菌株间及菌株内差别很大。
     制备细胞外、细胞壁膜、细胞内纤维素酶,并用其分别转化纤维二糖,对转化产物高效液相色谱定性分析,从而探讨碳源的诱导本质。结果显示:H-11胞内酶和C-08的胞外酶的转化产物,除产生葡萄糖外,亦产生一种未知的物质A。胞壁膜酶无转化作用。H-11的胞外酶和C-08的胞内酶液对纤维二糖除水解外亦有转化作用。从而证明纤维二糖不是菌株的诱导物。
     将H-11液体发酵粗酶液经硫酸铵分级沉淀、柱层析后得到电泳纯的β-GaseⅠ、β-GaseⅡ和CMCase组分。对纯组分的理化性质研究表明:三组分的分子量分别为126.0KDa、77.8KDa和33.2kDa;最适温度都为60℃,分别在40℃、40℃和50℃以下稳定;最适pH值为pH4.4~5.2、3.6~4.0和2.8,在pH值4.4~6.8、2.8~6.8和2.8~6.8范围内稳定。Mn~(2+)、Ca~(2+)、Sn~(2+)和Li~+对β-GaseⅠ有促进作用,Mg~(2+)、Zn~(2+)、Cu~(2+)、Co~(2+)、Fe~(2+)和Fe3+对β-GaseⅠ有抑制作用;Mn~(2+)、Sn~(2+)和Fe~(2+)对β-GaseⅡ有促进作用,Zn~(2+)、Cu~(2+)、Co~(2+)和Fe3+对β-GaseⅡ有抑制作用;Sn~(2+)对CMCase酶活力有明显的增强作用,Mn~(2+)和Cu~(2+)对酶有显著的抑制作用。β-GaseⅠ水解水杨素的Km和Vmax值分别622.306mg·mL~(-1)和15.480mg·mL~(-1)·min~(-1),β-GaseⅡ水解水杨素的Km和Vmax值分别26.689mg·mL~(-1)和0.508mg·mL~(-1)·min~(-1),CMCase作用于CMC-Na的动力学参数Km和Vmax值分别1.744mg·mL~(-1)和14.124mg·mL~(-1)·min~(-1)。三种酶的底物特异性较差,β-GaseⅠ、β-GaseⅡ不以CMC-Na为底物,CMCase不作用于水杨素,除此之外,三组分对MCC、滤纸、几丁质、pNPC和pNPG都有作用。
     通过对三组分的红外图谱特征频率区进行分析,结果表明其蛋白质二级结构都主要以α-螺旋形式存在。
     H-11的粗酶液中C1、CMCase对MCC都具有吸附-解吸附作用,而β-Gase对MCC不具有吸附-解吸附作用,三种纯组分和C-08粗酶液中的C1、CMCase、β-Gase对MCC都具有吸附-解吸附作用。
     β-GaseⅠ和β-GaseⅡ对CMCase降解纤维素有很强的协同降解作用,三种纯组分对C-08粗酶液降解纤维素没有协同作用。
     H-11的固态、液态发酵和C-08的固态发酵都存在氧化降解机制。
Microbe degradation is a most potential and ideal way to the application of cellulose. Because of low degradation activity of microbe and ambiguous inducement and biodegradation mechanism, farther application of cellulose is relatively deferrable. In order to utilize cellulose efficiently as a tremendous green resource, to screen microbes with high degradation activity and research inducement and biodegradation mechanism would appear important theory and practice value.
     Ninety-seven strains were achieved by enrichment and isolation from 57 soil samples. Two methods were used in the process. The primary is congo red culture and filter liquid culture, the second is measurement of cellulose activity. Two strains with high cellulase activity were obtained using the methods, identified to be Penicillium simplicissimum H-11 and Trichoderma viride C-08.
     H-11 and C-08 were fermented in liquid media and fermentation conditions were optimized. The highest level of cellulase activity was induced in the medium containing wheat bran and straw with the ration of 4:3. Soybean powder is the best nitrogen source. The ratio of C to N is 7:1 and the mass concentration for P. simplicissimum H-11 is 3.6%. The culture temperature, pH and time of cellulase production of P. simplicissimum H-11 are 30℃, 3.6 and 114h respectively. The highest level of cellulase activity was induced by the compound containing wheat bran and straw, and their ration is 5:2. Ammonium sulfate and soybean powder are the best nitrogen source, and their ration is 1:5. The ratio of carbon source to nitrogen source is 5:1 and the mass concentration for T. viride C-08 is 3.6%. The culture temperature, pH and time of cellulose production of T. viride C-08 are 30℃, 3.2 and 96h respectively.
     The ratio of stuff to water is 1:1 for H-11 CMCase production, 1:1.5 for Xylanase production, and the ratio of stuff and water is 1:2 for C-08 CMCase production, 1:2.5 for Xylanase production. The optimal rice straw granularity is 150~425μm for C-08 CMCase production. The activity of CMCase of H-11 increase with rice straw granularity,but the activity of Xylanase appear lowest when granularity is 150~425μm. Granularity between 150~425μm is optimal for C-08 CMCase production, while granularity below 150μm and above 425μm is best for Xylanase production. The optimal pH for C-08 fermentation is 4, and the optimal pH for H-11 CMCase and xylanase production are 3 and 4. The optimal conditions for cellulase and xylanase production as follows: inoculum size is 7~8×107, incubation temperature is 28℃for H-11, lower 28℃for C-08, fermentation period is 60h for H-11, 72h for C-08.
     The immobilized cells were prepared through embedment of C-08 and H-11 with sodium alginate. The suitable culture concentration of sodium alginate is 5%. Initial pH value of the substrate is 3-4 for H-11 to product CMCase and Xylanase, while initial pH value is 7 for C-08. Comparing of the immobilized cells and the normal cells, the productivity of immobilized cell is the better. The addition of the surfactant tween-80 is helpful to enzyme production.
     Inducement characteristics of carbon sources to enzyme production were studied using liquid culture and washed mycelium inducement methods. The results indicated that D-mannose is beneficial in H-11 cellulase production, and glucose has better effect on C-08 cellulase production. Glucose can induce C-08 and H-11 to produce FPase, CMCase, C1 andβ-Gase, but enzyme quantities are different between two strains and within each strain.
     In order to study the mechanism of cellualase inducement by different carbon sources, the extracellular, plasm-membrane-bound and intracellular cellulases were made to transform cellobiose, and metabolites were analyzed by HPLC. The results showed that, in addition to glucose, the extracellular cellulases of H-11 and the intracellular cellulases of C-08 can also produce an unknown matter A. The plasm-membrane-bound cellulases have no effect on cellobiose. The intracellular cellulases of H-11 and the extracellular cellulases of C-08 can hydrolyze cellobiose, demonstrating that cellobiose is not the inducer of C-08 and H-11.
     The crude cellulases of H-11 were purified from liquid fermentation media by (NH4)2SO4 precipitation and SephadexG-100. Theβ-Gase and CMCase were purified and physical and chemical properties were studied. The molecular mass ofβ-GaseⅠ,β-GaseⅡand CMCase are 126.0kD, 77.8kD and 33.2kD, respectively. The optimum temperature are all 60℃, the three enzymes are stable when the tempture is below 40℃, 40℃and 50℃. The optimum pH value are 4.4~5.2, 3.6~4.0 and 2.8, respectively, and the three enzymes are stable when pH value is 4.4~6.8, 2.8~6.8 and 2.8~6.8. Mn~(2+), Ca~(2+), Sn~(2+) and Li+ are able to enhance the activity ofβ-GaseⅠ, however, Mg~(2+), Zn~(2+), Cu~(2+), Co~(2+), Fe~(2+) and Fe3+ can inhibit its activity. Mn~(2+), Sn~(2+) and Fe~(2+) are able to enhance the activity ofβ-GaseⅡ, whereas, Zn~(2+), Cu ~(2+), Co~(2+) and Fe3+ can inhibit the activity. Sn~(2+) are able to enhance activity of CMCase, however, Mn~(2+) and Cu~(2+) can inhibit the activity. Km and Vmax ofβ-GaseⅠare 622.306 mg·mL~(-1) and 15.480 mg·mL~(-1)·min~(-1), respectively. Km and Vmax ofβ-GaseⅡare 26.689 mg·mL~(-1) and 0.508 mg·mL~(-1)·min~(-1), respectively. Km and Vmax of CMCase are 1.744mg·mL~(-1) and 14.124mg·mL~(-1)·min~(-1), respectively.β-GaseⅠandβ-GaseⅡcan hydrolysis Salicin obviously, and CMCase can hydrolysis CMC-Na obviously.
     The cellulase peak was showed in the FT-IR spectra ofβ-GaseⅠ,β-GaseⅡand CMCase. The infrared spectrum of the amide I and II bands of them showed that the secondary structure is mainly consist ofα-helix structures in solid phase.
     C1, CMCase andβ-Gase from the crude enzyme of H-11 can all adsorb and desorb MCC, whereasβ-Gase can’t.β-GaseⅠ,β-GaseⅡ, CMCase from H-11 and C1, CMCase,β-Gase from the crude enzyme of C-08 can also adsorb and desorb MCC.
     β-GaseⅠandβ-GaseⅡhave strong promoting function for the hydrolyzing of cellulose, whereasβ-Gase,β-GaseⅡand CMCase of H-11 don’t have the function to crude enzyme of C-08.
     The solid fermentation, liquid fermentation of H-11 and the solid fermentation of C-08 all exist the mechanism of oxidizing hydrolysis.
引文
1 P.A.M. Claasen, J. B. van Lier. Utilisation of bilmass for the supply of energy carriers. Appl Microbiol Biotechnol.1999, 52: 741~ 755
    2陈洪章,李佐虎.纤维素原料微生物与生物量全利用.生物技术通报. 2002, (2): 25~29
    3 R.A.J. Warren. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol. 1996, 50: 183~212
    4章克昌.乙醇与蒸馏酒工艺学.北京:中国轻工业出版社, 1995, 293~295
    5高洁,汤烈贵.主编.纤维素科学.北京:科学出版社, 1996, 24~31
    6刘洁,张玉忠,高培基,等.天然纤维素超纤维结构的扫描隧道显微镜研究.电子显微学报. 1997, 16(6): 729~732
    7何钢,陈介南,王义强,等.酵母工程菌降解纤维素的研究进展.生物质化学工程. 2006(1): 173~177
    8阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展.生物化学和生物物理进展. 1999, 26(3): 233~237
    9吴斌,胡肄珍.产纤维素酶放线菌的研究进展.中国酿造. 2008, (1): 5~8
    10彭志英.主编.食品生物技术.北京:中国轻工业出版社, 1999, 43~48
    11肖春玲,徐常新.微生物纤维素酶的应用研究.微生物学杂志. 2002, 22(2): 33~35
    12李素芬,霍贵成.纤维素酶的分子结构组成及其功能.中国饲料. 1997, 13: 12~14
    13吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向.生物工程进展. 1994, 14(4): 25~27
    14 B. Henrissat, M. Claeyssens, P. Tomme, et al. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989, 81: 83~95
    15 P. Beguin. Molecularbiology of cellulose degradation. Annm Rev Microbiol. 1990, 44: 219~248
    16张中良,兰云贤,章元明,等.不同培养条件对纤维素酶产量和酶活力影响.中国饲料. 1998, 18: 10~11
    17张苓花,王运吉.固态混合发酵生产纤维素酶的研究.中国饲料. 1998, 2: 14~17
    18王景林,刘晓明,吴东林,等.纤维索酶产生菌黑曲霉X-15的选育及其产酶条件.中国兽医学报. 2000, 20(1): 97~99
    19汤斌,陈阿娜,张庆庆.纤维素酶产生菌的筛选鉴定和产酶条件优化.食品与发酵工业. 2007, 33 (6): 6~8
    20张加春,王权飞,余尊祥,等.里氏木霉纤维素酶产生条件研究.食品与发酵工业. 2000, 26(3): 21~23
    21陈春洪,邝哲师,陈薇,等.里氏木霉纤维素酶产生条件的研究.微生物通报. 1998, 25(2): 77~79
    22夏黎明.固体发酵生产高活力纤维二糖酶.食品与发酵工业. 1999, 25(2): 1~5
    23张礼星,石贵阳,徐柔,等.里氏木霉利用麦糟生产纤维素酶.食品与发酵工业. 1999, 25(3): 23~25
    24习兴梅,曾光明,郁红艳,等.黑曲霉Aspergillus niger木质纤维素降解能力及产酶研究.农业环境科学学报. 2007,26(4): 1506~1511
    25郑佐兴,段明星,徐文联,等.高活性纤维素酶菌株的筛选及其产酶条件的研究.微生物学杂志. 1996, 16(1): 35~38
    26王成华,王健鹏,马梦瑞,等.高活性纤维素酶的研究.中国饲料. 1997, 8: 2~24
    27施安辉,浏淑君,肖海杰.纤维素酶固体发酵及其在食品工业中的应用.食品科学. 1997, 18(7): 13~18
    28王景林,尹清强,吴东林,等.高活力纤维素酶菌株康氏木霉B-7的选育与产酶条件的研究.生物技术. 1996, 6(6): 14~17
    29赵小立,贺筱蓉,周红军,等.黑曲霉产纤维素酶菌种的激光选育.中国激光. 1996, 23(7): 667~672
    30邬敏辰,李江华,邹显章.黑曲霉固体培养生产纤维素酶的研究.酿酒. 1997, 6: 5~9
    31邬敏辰,李剑芳.里氏木霉纤维素酶突变株选育的研究.中国酿造. 1998, 2: 11~14
    32段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较.粮食与饲料工业. 2000, 3: 24~26
    33吴克,杨本宏,张洁,等. Trichoderma viride菌生物量测定及其纤维素酶合成特征.食品与发酵工业. 2002, 28(8): 9~12
    34 L.M. Xia. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochemistry. 1999, 34: 909~ 912
    35 T. Sun, B.H. Liu, Z.H. Li, et al. Effects of air pressure amplitude on cellulose productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochemistry. 1999, 34: 25~29
    36 M.C.O. Souza, I.C. Roberto, A.M.F. Milagres. Solid-state fermentation for xylanase production by Thermoascus aurantiacus using response surface methodology. Appl Microbiol. 1999, 52: 768~772
    37 G.C. Marcel, P. Leticia, P. Moreno, et al. Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on gugar can bagasse. Bioresource Technology. 1999, 68(2): 173~178
    38 V.A. Awafo, D.S. Chahal, B.K. Simpson. Evaluation of combination treatments of sodium hydroxide and steam explosion for the production of cellulose-systems by two T. reesei mutants under solid-state fermentationconditions. Bioresource technology. 2000, 73(3): 235~245
    39张辉,桑青,马艳霞.嗜热侧孢霉固体发酵产纤维素酶条件研究.食品研究与开发. 2008, 29(1): 4~7
    40 S.A. El-Nawwi, Amal Abd. El-Kader. Production of single-cell protein and cellulose from gugarcane bagasse: effect of culture factors. Biomass and Bioenergy. 1996, 11(4): 361~364
    41李兰晓,杜金华,商日玲,等.二次通用旋转试验设计优化黑曲霉固态发酵纤维素酶条件的研究.食品与发酵工业. 2008, 34(1): 84~87
    42张辉.嗜热纤维素分解菌TH329固体发酵产纤维素酶条件初步研究.安徽农业科学. 2008 , 36(6) : 2189 ~ 2190 , 2200
    43 S.D. Vlaev, G. Djejeva, V. Raykovska, et al. Cellulase production by Trichoderma sp. grown on comfibre substrate. Process Biochemistry. 1997, 32(7): 561~565
    44梁霆,王遂,莫志忠,等.纤维素酶液体深层发酵条件的研究.生物技术. 1997, 7(6): 22~26
    45刘清锋,支晓鹏,徐惠娟,等.纤维素降解菌青霉T24-2的分离及产酶特性.工业微生物. 2007, 37(3): 15~19
    46谢宇,王平宇,汪月华.一株高活力纤维素酶产生菌-黑曲霉No.5.1产酶条件研究.南昌航空大学学报(自然科学版). 2007, 21(2):55~58
    47管斌,孙艳玲,谢来苏,等.抗分解代谢阻遏纤维素酶突变株的选育.无锡轻工大学学报. 2000, 19(3): 244~247
    48余晓斌,具润漠.里氏木霉液体发酵法生产纤维素酶.食品与发酵工业. 1998, 24(1): 20~25
    49余晓斌,具润漠.分批与流加发酵法生产纤维素酶的研究.食品与发酵工业. 1999, 25(1): 16~19
    50刘颖,张玮玮,王馥.绿色木霉产纤维素酶发酵条件的研究.食品工业科技. 2008年3月, 128~130
    51李忠兴,焦旭东,郝志军.康宁木霉液体深层发酵生产纤维素酶.微生物通报. 1999, 26(6): 403~405
    52陈庆森,刘剑虹,潘建阳,等.利用多菌种混合发酵转化玉米秸秆的研究.生物技术. 1999, 9(4): 15~20
    53谭宏,谢小保,莫勇,等.里氏木霉液体发酵产纤维素酶的研究.工业微生物. 1996, 26(1): 7~11
    54林开江,阮丽娟,王龙英,等.用玉米粉生产纤维素酶的发酵工艺探讨.生物技术. 1998, 8(2): 31~34
    55王遂,李洁,郑之兰,等.纤维素酶液体深层生产工艺的研究.生物技术. 1998, 8(6): 26~31
    56郝志军,李忠兴.青霉NXP25纤维素酶的产生及性质.微生物学通报. 2002, 29(1): 64~66
    57张培德,胡探,余文博.添加蜗牛酶对纤维素酶产生菌发酵的影响初探.工业微生物. 2000, 30(4): 6~10
    58 M.D. Romero, J. Aguado, L. Gonzalez, et al. Cellulase production by Neurospora crassa on wheat straw. Enzyme and Microbial Technology. 1999, 25: 244~250
    59 F.C. Domingues, J.A. Queiroz, J.M.S. Cabral, et al. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology. 2000, 26: 394~401
    60 V. Svetlana, M.R Marten, D.F Ollis. Kinetic model for batch cellulase production by Trichoderma reesei Rut C-30. Journal of Biotechnology. 1997, 54: 83~94
    61谢宇,赵金生,尚晓娴.黑曲霉No.5.1纤维素酶液体发酵培养基研究.江西农业大学学报. 2008, 30(1): 127~130
    62 K. Reczey, Z.S. Szengyel, R. Eklund, et al. Cellulase production by T. reesei. Bioresource Technology. 1996, 57: 25~30
    63高建民,翁海波,席宇,等.一株嗜热嗜酸纤维素酶高产霉菌分离鉴定及其酶学性质研究.微生物学通报. 2007, 34(4): 715~718
    64舒国伟,陈合,谢宏霞,等.绿色木霉HY-07液体发酵产纤维素酶的研究.酿酒科技. 2008 (2): 30~33
    65吴翔,陈强,徐丽华,等.一株降解纤维素的高温放线菌的筛选及其产酶条件研究.农业环境科学学报. 2007, 26(增刊): 101~104
    66潘建梅.产纤维素酶细菌的筛选及其产酶条件的研究.淮海工学院学报(自然科学版). 2008, 17(1): 65~67
    67王冬,曲音波,高培基. L-山梨糖提高木霉纤维素酶合成速率机制的研究.真菌学报. 1995, 14, (2): 143~147
    68王冬,曲音波,高培基.腺苷三磷酸和环腺苷单磷酸对丝状真菌纤维素酶合成的调节.微生物学报. 1996, 36(1): 12~18
    68夏黎明,代淑梅,岑沛霖.应用固定化里氏木霉糖化玉米秆纤维素的研究.微生物学报. 1998, 39(2): 114~119
    70陈盛,黄智跃,刘艳如.壳聚糖固定化纤维素酶的研究.生物化学与生物物理进展. 1996, 23(3): 250~254
    71 R. Haapala, E Parkkinen, P. Suominen, et al. Production of endo-1, 4-β-glucanase and xylanase with nylon-web immobilized and free Trichoderma reesei. Enzyme and Microbial Technology. 1996, 18: 495~501
    72 H. Tilbeurgh, P. Tomme, M. Claeyssens, et al. Limeted proteolysis of the cellobilhydrolase I from T. reesei. FEBS Lett. 1986, 204(2): 223~227
    73 N.R. Gilkes. Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991, 55(2): 303~315
    74阎伯旭,孙迎庆,高培基.有限酶切拟康氏木霉纤维素酶分子研究其结构域的结构和功能.纤维素科学与技术. 1998, 6(3): 1~9
    75汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能.生物工程进展. 2000, 20(2): 37~40
    76 P. Tomme, R.A. Warren, N.R. Gilkes. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995, 37(1): 1~81
    77 P.J. Kraulis, T.A. Jones. Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures. Protein. 1989, 2(1): 188~201
    78 G.Y. Xu, E. Ong, N. Gilkes, et al. Solution structure of a Cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995, 34(21): 6993~7009
    79 J. Tormo, R. Lamed, A.J. Chirino, et al. Crystal structure of a bacterial family-Шcellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 1996, 15(21): 5739~5751
    80 M. Linder, G. Lindeberg, T. Reinikainen, et al. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett. 1995, 372(1): 96~98
    81 M. Linder, M.L. Martine, M. Kontteli, et al. Identification of functionally important aminoacids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci.. 1995, 4(6): 1056~1064
    82 J. Rouvinen, T. Bergfors, T. Teeri. Three-dimisional structure of cellobiohydrolaseⅡfrom T. reesei. Science. 1990, 249(4967): 380~386
    83 M. Juy, A.G. Amit, P.M. Alzari, et al. Crystal structure of a thermostable bacterial cellulose degrading enzyme. Nature. 1992, 357(6373): 89~91
    84 M. Spezio, D.B. Wilson, P.A. Karplus. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry, 1993, 32(38): 9906~ 9916
    85 C. Divne, J. Stahlberg, T. Reinikaine, et al. The three-dimensional crystal structure of the catalytic core of cellobiohydrolaseI from Trichoderma reesei. Science. 1994, 265(5171): 524~528
    86 M. L. Sinnott. Catalytic mechanism of enzymatic glycosyl transfers. Chem Rev. 1990, 90(12): 1171~1192
    87 Y. Mitsuishi, S. Nitisinprasert, M. Salohermo, et al. Site-direte mutagenesis of the putative catalytic residue of T. reesei. FEBS Lett. 1990, 275(1): 135~138
    88 R. Macarron, J. Beeumen, B. Henrissat, et al. Identifecation of an essential Glutamate residue in the active site of endoglucanaseШ. FEBS Lett. 1993, 316(2): 137~140
    89 D. E. Trimbur, R. A. Warren, S. G. Withers. Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosedase from Agrobacterium faecalis. J Bio Chem. 1992, 267(15): 10248~10251
    90 D. Tull, S.G. Withers, N.R. Gilkes, et al. Glutamic acid 274 is thenucleophile in the active site of a retaining exoglucanase. J Biol Chem. 1991, 266(24): 15621~15625
    91 R. Dominguez. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol. 1995, 2(2): 569~576
    92 G. Sulzenbacher. Structure of the Fusarium axysporum endoglucanaseI with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry. 1996, 35(48): 15280~15287
    93王丹,林建强,曲音波,等.纤维素酶吸附与纤维素水解发酵工程学科的进展一第三次全国发酵工程学术讨论会论文集.北京:中国轻工业出版社, 2002, 324~327
    94李宪臻,黄云战,徐德贵,等.天然纤维素的微生物降解机理研究进展.食品与发酵工业. 1996, 22(2): 74~78
    95 N. Ortega, M.D. Busto, M. Perez-Mateos. Kinetics of cellulose saccharification by Trichoderma reesei cellulases. International Biodeterio -ration&Biodegradation. 2001, 47: 7~14
    96 A.E. Humphrey. Hydrolysis of cellulose: Mechanism of enzymatic and acid catalysis. Brown R D and Jurasek K (Ed.), Advances in chemistry series 182, ACS, Washington D.C, 1979, 25
    97 E.T. Reese, M. Mandels. Cellulose and celloliose derivatives: part v, Bikales M N and Segal L(Ed), Iohn Wiley&.Sons. Inc., New York, 1971, 1079~1094
    98 M.P. Coughlan. Cellulases: production, properties and applications. Biochem Soc Trans. 1985, 13: 405~406
    99 M. Mandels. Applications of cellulases. Biochem Soc Trans. 1985, 13: 414~ 415
    100 E. T. Reese, M. Mandels. Rolling with the time: production and application of Trichoderma reesei cellulase. Annual Report of Fermentation Processes. 1984, 7: 1~20
    101 P. Bajpai. Applications of enzymes in the pulp and paper industry. Biotechnol prog. 1999, 15: 147~157
    102 E.A. Bayer, E. Morag, R. Lamed. The Cellulosome: a treasure-trove for biotechnology. Trends Biotechnol. 1994, 12: 379~386
    103 M.K. Bhat, S. Bhat. Cellulose degrading enzymes and their potential Industrial applications. Biotechnol. Adv. 1997, 15: 583~620
    104 M.K. Bhat, S. Bhat. Clostridium thermocellum cellulosome: dissociation, isolation and characterization of subunits and the potential biotechnological implications. In: Pandalai SG, editor, Recent Research Developments in Biotechnology and Bioengineering, Vol. I, Part-I, Trivandrum, India, Research Signpost, 1998, 59~84
    105 T. Godfrey, S. West. Industrial Enzymology, 2 nd ed. London: Macmillan Press, 1996, 1~8
    106 G.E. Harman, C.P. Kubicek. Trichoderma and Gliocladium: Enzymesbiological control and commercial applications, Vol.2. London: Tanlor& Francis Ltd, 1998, 393
    107 K. Poutanen. Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol. 1997, 8: 300~306
    108 H. Uhlig. Industrial enzymes and their applications, New York: John Wiley &Sons, Inc., 1998, 435
    109 J. Visser, A.G.J. Voragen. Prctins and pectinases. Proceedings of an International Symp., Progress in Biotechnology, Vol.14. Amsterdam: Elsevier, 1996, 990
    110 M. Akhtar. biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung. 1994, 48: 199~202
    111 G. Leatham, G. Myers, T. Wegner. Biochermical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi J. 1990, 73: 197~200
    112 P. Noe, J. Chevalier, F. Mora, et al. Action of enzymes in chemical pulp fibres. Part II: enzymatic beating. J Wood Chem Technol. 1986, 6: 167~184
    113 J C. Pommier, G. Goma, JL. Fuentes, et al. Using enzymes to improve the process and the product quality in the recycled paper industry. Part 2: industrial applications. Tappi J. 1990, 73: 197~202
    114陆燕华,刘忠.纤维素酶及其在造纸工业中的应用.西南造纸. 2005, 34(4): 40~42
    115毛连山,余世袁.木聚糖酶在纸浆漂白中应用的研究现状.中国造纸学报. 2006, 21(3): 93~98
    116 J. Buchert, T. Oksanen, J. Pere, et al. Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Harman GF, Kubicek CP.editors. Teichoderma&Gliocladium Enzymes, biological control and commercial applications. 1998, 2, 343~ 363
    117朱凯,汪洋,王传槐.高活性生物复合酶废纸脱墨的研究. China Pulp & Paper Industry. 2006, 27(11): 29~32
    118 Y.M. Galante, A. De Conti, R. Monteverdi. Application of Trichoderma enzymes in textile industry.In: Harman GF, Kubicek CP, editors. Trichoderma&Gliocladium Enzymes, biologicalcontrol and commercial applications. London: Taylor&Francis, 1998, 2: 311~326
    119许爱国,阎春娟,徐升运,等.中性纤维素酶在棉织物整理中的应用.印染. 2006, (21): 11~12
    120李新社,陆步诗,黎小武.曲酒丢糟培养白地霉生产富硒饲料蛋白的研究.酿酒科技. 2007, 8(158): 144~145, 149
    121薛艳林,白春生,玉柱,等.乳酸菌和纤维素酶制剂对小麦秸黄贮饲料品质的影晌.中国饲料. 2007,15: 38~40
    122 W.D. Cowan. Animal feed. In: Godfrey T, West S, editors, Industrial Enzymology. 2 nd ed. London, Macmillan Press, 1996, 360~371
    123 G.A. Walsh, RF. Power, DR. Headon. Enzymes in animal feed industry. Trends Biotechnol. 1993, 11: 424~430
    124 S. Thomke, M. Rundgreen, K. Hessel man. The effect of feeding high-viscosity barley to pigs. In: Proceedings of the 31st meeting of the European Association of Animal Production, Commission on Animal Production. Munich, Germany. 1980, 5
    125 H. Graham, W. Lowgren, D. Pettersson, et al. Effect of enzyme supplemen -tation on digestion on digestion of a barley/pollard based peg feed. Nutrition report Intenational. 1988, 38: 1073~1079
    126高春生,范光丽,李建华,等.纤维素酶对草鱼生长性能和饲料消化率及体成分的影响.中国农学通报. 2006, 22(10): 473~475
    127高春生,程会昌,霍军,等.纤维素酶在鲤鱼饲料中的应用试验.粮食与饲料工业. 2006, 9: 32~33
    128 L.J. Kung, E.M. Kreck, R.S. Tung, et al. Effects of a live yest culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. J Dairy Sci. 1997, 80: 2045~2051
    129 G.E. Lewis, C.W. Hunt, W.K. Sanchez, et al. Effect of directfed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Animal Sci. 1996, 74: 3020~3028
    130 W. Burroughs, W. Woods, S.A. Ewing, et al. Enzyme additions to fattening cattle rations. J Anim Sci. 1960, 19: 458~464
    131 J.W. Rust, N.L. Jacobsen, AD. Mcgilliard, et al. Supplenmentation of dairy calf diets with enzymes.1. Effect on nutrient utilization and on the composition of rumen fluid. J Anim Sci. 1965, 24: 156~160
    132 T.W. Perry, E.D. Purkhiser, W.M. Beeson. Effects of supplemental enzymes on nitrogen balance. Digestibility of energy and nutrients and on growth and feed efficiency of cattle. J Anim Sci. 1966, 25: 760~764
    133 B. Theurer, W. Woods, W. Burroughs. Influence of enzyme supplements in lamb fattening rations. J Anim Sci. 1963, 22: 150~154
    134 K.A. Beauchemin, L.M. Rode, V.J.H. Sewait. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci. 1995, 75: 641~644
    135 S. Ali, J. Hall, K.L. Soole, et al. Targeted expression of microbial cellulases in transgenic animals.in:petersen SB, Svensson B, Pedersen S, editors. Carbohydrate Bioengineering. Progress in: Biotechology, 10. Amsterdam: Elsevier, 1995, 279 ~293
    136 J. Hall, A. Simi, M.A. Surani, et al. Manipulation of the repertoire of digesteve enzymes secreted into the gastrointestional tract of transgenic mice. Bio/Technol. 1993, 1: 376~379
    137史占全,蒋林树,叶宏伟.稻草加酶青贮饲喂育成牛的效果研究.中国奶牛. 2000, (5): 24~26
    138 C. Grassin, P. Fuquembergue. Fruit juices.In: Godfrey T, West S, editors.Industrial enzymology, 2 nd ed. UK: Macmillan, 1996, 226~234
    139 R.A. Baker, J.H. Bruemmer. Quality and stability of enzymically peeled and sectioned citrus fruit, In: Nagy S, Attaway JA, editors. Citrus Nutrition and Quality, Washington, DC: American Chemical Society, 1989, 140~148
    140 R.A. Baker, L. Wicher. Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol. 1996, 7: 279~284
    141 H.U. Humpf, P. Schrier. Bound aroma compounds from the fruit and the leaves of Blackberry (Rubus laciniata L.). J Agric Food Chen. 1991, 39: 1830~1832
    142 G. Krammer, P. Winterhalter, M. Schwab, et al. Glycosidecally bound aroma compounds in the fruits of prunus species: Apricot (P.armeniaca, L.), Peach (P.persica, L.). Yellow plum (P.Domestica, L.ssp. Syriaca). J Agric Food Chem. 1991, 39: 778~ 781
    143 C. Marlatt, C-T. Ho, M. Chien. Studies of aroma constituents bound as glycosides in tomato. J Agric Food Chem. 1992, 40: 249~252
    144 A. Pabst, D. Barron, P. Etievant, et al. Enzymetic hydrolysis of bound aroma constituents from raspberry fruit pulp. J Agric Food Chem. 1991, 39: 173~175
    145 E. Pajunen. Optimal use ofβ-glucanases in wort production: In: EBC-Symposium on wort production, Monograph XI, Maffliers, France, 1986, 137~148
    146 J. Oksanen, J. Ahvenainen, S. Home. Microbial cellulose for improving filterability of wort and beer. In: Proc Eur Brew Chenm Helsinki, 1985, 419~425
    147 A.M. Canales, R. Garza, J.A. Sierra, et al. The application of aβ-glucanase with additional side activities in brewing. MBAA Tech Q. 1988, 25: 27~31
    148 C. Caldini, F. Bonomi, P.G. Pifferi, et al. Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine. Enzyme Microb Technol. 1994, 16: 286~291
    149 Y.Z. Gunata, C.L. Bayonove, R.E. Cordonnier, et al. Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamiiβ-glucosidases. J Sci Food Agric. 1990, 50: 499~506
    150高培基,张玉臻.纤维素糖化高粱糠酿造白酒的实验.食品与发酵工业. 1984(1): 19
    151施安辉.经济微生物.合肥:安徽科学技术出版社, 1989, 46
    152吕伟民.纤维素酶在酒精发酵中的应用.酿酒. 2008, 35(2): 50~51
    153云秀芳.纤维素酶在酱油生产中的应用研究.中国调味品. 2001, (3): 15~19
    154杨吉霞,蔡俊鹏,祝玲.纤维素酶在中药成分提取中的应用.中药材. 2005, 28(1): 64~67
    155隋晓璠,王超,李永吉,等.均匀设计优化纤维素酶解提取三七工艺的研究.中医药学报. 2005, 33(4): 8~10
    156王悦,肖旭萍,李秉超.桔皮中提取黄酮类化合物方法的比较研究.食品研究与开发. 2007,28(4): 73~76
    157王宏志,喻春皓,高钧,等.酶法提取黄岑中黄芩素、汉黄芩素.中药材. 2007年7月, 851~854
    158郑立颖,魏彦明,陈龙.纤维素酶在黄芪有效成分提取中的应用.甘肃农业大学学报. 2005, (1): 94~96
    159王岩岩,李文娟.纤维素酶提取陈皮黄酮的工艺条件.食品与生物技术学报. 2008, 27(2): 71~74
    160焦平林,张秀前.纤维素酶治疗黄牛胃肠疾病实验报告.畜牧兽医杂志. 1996(15): 25~26
    161陈侠甫,阎维公.应用纤维素酶治疗马牛胃肠病.中国兽医杂志. 1998(2): 32~33
    162韩清霞,沈火林,张振贤.芹菜胚性细胞悬浮系原生质体分离及再生植株.园艺学报. 2007, 34(3): 665~670
    163潘力,莉莉风,彭昶,等.酱油曲霉孢子原生质体的制备与紫外诱变育种.食品与发酵工业. 2006, 32(8): 1~4
    164王燕.双亲灭活米曲霉原生质体融合中原生质体制备的研究.中国酿造. 2007,5(170): 19~22
    165 Z. Assouline, H. Shen, D.G. Kilurn, et al. Production and properties of a factor X-cellulose-binding domain fusion protein. Protein Eng. 1993, 6: 787~792
    166 P. Tomme, N.R. Gilkes, R.C. Miller, et al. An internalcellulose-binding domain mediates adsorption of an engineered bifuctional xylanase/cellulase. Protein Eng. 1994, 7: 117~123
    167黎海彬.褚色高温单孢菌PE-21纤维素酶的纯化及固定化研究.现代化工. 2007年6月, 181~183,185
    168 M. Penttila. Heterologous protein production on Trichoderma. In: Harman GF, Kubicek CP, editors. Trichoderma&Gliocladium-Enzymes, biological control and commercial applications, Vol 2. London: Taylor&Francis, 1998, 365~382
    169 A. Harkki, J. Uusitalo, M. Bailey, et al. A novel fungal expression system: sccretion of active calfchymosin from the filamentous fungus Trichoderma reesei. Bio/Technol. 1989, 7: 596~603
    170 M. Ward, L.J. Wilson, K.H. Kodama, et al. Improved production of chymosin in Aspegillus by expression as a glucoamylase chymosin fusion. Bio/Technol, 1990, 8: 435~440
    171 M. Saloheimo, V. Bajaras, M-L. Niku-Paavola, et al. A lignin peroxidase -encoding Cdna from the white-rot fungus Phlebia radiate: characterization and expression in Trichoderma reesi. Gene. 1989, 85: 343~351
    172 M. Saloheimo, M-L. Niku-Paavola. Heterologous production of ligninolyticenzyme: expression of the phlebia radiate laccaqse gene in Trichoderma reesei. Bio/Technol. 1991, 9: 987~990
    173 V. Joutsjoki, T. Torkkeli. H. Nevalainen. Transformation of T. reesei with the H. resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichodema reesei. Curr Gent, 1993, 24: 223~229
    174 M. Paloheimo, A. Miettinen-Oinonen, T. Torkkeli, et al. Enzyme production in Trichoderma reesei uding the cbhl promoter.In: Suominen P, Reinikainen T, editors. Proceedings of the 2nd Tricel Symposium. 1993, 8: 229~237
    175 E. Margolles-Clark, CK. Hayes, GE. Harman, et al. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol. 1996, 62: 2145~2151
    176 E. Nyyssonen, M. Penttila, A. Harkki, et al. Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Biotechnol. 1993, 11: 591~595
    177 T. Benitez, C. Limon, J. Delgado-Jarana, et al. Glucanolytic and other enzymes and their genes.In: Harman GF, Kubiced CP, editors. Trichoderma &Francis. 1998, 101~127
    178 I. Chet, N. Benhamou, S. Haran. Mycoparasitism and lytic enzymes. In: Hanman GF, Kubiced CP, editors. Trichoderma&Gliocladium Enzymes. Biological control and commercial applications. 2, London: Taylor& Francis. 1998, 327~342
    179 M. Lorito, CK. Hayes, A. Di Pietro, et al. EL Purification, characterization, and synergistic activety of a lucan-1,3-glucosedase and N-acetyl-β-gluco -saminidase from Trichoderma harzianum. Phytopathol. 1994, 84: 398~405
    180 A. Bruce, U. Srinivasan, HI. Stainee, et al. Chitinase and laminarinase production in liquid culture by Trichoderma spp. And their role in biocontrol of wood decay fungi. Int Biodeter Biodegr. 1995, 10: 337~353
    181 J. De La Cruz, JA. Pintor-Toro, T. Benitez, et al. Anovel endo-β-1,3 -glucanase, BGN13.1, involved in the mycoparasitism of T. harzianum. J Bacteriol. 1995, 177: 6937~6945
    182 B.A. Bailey, RD. Lumsden. Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens.In: Harman GF, Kubiced CP, editors. 2, Trichoderma&Gliocladium Enzymes, biological control and commercial applications, London: UK, Taylor &Francis. 1998, 327~342
    183沈萍,范秀容,李广武.主编.微生物学试验(第三版).高等教育出版社, 215
    184张宇昊,王颉,张伟,等.一种改进的纤维素分解菌鉴别培养基.纤维素科学与技术. 2004, 12(1): 33~36
    185王晓芳,徐旭士,吴敏,等.一株纤维素分解菌的分离与筛选.生物技术. 2001, 11(2): 27~30
    186 M. Mandels, R. Andreotti, C. Roche. Measurement of saccharifyingcellulase. Biotechnol. Bioeng. Symp. 1976, 6, 21~23
    187 M. MANDELS, D. STERNBERG.. Recent advances in cellulose technology. J Ferment Technol. 1976, 54(4): 267~286
    188楚春雪,李多川,郭润芳.一株嗜热毛壳菌β-葡萄糖苷酶的分离纯化及特性.菌物学报. 2004, 23(3): 397~402
    189魏培莲,岑沛霖,盛春琦. 3种固态发酵生物量测定方法的比较.食品与生物技术学报. 2006, 25(1): 60~64, 69
    190黄炜,方祥年,夏黎明.固定化细胞发酵半纤维素水解液产木糖醇的研究. 2004, 24(1): 29~33
    191孙冬梅,杨谦,宋金柱,等.黄绿木霉固定化生产纤维素酶及酶学特性的研究.林产化学与工业. 2006, 26(2): 79~82
    192李建武,肖能赓,余瑞元,等.生物化学实验原理和方法.北京大学出版社, 2001: 174~175
    193周先碗,胡晓倩.生物化学仪器分析与实验技术.化学工业出版社, 2003: 209
    194郭尧君.蛋白质电泳实验技术.科学出版社, 1999: 123~157
    195 B. Halliwell, J.M.C. Getteridge. R A ed. Green-wald. handbook of methods for oxygen radical research. Boca Raton CRC Press. 1985, 177~180
    196 C.R. Gibbs. Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Anal Chem. 1976, 48: 1197~1201
    197张加春,易琴,黄遵锡.纤维素酶曲的潜盘生产研究.云南师范大学学报(自然科学版). 2002(2): 50~52
    198赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法.微生物学通报. 1999, 26(1): 63~65
    199房兴堂,陈宏,赵雪锋,等.秸秆纤维素分解菌的酶活力测定.生物技术通讯. 2007,18(4): 628~630
    200张超,李艳宾,张磊,等.真菌产纤维素酶培养基中刚果红转移机理研究.微生物学通报. 2006, 33 (6):12~16
    201沈雪亮,夏黎明.产纤维素酶细菌的筛选及酶学特性研究.林产化学与工业. 2002, 22(1): 47~51
    202郁红艳,曾光明,黄国和,等.木质素降解真菌的筛选及产酶特性.应用与环境生物学报. 2004 ,10 (5) :639~642
    203孙宪昀,曲音波,刘自勇.青霉木质纤维素降解酶系研究进展.应用与环境生物学报. 2007, 13 (5) : 736~740
    204 K. Lonsane, G. Saucedo-Castaneda, M. Raimbaul, et al. Scale-up strategies for solid state fermentation systems. Process Biochemistry, 1992, 27(5): 259~273
    205 D. Ryoo, V.G. Murphy, M.N. Karim. Evaporative temperature and moisture control in a rocking reactor for solid substrate fermentation. BiotechnologyTechniques, 1999, 5(1): 19~24
    206曲音波,高培基,王祖农.斜卧青霉纤维素酶系的酶学研究.微生物学报. 1988, 28(2): 121~130
    207郑亚平,余晓斌.碳源对绿色木霉ZC产中性纤维素酶的影响.无锡轻工大学学报. 2003, 22(2): 30~33
    208杨夏,罗长勋,冯永秀.不同培养条件对纤维素酶产量和酶活力影响的研究.四川畜牧兽医医学院学报. 1998, 12(3-4): 1~5
    209王亚林,严建芳,吴灵英,等.产纤维素酶细胞固定化研究.武汉工业学院学报. 1999, 4: 1~5
    210 T. Nisizawa. Catabolite repression of cellulase formation in Trichoderma viride. J. Biochem.. 1972, 71, 999~1007
    211王希国,杨谦,燕红,等.梅林青霉液态发酵生产纤维素酶条件的研究.农业环境科学学报.2007, 26: 97~100
    212叶汉玲,王传槐,高鸿海.优良纤维分解菌的筛选及其产酶研究.南京林业大学学报. 1994, 18(3): 55~58
    213舒远才,张运强,周金燕,等.纤维素酶的液体发酵.纤维素科学与技术. 1994(2): 83~88
    214刘光烨,张发群.绿色木霉高效纤维素酶菌株的选育.纤维素科学与技术. 1994, 1:27~31
    215王菁莎,王颉,刘景彬.康宁木霉固态发酵秸秆生产纤维素酶的研究.纤维素科学与技术. 2005, 13(4): 26~31
    216林元山,张曙光,梁智群.绿色木霉固态发酵稻草秸秆产纤维素酶的研究.湖南农业科学. 2007, (3): 46~48
    217吴克,蔡敬民,刘斌,等.木霉菌株T6木聚糖酶固态发酵条件和酶学性质研究.菌物系统, 2001, 20(2): 191~195
    218吴兴泉,张一村,娄玉华,等.康宁木霉产纤维素酶固态发酵条件研究.河南工业大学学报(自然科学版). 2008, 29(3): 43~46
    219崔福锦,刘菡,韩辉,等.康宁木霉cp88329纤维素酶产生条件的研究.微生物学通报, 1995, 22(2): 72~76
    220胡仕凤,唐俊,高永东,等.康氏木霉REMI突变株产纤维素酶固态发酵条件.湖南农业大学学报(自然科学版). 2008, 34(2): 207~211
    221 I. Membrillo, C. Sa′nchez, M. Meneses, et al. Effect of substrate particle size and additional nitrogen source production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresource Technology. 2008, 99: 7842~7847
    222 M. Tellez-Tellez, C. Sanchez, O. Loera, et al. Differential patterns of constitutive intracellular laccases of the vegetative phase for Pleurotus species. Biotechnology Letters. 2005, 25, 1391~1394
    223 A. Arana-Cuenca, A. Roda, A.L Te'llez. Comparative analysis oflaccase-isozymes patterns of several related Polyporaceae species under different culture conditions. Journal of Basic Microbiology. 2004, 44: 79~87
    224 G.V. Reddy, P. Ravindra Babu, P. Komaraiah, et al. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajorcaju). Process Biochemistry . 2003, 38: 1457~1462
    225杨绍青,闰巧娟,江正强,等.嗜热拟青霉固体发酵产木聚糖酶条件的优化.微生物学通报, 2006, 33(3): 1~6
    226杨斌,吕燕萍,高孔荣,等.分解蔗渣的研究, I.菌株的选育及其固态发酵条件的研究. 1997, 16(4): 311~319
    227 M. Latifian, Z. Hamidi-Esfahani, M Barzegar. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology. 2007, 98: 3634~3637
    228陈书峰,赵亮,刘德华.绿色木霉在稻壳和麸皮混合基质上固态发酵生产纤维素酶的研究.食品与发酵工业. 2004, 30(1): 9~12
    229夏黎明,余世袁,程芝.分批填料促进固定化细胞合成纤维素酶.林产化学与工业. 1993, 13(3): 217~222
    230 C.P. KUBOCEK, R. MESSNER, F. GRUBER, et al. The Trichoderma reesei cellulase regulatory puzzle: from the interior life of a secretory organism. Enzyme Microb Technol. 1993, 15: 90~99
    231 N.T. Sehnem, L.R. de Bittencourt, M. Camassola, et al. Cellulase production by Penicillium echinulatum on lactose. Appl Microbiol Biotechnol . 2006, 63 (6): 1~5
    232 Y. Kamagata, M. Yachi, T. Kurasawa, et al. Cellulase Induction by Cellobiose-Octaacetate in Penicillium purpurogenum. Journal of fermentation and bioengineering. 1991, 72, (3): 217~220
    233 T. Kurasawa, M. Yachi, M. Suto, et al. Induction of cellulase by gentiobiose and its sulfur containing analog in Penicillium purpurogenum. Appl Environ Microbial. 1992, 58: 106~l10
    234 M. Suto, T. Kurasawa, S. Kawamoto, et al. Cellulase induction by various saccharides in Penicillium purpurogenum P-26. Microb Util Renew Resour. 1992, 8: 577
    235 G. Mernitz, A. Koch, B. Henrissat, et al. Endoglucanase II ( EG II) of Penicillium janthinellum: cDNA sequence, heterologous expression and promotor analysis. Curr Genet. 1996, 29 (5) : 490~495
    236 R. Messner, F. Gruber, C.P. Kubicek. Differential regulation of synthesis of multiple forms of specific endoglucanases by Trichoderma reesei QM 9414. J Bacteriol. 1988, 170: 3689~3693
    237 C.P. Kubicek, T. Panda, G. Schreferl-Kunar, et al. O-linked but not N-linked glycosylation is necessary for secretion of endoglucanase I and IIby Trichoderma reesei. Can J Microbiol. 1987, 33: 698~703
    238冯炘,王丹,辛丽霞,等.产纤维素酶粗糙脉孢菌1602产酶条件优化.天津理工学院学报. 2004, 20(1): 104~107
    239聂剑初等.生物化学简明教程.北京:高等教育出版社, 1988
    240刘妙莲,王洁.影响纤维素酶活力测定的几个因素.食品与发酵工业. 26, 16: 38~39
    241杨树林,孟广荣,李校堃,等.绿色木霉MJ1产内切β-葡聚糖苷酶的分离纯化及酶学性质.微生物学通报. 2006, 33(5): 75~79
    242 B. Seiboth, S. Hakola, R.L. Mach, et al. Role of four major cellulases in triggering of cellulose gene expression by cellulose in Trichoderma reesei. J. Bact.. 2001, 179(17): 5318~5320
    243李卫芬,孙建义,顾赛红.β-葡聚糖酶的分离纯化和特性研究.菌物系统. 2001, 20(2): 178~183
    244郁红艳,曾光明,黄国和,等.简青霉Penicillium simplicissimum木质素降解能力.环境科学. 2005, 26(2): 167~171
    245余玮,邓泽元,范亚苇,等.粗壮脉纹孢菌所产纤维素酶的性质研究.食品科学. 2006, 27(12):50~53
    246梁沂,张极震,杨景文,等.傅立叶变换红外光谱法研究胰岛素的二级结构.生物物理学报. 1992, 8: 312~317
    247胥兵,陈惠,韩学易,等.枯草芽孢杆菌C-36纤维素酶的纯化及酶学性质.四川农业大学学报. 2006, 24(4): 398~401
    248 M. Thomas, I. Wood Sheila, Mc Crae. Purification and some properties of a (1-4)-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohydrate Research. 1982, 110, (2): 291~303
    249 K. Mahalingeshwara. Wood. The endo-(1-4)-β-D-glucanase system of Penicillium pinophilum cellulase: Isolation, purification, and characterization of five major endoglucanase components. Carbohydrate Research, 1989, 190, (2): 279~297
    250宋桂经.纤维紊酶的吸附作用.山东大学学报(自然科学版). 1988.23(4): 65~70
    251 R. Messner. Carbon Source Control of Cellobiohydrolase I and II Formation by Trichoderma reesei. Appl. Envir. Microbiol. 1991, 57:630~ 635
    252 T.M. Wood. Breakdown of crystalline cellulose by synergistic action between cellulose components from clostridium thermocellum and Trichoderma koningii. FEMS Microbiology Letters. 1988, 50(2/3): 247~ 252
    253 P. Thonart, M. Paquot, A. Mottet. Hydrolysis of paper pulps: influence of mechanical treatments. Holzforschung. 1979, 33(6): 197~202
    254 M.L. Sianott. The cellobiohydrolases of Trichoderma reesei: a review of indirect and direct evidence that their function is not just glycosidic bond hydrolysis. Biochemical Society Transaction. 1998, 26: 160~164
    255高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展. 2003,13(1): 21~29
    256方靖,高培基.纤维二糖脱氧氢酶在纤维素降解中的作用研究.微生物学通报. 2000, 26(1): 15~19
    257 H. Azevedo, D. Bishop, A. Cavaco-Paulo. Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV(Humicola insolens) and CenA(Cellulomonas fimi). Enzyme and Microbial Technology. 2000, 5(27): 325~329
    258 S.B. Lee, H.S. Shin, D.D.Y. Byu. Adsorption of cellulases on cellulose. Biotech Bioen. 1982, 24: 2137~2142
    259陈洪章,李佐虎.影响纤维素酶解的因素和纤维素酶被吸附性能的研究.化学反应工程与工艺. 2000, 16,(1):30~35, 71
    260严钦,周伟,李幸慰,等.一种利用微晶纤维素分离纯化β-葡糖苷酶的方法.中国医药生物技术. 2008, 3(1): 66~67
    261 Y.C. AI, P.j. GAO, K. P Christian, et al. Major Transglycosylation Products ofβ-Glucosidase and their induction effects on cellulose biosynthesis. Cta scientiarum naturaliumu niversitatis sunyatseniv. 1999, 38 (2): 70~74
    262 H. Chanzy, B. Henrissat, R. Vuong. The action of the 1,4-β-glucan CBH on valonia cellulose microcrystals. FEBS Lett. 1983, 153: 113~120
    263 R. Lamed, E. Setter, R. Kenig. The cellulosome. Biotechnol Bioeng Symp. 1983, 13: 163~170
    264 T. Kanda, K. Wakabayashi, L. Nisizawa. Synergistic action of two different types of endocellulase components from Irpex lacteus(Poluporus tulipiferae) in the hydrolysis of some insoluble cellulose. J Biochem. 1976, 79: 997~ 1006
    265曾宇成,张树政.海藻曲霉β-葡萄糖苷酶的催化性质.微生物学报. 1993, 33(3): 182~186
    266 TM. ENAR I, M.L. PAAVOLA. Enzymatic hydrolysis of cellulose. CRC Critical Reviews in Biotechnology. 1987, (5): 67~ 81
    267王希国,杨谦,燕红.纤维素酶催化水解和氧化机制的研究进展.林产化学与工业. 2005, 25 (3)125~130
    268王蔚,卢雪梅,高培基.褐腐真菌产生的低分子化合物对纤维素的解聚作用研究.菌物系统. 1997,16(1):40~45
    269 R. Raphael, B. Stephane, R. Natacha, et al. Intermediates in wet oxidation of cellulose: identification of hydroxyl radical and characterization of hydrogen peroxide. Water Research. 2002, 36: 4821~4829
    270杨炜华,刘洁,张颍舒,等.真菌产生的短肽对天然纤维材料的降解作用.自然科学进展. 2004, 14(11):1230~1235