高等培菌白蚁高效利用木质纤维素的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
培菌白蚁属于高等白蚁白蚁科(Termitidae)、大白蚁亚科(Macrotermitinae),因与Termitomyces属真菌共生而得名。由于在热带干旱地区可消耗90%以上的干木、在多雨的热带草原地区能矿化20%的初级产物而引起研究学者们的广泛研究兴趣。在初步了解高等白蚁与其培养真菌的共生关系后,本研究利用分子生物学技术调查了共生系统中白蚁肠道及菌圃共生生物的多样性,通过cDNA文库的构建从共生真菌中筛选与木质纤维素降解相关的基因。主要研究内容如下:
     在安徽省、湖南省、江苏省、云南省等地广泛采集白蚁标本,建立了白蚁的形态鉴定和分子鉴定平台,利用ISSR分子标记调查了在上述地区广泛分布的高等、低等白蚁种群的遗传多样性及其与系统发育的关系。得到如下结果:①候选的24个ISSR引物中筛选出10个能得到清晰条带、重复性好、多态性高的引物,在14个白蚁群体中共扩增出145条带,平均每个引物扩增出14.5条带,多态性条带有144条,占总条带的99.31%,可见平均等位基因数(n_a)为1.9931±0.0830,平均有效等位基因数(n_e)为1.5661±0.3043,Nei's基因多样性指数(h)和Shannon's信息指数(Ⅰ)在分别为0.3355±0.1363和0.5065±0.1645,表明所有供试种群具有较高的遗传多样性;而三个不同种类种群多样性受地理条件影响较大,地理上的分隔很可能阻碍了种群内的基因交流;②一个种群内不同品级问的ISSR-PCR扩增格局是相同的,并且在一个品级内不同个体间的扩增也是稳定的,从而确定在缺失兵蚁的情况下也可以利用工蚁进行分子鉴定和种群多样性的调查;③利用PAUP软件分别对所有种群的COⅡ序列及ISSR-PCR电泳条带生成的0/1矩阵构建系统发育树,结果表明,两个系统发育树的拓扑结构相似,且都较好地与形态分类结果相吻合,显示了物种遗传多样性与其进化是保持一致的,同时也显示了ISSR分子标记是一个进行系统发育分析的有力工具。
     对广泛采集得到的白蚁种群进行高通量酶活测定,通过比较不同地区采集的17个种群、5种高等白蚁的4种纤维素酶酶活后,选择在西双版纳地区广泛分布的云南土白蚁(Odontotermes yunnanensis)及其共生Termitomyces属真菌作为研究对象。为探讨共生系统原核生物所发挥的作用,分别构建白蚁肠道细菌16s rDNA全长序列克隆文库和菌圃细菌16s rDNA全长序列克隆文库进行微生物区系的调查。其中,白蚁肠道细菌16s rDNA文库分析显示,623条可用序列被分成187个系统发育型,其中丰度最高的是厚壁菌门(Firmicutes)(占38%),94.4%的系统发育型比对上梭菌纲(Clostridia)、梭菌目(Clostridiales)的纯培养或未培微生物;其次分别是拟杆菌门(Bacteroidetes)(占26.7%)、变形菌门(Proteobacteria)(占11.8%)、螺旋体门(Spirochaetes)(占8%),拟杆菌目(Bacteroidales)、δ-变形菌纲(Deltaproteobacteria)、密螺旋体属(Treponema)分别是它们相应的优势群体;而浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)、TM7门、脱铁杆菌门(Deferribacteres)、绿菌门(Chlorobi)及TG1门的丰度则较低。而菌圃细菌文库分析表明,菌圃上细菌菌群的多样性明显低于肠道菌群,但厚壁菌门、变形菌门及拟杆菌门仍为主要组成。
     在成功分离得到菌圃上的共生真菌Termitomyces sp.菌株后,对其展开了一系列基础研究。得到以下结论:①生长于菌圃上的野生菌大部分情况下成小白球状,经显微镜观察可见由无数产孢结构和长椭圆形分生孢子构成,并判断分生孢子是由庞大的球状胞原生质体浓缩而分隔开形成的;②纯化菌株的ITS区序列(GenBANK号:FJ769410)与野生菌株的ITS区序列(GenBANK号FJ769409)基本一致,表明两者为同一菌株,同时在分类地位上都与Termitomyces sp.Group 8(AB073529)较近,但由于缺乏野外形成的子实体形状等分类信息,只能将该菌株鉴定为Termitomyces sp.;③菌圃及白蚁肠道真菌多样性的分析表明,在野外良好的共生状态下,菌圃上只生长一种Termitomyces属真菌,未见其他真菌生存,且白蚁肠道真菌与其为同一种,表明该共生真菌为白蚁食物组成的一部分。
     考虑到在共生状态下,共生真菌极可能在木质纤维素降解过程中发挥着重要作用,本研究首次利用直接在野外菌圃上采集的野生菌为材料,通过SMART~(TM) cDNA文库构建试剂盒构建了一个全长cDNA文库。所构建的文库经检测,文库滴度为7×10~6Pfu/μl,库容量为3.5×10~6Pfu,文库重组率达97%,平均插入片段长度约为1.33 Kb,文库质量合格。在此基础上,建立了引物PCR筛选目的基因的技术平台,经过两轮PCR筛选成功获得一个含木聚糖酶基因的阳性克隆,记为Xyl_C5。该目的基因序列在3'端存在明显的polyA结构,可编码226个氨基酸,预测分子量大小约为24 KDa,在43位氨基酸至223位氨基酸处为GHF11的功能域,并且129氨基酸和220氨基酸两个位点为活性位点,均为谷氨酸,NCBI比对后多数与曲霉属Aspergillus真菌木聚糖酶基因的序列一致性在58%-60%,可判定这是首个来自Termitomyces属真菌的木聚糖酶基因。最后,构建了一个pET22b_XylC5重组质粒、转化感受态大肠杆菌BL21进行诱导表达,经SDS-PAGE分析表明,目的蛋白表达出两条大小分别约为17 KDa、15 KDa的条带,且为不可溶性蛋白。该结果与预测的蛋白大小存在差距,可能是由于原核表达体系不适合表达真核来源基因或表达过程的各种折叠、修饰等步骤的原因导致的。
So called "fungus-growing" termites belong to Termitidae,Macrotermitinae.The special name is got from the symbiosis between termite and fungi of genus Termitomyces. For its ability of consuming more than 90%of dry wood in some arid tropical areas and mineralizing up to 20%of the net primary products in wetter savannas,they aroused extensive interests of many researchers.Under the preliminary study of this symbiosis,we surveyed the diversity of symbiotic organisms using molecular biology techniques and constructed one cDNA library in order to screening for genes related to the degradation of lignocelluloses.The main results were listed as below.
     Firstly,termites samples were widely collected in South China(e.g.Anhui Province, Hunan Province,Jiangsu Province and Yunnan Province),which were well identified through traditional morphological classification and molecular method.The genetic diversity of five major peregrinuses was analyzed by inter-simple sequence repeat(ISSR) markers.10 primers,which generated bright,polymorphic and reproducible amplification products were selected.145 discernible DNA fragments were produced,of which 144 (99.31%) were polymorphic loci.The observed number of alleles(n_a) was 1.9931±0.0830, the effective number of alleles(n_e) was 1.5661±0.3043,the Nei's gene diversity(h) was 0.3355±0.1363 and the Shannon's information index(I) was 0.5065±0.1645.These data suggested high genetic diversity in the overall populations.Some population genetic diversities were severally affected by geographic separation,which blocked intercourses of genes.The ISSR-PCR pattern was uniform between different castes of one colony and the amplification bands of different individuals in one caste were also stable.So,when soldiers were absent,it is feasible to use workers as objects in molecular identification and survey of diversity.Phylogenetic trees were constructed on sequence of cytochrome oxidase subunitⅡ(COⅡ) and 0/1 matrix generated by bands of ISSR-PCR electrophoresis.The results showed that topology of two trees partially coincided with each other and they were also congruous with the result of morphologic identification.
     Next,enzyme activities of 4 kinds of cellulases were compared in 17 colonies,5 species of higher termite.As a result,Odontotermes yunnanensis,which was widely distributed in Xishuangbanna,was chosen as our specimen for the highest enzymes activity of the symbiotic system.In order to explore the possible role of prokaryote in the symbiosis,two bacterial 16S rDNA gene clone libraries of microbial community from termite's gut and fungus combs were constructed respectively.Analysis of library from the gut showed 623 usable sequences were divided into 187 phylotypes.Among these representative phylotypes,most were affiliated to Firmicutes(38%) and 94.4%of this phylum were regarded as the pure cultured or uncultured microorganisms from Clostridiales.Most of the rest phylotypes were mainly consisted of Bacteroidetes(26.7%), Proteobacteria(11.8%),Spirochaetes(8%) and Bacteroidales,Deltaproteobacteria, Treponema were corresponding dominant colonies.Only a few phylotypes belonged to Planctomycetes,Actinobacteria,TM7 phylum,Deferribacteres,Chlorobi and TG 1 phylum. Results showed lower bacterial diversity appeared in fungus comb than that in termite flora,and the combs were also consisted mostly of phylotypes belonging to Firmicutes.
     A series of fundamental research were carried out after pure cultured strain was isolated from fungus comb.Microexamination of one nodule collected in the wild showed many typical infllated conidiogenous structures and abundant conidia with the shape of long oval.It suggested that conidia were comparted from sphere cells as protoplasm concentrating.The ITS sequences of fungus nodule(GenBANK No.:FJ769409) and cultured strain(FJ769410) were the same and on the status of classification,they were also near to Termitomyces sp.Group 8(AB073529).But it was still hard to give the accurate species name due to the absence of fruiting bodies formed in the field.Analysis of fungal diversity revealed that only Termitomyces sp.fungi were cultivated on fungus comb by termites and any other non-Termitomyces fungi cannot be detected.Uniform fungus appeared in intestinal tract and that combs also indicated that Termitomyces sp.was partial constituent of termites' food.
     Considering the significant role of symbiotic fungi in the degradation of lignocelluloses,a cDNA library of Termitomyces sp.collected directly from fungus combs was constructed via SMART~(TM) cDNA library construction kit,which provided a valuable library for screening of cellulase genes and laid a foundation for basic biology research of this fungi.The library has a high titer of 7×10~6 Pfu/μl and the capacity was 3.5×10~6 Pfu. The recombination rate was 97%.The size of average insert cDNAs was 1.33 Kb.These experiment data showed the good quality of this library.A positive clone containing xylanase gene,named as Xyl_C5,was obtained using PCR screening method from library successfully.This gene coded 226 amino acids and had an obvious polyA structure existing at the 3' end.The molecular weight of protein coded by this gene was about 24 KDa and from 43 to 223 amino acids was functional domain of glycoside hydrolase family 11.The 129 and 220 amino acids were two active sites,made up of glutamate.The amino acids sequence was 58%-60%identical to some other xylanase proteins from Aspergillus,indicating the first report of xylanase from Termitonyces.Last,a recombinant plasmid,pET22b-XylC5 was constructed and induced.SDS-PAGE showed two insoluble target proteins expressed with sizes of 17 KDa and 15 KDa,respectively.The difference between this result and the prediction perhaps was due to the unsuitable prokaryotic expression system or the folding and modification of the proteins.
引文
1 Ding SY,Himmel ME.The maize primary cell wall microfibril:a new model derived from direct visualization.J Agric Food Chem,2006,54(3):597
    2 Tomme P,Warren RA,Gilkes NR.Cellulose hydrolysis by bacteria and fungi.Adv.Microb.Physiol.,1995,37:1-81
    3 B(?)guin P,Aubert JP.The biological degradation of cellulose.FEMS Microbiol.Rev.,1994,13:25-58
    4 Jeffries TW.Biodegradation of lignin and hemicelluloses.In:C.Ratledge(Ed.)Biochemistry of Microbial Degradation.The Netherlands:Kluwer Academic Publishers,1994,233-277
    5 Martin MM.The evolution of cellulose digestion in insects.Phil,Trans.R.Soc.Lond.,1991,333:281-288
    6 Martin MM.Cellulose digestion in insects.Comp.Biochem.Physiol.,1983,75A:313-324
    7 Lam TB,Iiyama K,Stone BA.Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility.Phytochemistry,2003,64:603-607
    8 Brune A.Termite guts:the world's smallest bioreactors.Trends Biotechnol.,1998,16:16-21
    9 Lo N,Tokuda G,Watanabe H,et al..Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches.Curr.Biol.,2000,10:801-804
    10 Ohkuma M.Termite symbiotic systems:efficient bio-recycling of lignocellulose.Appl Microbiol Biotechnol,2003,61:1-9
    11 Tokuda G,Watanabe H.Hidden cellulases in termites:revision of an old hypothesis.Biol.Lett.,2007,3:336-339
    12 戴华国,李小鹰,张红兵.白蚁分类方法述评.昆虫知识,2004,40(1):20-23
    13 Noirot C.From wood- to humus-feeding:an important trend in termite evolution.In:Biology and Evolution of Social Insects(ed.Billen J.).Leuven:Leuven University Press,1992,107-119
    14 黄复生,朱世模,平正明等.中国动物志昆虫纲第十七卷:等翅目.北京:科学出版社,2000,1-296
    15 李桂祥.中国白蚁及其防治.北京:科学出版社,2002
    16 Kappler A,Brune A.Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage insoil-feeding termites(Cubitermes spp.).Soil Biol.And Biochem.,2002,34:221-227
    17 Tokuda G,Saito H,Watanabe H.A digestive β-glucosidase from the salivary glands of the termite,Neotermes koshunensis(Shiraki):distribution,characterization and isolation of its precursor cDNA by 5'- and 3'- RACE amplifications with degenerate primers.Insect Biochem.Mol.Biol.,2002,32:1681-1689
    18 Nakashima K,Watanabe H,Saitoh H,et al..Dual cellulose-digesting system of the wood-feeding termite,Coptotermes formosanus Shiraki.Insect Biochem Molec Biol,2002,32:777-784
    19 Brune A.Symbiotic Associations Between Termites and Prokaryotes.Prokaryotes,2006,1:439-474
    20 朱本忠,张锡良,侯玉明.关于对传统建筑白蚁防治的探讨.白蚁防治,2004,4:325
    21 廖崇惠,陈茂乾.小良人工阔叶混交林中白蚁对枯枝落叶的消耗作用.生态学报,1990,2:67-70
    22 张业梅,王柯.每克“栖北网螱”对木材日消耗率的实验初报.白蚁科技,1998,15(1):26-27
    23 黄远达.中国白蚁学概论.武汉:湖北科学技术出版社,1999,12-16
    24 张贞华.黑翅土白蚁和黄翅大白蚁主巢土壤的物理和化学特性研究.杭州大学学报,1987,14(1):80-90
    25 黄博严,陶维强,张可群.白蚁药理作用研究.湖北植保,1993,(增刊):61-62
    26 陈长合.白蚁对S180荷瘤小鼠抑瘤活性及其免疫调节作用的研究.中国现代应用药学,1993,10(5):35-36
    27 谢保国,谢华呜,谢鸣荣.白蚁资源的药用研究与开发.白蚁防治,2005(3):45-46
    28 贾作成.土白蚁菌圃药用的初步研究.白蚁科技,1992,1:23-24
    29 汪敬武,胡盛珊,王大元等.白蚁口服液的药理试验研究.白蚁科技,1995,1:22-25
    30 张东驰,陈少波,陈瑞英等.“双蚁酒”功能学研究-免疫调节、延缓衰老和抗疲劳作用.白蚁科技,1997,2:30-32
    31 张贞华,董兆梁.黑翅土白蚁及其菌圃的糖、脂肪、蛋白质、维生素、氨基酸分析.科技通讯,1993,1:43-45
    32 全国白蚁防治中心主编.中国白蚁防治专业培训教程.北京:中国物价出版社,2004,216-221
    33 陈宛如,李振唐,史美中等.真菌中药乌灵参的生物学特性研究.中国现代应用药学,1988,1:12-15
    34 戴自荣,李桂祥,肖维良等.常见白蚁氨基酸含量的比较.白蚁科技,1989,1:6-8
    35 赵呈裕,杨抚华,王化远.鸡枞菌的液体发酵研究和化学成分分析.华西医大学报, 1997,28(4):407-411
    36 赵呈裕,李虹,郑雪莲等.鸡土从菌的液体深层培养和菌丝体化学成分分析.中国食用菌,1988,5:14-15
    37 瞿礼嘉,顾红雅,胡苹等.现代生物技术.北京:高等教育出版社,220-228
    38 Gardner KH,Blackwell J.The structure of native cellulose.Biopolymer,1974,13:1975
    39 孟雷,陈冠军,王怡等.纤维素酶的多型性.纤维素科学与技术,2002,10(2):47-55
    40 宋贤良,温其标,朱江.纤维素酶法水解的研究进展.郑州工程学院学报,2001,22(4):67-71
    41 王玉万,王云.构菌栽培过程中对木质纤维素的降解和几种多糖分解酶活性的变化.微生物学通报,1989,16(3):137-140
    42 Teeri TT.Crystalline cellulose degradation:new insight into the function of cellobiohydrolases.Trends Biotechnol.,1997,15:160-167
    43 Breznak JA,Brune A.Role of microorganisms in the digestion of lignocellulose by termite.Annu.Rev.Entomol.,1994,39:453-487
    44 Malherbe S,Cloete TE.Lignocellulose biodegradation:Fundamentals and applications.Environ Sci Bio,2002,1:105-111
    45 Tilbeugh H V,Tomme P,Claeyssens M,et al."Limited Proteolysis of the Cellobiohydrolase I from Trichoderma ressei".FEBS Letters,1986,204(2):223-227
    46 Kraulis P J,Clore G M,Nilges M,et al..Determination of the 3-Dimensional Solution Structure of the C-Terminal Domain of Cellobiohydrolase-I from Trichoderma Reesei-A Study Using Nuclear Magnetic-Resonance and Hybrid Distance Geometry Dynamical Simulated Annealing.Biochemistry,1989,28:7241-7257
    47 Langsford,ML,Gilkes NR,Singh B,et al..Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains.FEBS Lett,1987,225:163-167
    48 Juy M,Amrt A G,Alzari P M,et al..Three-dimensional structure of a thermostable bacterial cellulase.Nature,1992;357:89-91
    49 Koichiro M,Akihiko K,Roy HD.Determination of subunit composition of Clostridium cellulovorans cellulosomes that degrade plant cell walls.Appl.Environ.Microbiol.,2002,68(4):1610-1615
    50 Henrissat B.A classification of glycosyl hydrolases based on amino acid sequence similarities.Biochem.J.,1991,280:309-316
    51 Park J S,Hitomi J,Beppu T.Identification of two amino acids contributing the high enzyme activity in the alkaline Ph ran alkaline endoglucanase from a Bacillus sp..Protein Eng,1993,6:921-926
    52 Divne C,Stahlberg J,Teeri T,et al..High-resolution crystal structures reveal how a cellulose chain is bound in the 50 long tunnel of cellobiohydrolase I from Trichoderma reesei.J.Mol.Biol.,1998,275:309-325
    53 Riedel K,Bronnenmeier K.Active-site mutations which change the substrate specificity of the Clostridium ercorarium stcellulase Cel Z implications for synergism.Eur J.Biochem.,1999,262:218-223
    54 Enari TM.Microbial cellulase.In:Willian MF(ed.).Microbial Enzymes and Biotechndogy.London and New York:Applied Science Publishers,1983,183-223
    55 Robson L M,chambliss G H.Cellulases of bacterial Origin.Enzyme Microb Technol,1989,(11):626-644
    56 Henrissat B,Driguezl H,Viet C,et al..Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose.Bio Technology,1985.3:722-726
    57 Sprey B,Lambert C.Titration curbes of cellulases from Trichoderma reesei:demonstration of cellulase-xylanase-β-glucosidase containing complex.FEMS Microbiol.,1983,18:217-222
    58 Wood TM,Crae SI,Wilson CA.Aerobic and anaerobic fungal cellulases with special reference to their mode of attack on crystalline cellulose.In:Aubert JP,Beguln P,Millet J(Eds).Biochemistry and Genetics of Cellulose Degradation.London:Academic Press,1988,43:31-52
    59 宋波,邓晓皋.纤维素酶的研究进展.上海环境科学,2003,22(7):49 1-494
    60 Wenzel M,Sch6nig I,Berchtold M,et al..Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis.Journal of Applied Microbiology,2002,92:32-40
    61 Sch(a|¨)fer A,Konrad R,Kuhnigk T,et al..Hemicellulose degrading bacteria and yeasts from the termite gut.J Appl Bacteriol,1996,80:471-478
    62 Radek R.Flagellates,bacteria,and fungi associated with termites:diversity and function in nutrition.Ecotropica,1999,5:183-196
    63 Yoshimura T.Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus shiraki(Isopteran:Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy.Holzforschung,1996,50:99-104
    64 Abe T,Bignell DE,Higashi M.Termites:Evolution,Sociality,Symbiosis,Ecology.Netherlands:Kluwer Academic Publishers,2000,275-288
    65 Yoshimura T.Contribution of the protozoa fauna to nutritional physiology of the lower termite Coptotermes formosanus Shiraki(Isoptera:Rhinotermitidae).Wood research, 1995,82:68-129
    66 Yamin MA.Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis.Appl Environ Microbiol,1980,39:859-863
    67 Odelson DA,Breznak JA.Nutrition and growth characteristics of Trichomitopsis termopsidis,a cellulolytic protozoan fromterrnites.Appl Environ Microbiol,1985,49:614-621
    68 Yamin MA.Flagellates of the orders Trichomonadida Kirby,Oxymonadida Grasse,and Hypermastigida Grassi & Foa reported from lower termites(Isoptera families Mastotermitidae,Kalotermitidae,Hodotermitidae,Termnpsidae,Rhinotermitidae,and Serritermitidae) and from the wood-feeding roach Cryptocercus(Dictyoptera:Cryptocercidae).Sociobiology,1979,4:1-120
    69 Ohtoko K,Ohkuma M,Moriya S,et al..Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protests in the hindgut of the termite Reticulitermes speratus.Extremophiles,2000,4:343-349
    70 Li L,Froehlich J,Pfeiffer P,et al.Termite gut symbiotic Archaezoa are becoming living metabolic fossils.Eukaryotic Cell,2003,2:1091-1098
    71 Watanabe H,Nakashima K,Saito H,et al.New endo-β-1,4-glucanases from the parabasalian symbionts,Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites.Cell Mol Life Sci,2002,59:1983-1992
    72 Inoue T,Moriya S,Ohkuma M,et al..Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite,Coptotermes formosanus.Gene,2005.349:67-75
    73 Watanabe H,Tokuda G.Animal cellulases.Cell Mol Life Sci,2001,58(9):1167-1178
    74 Slaytor M.Cellulose digestion in termites and cockroaches:what role do symbionts play?Comp Biochem Physiol B,1992,103:775-784
    75 Inoue T,Murashima K,Sugimoto A,et al..Cellulose and xylan utilization in the lower termite Reticulitermes speratus.Insect Physiol,1997,43(3):235-242
    76 张大羽,诸永,程家安.黄胸散白蚁和台湾家白蚁不同品级虫体内纤维素酶的活性.浙江大学学报:农业与生命科学版.200l,27(1):1-4
    77 Tokuda G,Lo N,Watanabe H,et al..Metazoan cellulase genes from termites:intron/exon structures and sites of expression.Biochim Biophys Acta,1999,1447(2-3):146-159
    78 Nakashima K,Azuma J.Distribution and properties of endobeta-1,4-glucanase from a lower termite,Coptotermes formosanus(Shiraki).Biosci Biotechnol Biochem,2000, 64(7): 1500-1506
    
    79 Smant G, Stokkemans J P, Yan Y T, et al. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA, 1998, 95(9): 4906-4911
    
    80 Watanabe H, Noda H, Tokuda G, et al.. A cellulase gene of termite origin. Nature, 1998,394(6691): 330-331
    
    81 Yan YT, Smant G, Stokkermans J, et al.. Genomic organization of four beta-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene, 1998, 220 (1-2): 61-70
    
    82 Rosso MN, Favery B, Piotte C, et al. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol Plant Microbe Interact, 1999, 12(7): 585-591
    
    83 Byrne K A, Lehnert S A, Johnson S E, et al. Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene, 1999, 239(2): 317-324
    
    84 Xu BZ, Hellman U, Ersson B, et al.. Purification, characterization and amino-acid sequence analysis of a thermostable, low molecular mass endo-β-1, 4-glucanase from blue mussel, Mytilus edulis. Eur J Biochem, 2000, 267(16): 4970-4977
    
    85 Xu BZ, Janson JC, Sellos D. Cloning and sequencing of a molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem, 2001,268(13): 3718-3727
    
    86 Suzuki K, Ojima T, Nishita K. Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem, 2003, 270(4): 771-778
    
    87 Sugimura M, Watanbe H, Lo N, et al. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn bettle, Psacothea hilaris. Eur J Biochem, 2003, 270(16): 3455-3460
    
    88 Lee SJ, Kim SR, Yoon HJ, et al. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comparative Biochemistry and Physiology, Part B, 2004,139: 107-116
    
    89 Lee SJ, Lee KS, Kim SR, et al. A novel cellulase gene from the mulberry longicorn beetle, Apriona germari: Gene structure, expression, and enzymatic activity. Comp.Biochem. Physiol B: Biochem. Mol Biol., 2005, 140: 551-560
    
    90 Wei YD, Lee KS, Gui ZZ, et al. Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari.Comp. Biochem. Physiol B: Biochem. Mol Biol, 2006, 145: 220-229
    91 Girard C,Jouanin L.Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle,Phaedon cochleariae.Insect Biochem.Mol.Biol.,1999,29:1129-1142
    92 Wang J,Ding M,Li YH,et al..A monovalant anion affected muti-functional cellulase EGX from the mollusca,Ampullaria crossean.Protein Expr Purif 2003,31(1):108-114
    93 Wang J,Ding M,Li YH,et al..Isolation of a multi-functional endogenous cellulase gene from mollusc,Ampullaria crossean.Acta Biochim Biophys Sin,2003,35(10):941-946
    94 Wei Y D,Lee S J,Lee K S,et al..N-glycosylation is necessary for enzymatic activity of a beetle(Apriona germari) cellulase.Biochem Biophys Res Commun,2005,329(1):331-336
    95 Braumann A,Dore J,Eggleton P,et al..Molecular phylogenetic profiling of prokaryote communities in guts of termites with different feeding habits.FEMS Microbiol Ecol,2001,35:27-36
    96 McDermid KP,Forsberg CW,MacKenzie CR.Purification andproperties of an acetylxylan esterase from Fibrobacter succinogenesS85.Appl.-Environ.Microbiol.,1990,56:3805-3810
    97 Gilbert HJ,GP Hazlewood.Conversion of soft woods to ethanol.J Gen Microbiol,1993,139:187-194
    98 Hall J,Hazlewood GP,Huskisson NS,et al..Conserved serine-rich sequences in xylanase and cellulase from Pseudomonas fluorescens subspecies cellulosa:internal signal sequence and unusual protein processing.Mol Microbiol,1989,3:1211-1219
    99 Zhang JX,Flint HJ.A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagines/glutamine-rich sequence.Mol Microbiol,1992,6:1013-1023
    100 Fisher RF,Long SR.Rhizobium-plmt signal exchange.Nature,1992,357:655-660
    101 Yaguchi M,Roy C,Watson DC.In:Xylans and Xylanases.Amsterdam:Elsevier,1992,435-438
    102 Ujiie M,Roy C.Low-molecular-weight xylanase from Trichoderma viride.Appl Environ Microbiol,1991,57:1860-1862
    103 刘稳,高培基.半纤维素酶的分子生物学.纤维素科学与技术,1998,6(1):9-15
    104 黎先发,贺新生.木质素的微生物降解.纤维素科学与技术,2004,12(2):41-46
    105 Himmel ME,Ding SY,Johnson DK,et al..Biomass recalcitrance:engineering plants and enzymes for biofuels production.Science,2007,315:804
    106 胡琪,邓斐,吴学玲.木质素的微生物降解.科技信息,2008,10:12
    107 谢君,任路,李维等.白腐菌液体培养产生木质纤维素降解酶的研究.四川大学学报(自然科学版),2000,37(增:刊):161-166
    108 Keyser P,Kirk TK,Zeikus JG.Ligninolytic enzyme system of Phanerochaete Chsosporium synthesized in absence of lignin in response to nitrogen starvation.J Bacteriol,1978,135(3):790-797
    109 Tien M,Kirk TK.Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds.Science,1983,221:661-663
    110 Mester T,Tien M.Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental poilutants.Int.Biodeterior.Biodegrad.,2000,46:51-59
    111 Clause H.Laccases:structure,reactions and distribution.Micron,2004,35:93-96
    112 蒋挺大.木质素.北京:化学工业出版社,2001
    113 张辉,戴传超,朱奇等.生物降解木质素研究新进展.安徽农业科学,2006,34(9):1780-1784
    114 Levin L,Forchiassin F.Ligninolytic enzymes of the white rot basidiomycete Trametes trogii.Acta Biotechnol,2001,21(2):179-186
    115 Crawford,RL.Liglin biodegration and transformation.New York,1981,42-27
    116 丁少军,宋美静.云芝漆酶的培养和分离纯化的研究.纤维素科学与技术,1998,6(3):16-20
    117 林鹿,高杨,周学飞等.白腐菌对制浆黑液中硫酸盐木素的降解.环境科学,1997,18(1):23-26
    118 史央,戴传超,吴耀春.植物内生真菌强化还田秸秆降解的研究.环境科学学报,2004,24(1):144-149
    119 郁红艳,曾光明,黄国和.木质素降解真菌的筛选及产酶特性.应用与环境生物学报,2004,10(5):639-642
    120 Carol AC.Bacterial Associations with Decaying Wood.Int.Biodeterior.Biodegrad.,1996,37(1):101-107
    121 Lokesh KV.~(14)C-lignin-lignocellulose biode gradationby bacteria isolated from polluted soil.J.Exp.Biol.,2001,39(6):584-589
    122 Tuomela M,Vikman M,Hatakka A,et al..Biodegradation oflignin in a compost environment.Bioresour.Technol.,2000,72:169-183
    123 Mino T.Microbiology and biochemistry of the enhanced biological phosphate removal process.Wat.Res.1997,32:3193-3207
    124 Sl(?)vikov(?) E,Kosikova(?) B,Mikul(?)sov(?) M.Biotransformation of waste lignin products by the soil-inhabiting yeast Trichasporon pullulans.Can J Microbiol,2002,48:200-203
    125 Grass(?) PP. Comportement-Socialit(?)- Ecologie-Evolution-Systematique. Fondation Singer-Polignac, Paris: Masson, 1982
    
    126 Abe T, Bignell DE, Higashi M. Termites: Evolution, Sociality, Symbiosis, Ecology. Netherlands: Kluwer Academic Publishers, 2000, 209-231
    
    127 Hongoh Y, Ekpornprasit L, Inoue T, et al. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus.Molecular Ecology, 2006, 15: 505-516
    
    128 Eggleton P, Bignell DE, Sands WA, et al. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos. Trans. R. Soc. London, Ser. B, 1996, 351: 51-68
    
    129 Hyodo F, Inoue T, Azuma JI, et al.. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem, 2000, 32: 653-658
    
    130 Eggleton, P. In: Abe T, Bignell DE, Higashi M (eds.). Termites: Evolution, Sociality,Symbiosis, Ecology. Dordrecht: Kluwer Academic Publishers, 2000, 25-51
    
    131 Roisin, Y. In: T. Abe, D.E. Bignell and M. Higashi (eds.) Termites: Evolution, Sociality,Symbiosis, Ecology. Dordrecht: Kluwer Academic Publishers, 2000, 95-119
    
    132 Bignell DE, Slaytor M, Veivers PC, et al.. Functions of symbiotic fungus gardens in termites of the genus Macrotermes: evidence against the acquired enzyme hypothesis.Acta Microbiol. et Immunol. Hung. 1994, 41, 391-401
    
    133 Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites. Ecol. Ent. 2001, 26, 356-366
    
    134 Nalepa CA, Bignell DE, Bandi C. Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc, 2001, 48: 194-201
    
    135 Donovan SE, Jones DT, Sands WA, et al. Morphological phylogenetics of termites (Isoptera). Biol J. Linn. Soc. Lond., 2000, 70, 467-513
    
    136 Bitsch C, Noirot C. Gut characters and phylogeny of the higher termites (Isoptera:Termitidae). A cladistic analysis. Ann Soc Entomol Fr, 2002, 38: 201-210
    
    137 Batra LR, Batra SWT. Termite fungus mutualism. In: Batra L R // Insect Fungus Symbiosis1 Nutrition, Mutualism and Commensalis. New York: Allanheld, Osmun &Co, 1979, 117-1631
    
    138 Batra LR, Batra SWT. The fungus gardens of insects. Sci Am, 1967, 217: 112-120
    
    139 Batra SWT. Termites (Isoptera) eat and manipulate symbiotic fungi. J. Kansas Entomol.Soc, 1975,48:89-92
    140 L(u|¨)ischer M.Significance of "fungus garden" in Termite nests.Nature,1951,167(6):34-35
    141 林树钱.鸡土从与蚁巢的初探.食用菌,1981(1):19-20
    142 张大成,李子平.凉山地区的鸡土从菌.中国食用菌,1988,7(1):28-29
    143 Batra LR,Batra SWT.Fungus growing Termitomyces of tropical India and associated fungi.J.Kansas Entomol.Soc.,1966,39(4):725-738
    144 Rouland-Lef(?)vre C,Inoue T,Johjima T.Termitomyces/Termite Interactions.In:K(o|¨)nig H,Varma A(eds).Intestinal microorganisms of termites and other invertebrates.New York:Springer,Berlin Heidelberg,2006,335-350
    145 Petch T.The fungi of certain termites nests.Ann of the Royal Bot Gardens Peradeniya,1906,3:4-67
    146 Heim R.Etudes descriptives et exp(?)rimentales sur les agarics termitophiles d'Afrique tropicale.Mem de l'Acad Sc,1941,64:25-29
    147 Matsumoto T.Respiration of fungus combs and carbon dioxyde concentration in the center of mounds of some termites.8 th Proc Int Congr I.U.S.S.I.,1977,104-106
    148 Johnson RA.Colony development and estabilishment of fungus comb in Microtermes.umbaricus Sj(o|¨)stedt(Isoptera,Macrotermitinae) from Nigeria.J Nat Hist,1981,32:3-12
    149 Thomas RJ.Distribution of Termitomyces Heim and other fungi in the nests and major workers of Macrotermes bellicosus(Smeathman) in Nigeria.Soil Biol Biochem,1987,19:329-333
    150 Collins M.The importance of being a Bugga Bug.New Scientist,1982,94:834-837
    151 Hudler GW.Magical Mushrooms,Mischievous Molds.Princeton:Princeton University Press,1998,12-48
    152 Zoberi MH.The ecology of some fungi in a termites hill.Mycologia,1979,71(3):537-545
    153 Rouland-Lefevre C,DioufM,Brauman A,et al..Phylogenetic relationships in Termitomyces based on nucleotide sequences of ITS:A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi.Mol Phylogenet Evol,2002,22:1-7
    154 Aanen DK,Eggleton P,Rouland-Lefevre,et al..The evolution of fungus-growing termites and theirmutualistic symbionts.Proc Natl Acad Sci,2002,99(23):14887-14892
    155 Katoh H,Miura T,Maekawa K,et al..Genetic variation of symbiotic fungi cultivated by the macrotermitinae termite Odontotermes formosanus(Isoptera:Termitidae) in the Ryuku Archipelago. Molecular Ecology, 2002, 11:1565-1572
    
    156 Taprab Y, Okhuma M, Johjima T, et al.. Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host. Biosci Biotechnol Biochem, 2002, 66: 1159-1163
    
    157 Aanen DK, Vera IDR, Henrik HFL, et al.. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evolutionary Biology, 2007, 7:115-125
    
    158 Rohrmann GF. The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae. Pedobiologia, 1978, 18: 89-98
    
    159 Hyodo F, Tayasu I, Inoue T, et al.. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera).Functional Ecology, 2003, 17: 186-193
    
    160 Eggert C, Temp U, Eriksson KE. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett, 1997, 407: 89-92
    
    161 Bose S, Mazumder S, Mukherjee M. Laccase production by the white-rot fungus Termitomyces clypeatus. J Basic Microbiol, 2007, 47: 127-131
    
    162 Taprab Y, Johjima T, Maeda Y, et al.. Symbiotic Fungi Produce Laccases Potentially Involved in Phenol Degradation in Fungus Combs of Fungus-Growing Termites in Thailand. Appl. Environ. Microbiol, 2005, 71(12): 7696-7704
    
    163 Johjima T, Taprab Y, Noparatnaraporn N, et al.. Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation. Appl Microbiol Biotechnol, 200673:195-203
    
    164 Abo-Khatwa N. Cellulase of fungus-growing termites: A new hypothesis on its origin.Experientia, 1978, 34:559-560
    
    165 Martin MM, Martin JS. Distribution and origins of the cellulolytic enzymes of the higher termite, Macrotermes natalensis. Physiol Zool, 1979, 52:11-21
    
    166 Rouland C, Civas A, Renoux J, et al. Synergistic activities of the enzymes involved in cellulose degradation, purified from Macrotermes muelleri and from its symbiotic fungus Termitomyces sp.. Comp Biochem Physiol, 1988, 91B: 59-465
    
    167 Rouland C, Lenoir F, Lepage M. The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp Biochem and Physiol,1991,99:657-663
    
    168 Rouland C, Civas A, Renoux J, et al. Purification and properties of cellulases from the termite Macrotermes Miilleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp.. Comp. Biochem. Physiol. B: Biochem. Mol Biol., 1988, 91B(3):449-458
    
    169 Sengupta S, Sengupta S. P-glucosidase production by the mycelial culture of the mushroom Termitomyces clypeatus. Enz Microb Technol, 1990, 12: 309-314
    
    170 Matoub M, Rouland C. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp.. Comp. Biochem.Physiol, 1995,112B(4): 629-635
    
    171 Mukherjee S, Chowdhury S, Ghorai S, et al. Cellobiase from Termitomyces clypeatus:activity and secretion in presence of glycosylation inhibitors. Biotechnol Lett, 2006, 28:1773-1778
    
    172 Sands WA. Some factors affecting the survival of Odontotermes badius. Insectes Soc.,1956,3:531-536
    
    173 Matsumoto T. The role of termites in an equatorial rain forest ecosystem of west Malaysia. I. Population density, biomass, carbon, nitrogen and calorific content and respiration rate. Oecologia, 1976,22: 153-178
    
    174 Wood TG, Thomas RJ. The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds).Insect-fungus Interection. London: Academic Press, 1989, 69-92
    
    175 Terra WR. Evolution of digestive systems of insects. Ann. Rev. Entomol., 1990,35:181-200
    
    176 Cook SF. Nonsymbiotic utilization of carbohydrates by the termite Zootermopsis angusticollis. Physiol. Zool., 1943, 16: 123-128
    
    177 Rouland C. Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (Eds.). Termites: Evolution, Sociality, Symbiosis, Ecology. The Netherlands: Kluwer Academic Publishers, 2000, 289-306
    
    178 Rohrmann GF, Rossman AY. Nutrient strategies of Macrotermes ukuzii (Isoptera:Termitidae). Pedobiologia, 1980, 20: 61-73
    
    179 Fujita A, Shimizu I, Abe T. Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe):Possible digestion of symbiont bacteria transferred by trophallaxis. Physiol. Entomol.,2001,26:116-123
    
    180 Fujita A, Abe T. Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites. Physiol. Entomoi, 2002, 27: 76-78
    
    181 Fujita A, Minamoto T, Shimizu I, et al. Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite,Reticulitermes speratus.Insect Biochem.Molec.Biol.,2002,32:1615-1624
    182 Lo N,Watanabe H,Sugimura M.Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals.Proc.R.Soc.Lond.Ser.B.Biol.Sci.,2003,270(Suppl.1):569-572
    183 Davison A,Blaxter M.Ancient Origin of Glycosyl Hydrolase Family 9 Cellulase Genes.Mol.Biol.Evol.,2005,22:1273-1284
    184 Mo JC,Yang TC,Song XG,et al..Cellulase activity in five species of important termites in China.Appl.Entomol.Zool.,2004,39(4):635-641
    185 Ohkuma M,Kudo T.Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus.Appl Environ Microbiol,1996,62:461-468
    186 Hongoh Y,Ohkuma M,Kudo T.Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus(Isoptera:Rhinotermitidae).FEMS Micobiol Ecology,2003,44:231-242
    187 Lilbum TG,Schmidt TM,Breznak JA.Phylogenetic diversity of termite gut spirochaetes.Environ Mierobiol,1999,1:331-345
    188 Ohkuma M,Noda S,Hongoh Y,et al..Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites.Biosci Biotechnol Biochem,2002,66(1):78-84
    189 Stingl U,Radek R,Yang H,et al.."Endomicrobia":Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes.Appl Environ Microbiol,2005,71(3):1473-1479
    190 Pasti MB,Belli ML.Cellulolytic activity of Actinomycetes isolated from termites (Termitidae) gut.FEMS Microbiol.Lett.,1985,26:107-112
    191 Paul J,Sarkar A,Varma AK.In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut.Current Science,1986,55:710-714
    192 Hethener P,Braumann A,Garcia JL.Clostridium termitidis sp.nov.,a cellulolytic bacterium from the gut of the woodfeeding termite,Nasutitermes lujae.Syst.Appl.Microbiol.,1992,15:52-58
    193 K(o|¨)nig H.Bacillus species in the intestine of termites and other soil invertebrates.J.Appl.Microbiol.,2006,101:620-627
    194 Tamburini E,Perito B,Mastromei G.Growth phase-dependent expression of an endoglucanase encoding gene(eglS) in Streptomyces rochei A2.FEMS Microbiology Letters,2004,237:267-272
    195 Leadbetter JR,Breznak JA.Physiological ecology of Methanobrevibacter cuticularis sp.nov.and Methanobrevibacter curvatus sp.nov.isolated from the hindgut of the termite Reticulitermes flavipes.Appl Environ Microbiol,1996,62:3620-3631
    196 Brauman A,Kane MD,Labat M,et al..Genesis of acetate and methane by gut bacteria of nutritionally diverse termites.Science,1992,257:1384-1387
    197 Ohkuma M,Noda S,Kudo T.Phylogenetic relationships of symbiotic methanogens in diverse termites.FEMS Microbiology Letters,1999,171:147-153
    198 Noda S,Ohkuma M,Usami R,et al..Culture-Independent Characterization of a Gene Responsible for Nitrogen Fixation in the Symbiotic Microbial Community in the Gut of the Termite Neotermes koshunensis.Appl.Environ.Microbiol.,1999,65(11):4935-4942
    199 Ohkuma M,Noda S,Usami R,et al..Diversity of Nitrogen Fixation Genes in the Symbiotic Intestinal Microflora of the Termite Reticulitermes speratus.Appl.Environ.Microbiol.,1996,62(8):2747-2752
    200 Hongoh Y,Sharma VK,Prakash T,et al..Genome of an Endosymbiont Coupling N_2Fixation to Cellulolysis Within Protist Cells in Termite Gut.Science,2008,322(5904):1108-1109
    201 梅剑凤,吕琴,闵航等.白蚁及其肠道细菌的固氮作用研究.浙江大学学报(农业与生命科学版),2002,28(6):625-628
    202 Yamada A,Inoue T,Noda S,et al..Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites.Molecular Ecology,2007,16:3768-3777
    203 Berchtold M,Ludwig W,K(o|¨)nig H.16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt.FEMS Microbiol Lett,1994,123:269-274
    204 Ohkuma M,Iida T,Kudo T.Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites.FEMS Microbiol Lett,1999,181:123-129
    205 Lilburn TG,Byzek KR,Kim KS,et al..Nitrogen fixation in spirochetes.Abstr.Gen Meeting ASM,2000,100:475
    206 Schmitt-Wagner D,Friedrich MW,Wagner B,et al..Phylogenetic diversity,abundance,and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.).Appl.Environ.Microbiol.,2003,69:6007-6017
    207 Shinzato N,Muramatsu M,Matsui T,et al..Phylogenetic Analysis of the Gut Bacterial Microflora of the Fungus-Growing Termite Odontotermesformosanus.Biosci. Biotechnol. Biochem., 2007, 71(4): 906-915
    
    208 Miyata R, Noda N, Tamaki H, et al. Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem, 2007, 71(5): 1244-1251
    
    209 Warnecke F, Luginb(?) P, Ivanova N, et al.. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(22): 560-569
    
    210 Bauer S, Tholen A, Overmann J, et al. Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques.Arch Microbiol, 2000, 173: 126-137
    
    211 Chou JH, Chen WM, Arun AB, et al. Trabulsiella odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus Shiraki. Int J Syst Evol Microbiol, 2007,57: 696-700
    
    212 Chou JH, Sheu SY, Lin KY, et al. Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol, 2007, 57:887-891
    
    213 Su N, Tamashiro M, Haverty M. Characterization of slow-acting insecticides for the remedial control of the Formosan Subterranean termite (Isoptera: Rhinotermitidae). J.Econ. Entomol, 1987, 80: 1-4
    
    214 Black HIJ, Okwakol MJN. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Appl Soil Ecol, 1997, 6: 37-53
    
    215 Jenkins TM, Jones SC, Lee CY, et al. Phylogeography illuminates maternal origins of exotic Coptotermes gestroi (Isoptera: Rhinotermitidae). Mol. Phylogenet. Evol, 2007,42: 612-621
    
    216 Luscher M. Environmental control of juvenile hormone (JH) secretion and caste differentiation in termites. Gen Comp Endocrinol, 1972, 3: 509-514
    
    217 Arquette TJ, Champagne DE, Brown MR, et al. Evaluation of novel and traditional measures for vigor of laboratory-cultured termites, Reticulitermes flavipes (Kollar). J.Insect Physiol, 2006, 52: 51-66
    
    218 Engel MS, Krishna K. Family-group names for termites (Isoptera). American Museum Novitates,2004, 3432: 1-9
    
    219 Clement JL, Bagneres AG, Uva P, et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc, 2001, 48: 202-215
    
    220 Uva P, Clement JL, Bagneres AG. Colonial and geographic variations in behaviour,cuticular hydrocarbons and mtDNA of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae). Insectes Soc, 2004, 51: 163-170
    
    221 Chuah CH. Intraspecific variation in soldier defense secretions of Longipeditermes longipes (Isoptera, Nasutitermitinae). Biochem. Syst. Ecol., 2007, 35: 600-605
    
    222 Noah WR, Stuartb RJ, Rosengausa RB. Susceptibility and behavioral responses of the dampwood termite Zootermopsis angusticollis to the entomopathogenic nematode Steinernema carpocapsae. J Invertebr Pathol, 2007, 95:17-25
    
    223 Miura T, Maekawa K, Kitade O, et al..Phylogenetic relationship among subfamilies in higher termites (Isoptera: Termitidae) based on mitochondrial COII gene sequences. Ann Entomol Soc Am, 1998, 91: 515-523
    
    224 Thompson GJ, Miller LR, Lenz M, et al. Phylogenetic analysis and trait evolution in Australian lineages of drywood termites (Isoptera, Kalotermitidae). Mol. Phylogenet.Evol., 2000, 17:419-429
    
    225 Austin JW, Szalanski AL, Uva P, et al. A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am, 2002, 95: 753-760
    
    226 Austin JW, Szalanski AL, Cabrera BJ. Phylogenetic analysis of the subterranean termite family Rhinotermitidae (Isoptera) by using the mitochondrial cytochrome oxidase II gene. Ann Entomol Soc Am, 2004, 97: 548-555
    
    227 Ohkuma M, Yuzawa H, Amornsak W, et al. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol Phylogenet. Evol, 2004, 31: 701-710
    
    228 Bergamaschi S, Dawes-Gromadzki TZ, Scalil V, et al. Karyology, mitochondrial DNA and the phylogeny of Australian termites. Chromosome Res., 2007, 15: 735-753
    
    229 Goodisman MAD, Evans TA, Ewen(?) JG, et al. Microsatellite markers in the primitive termite Mastotermes darwiniensis. Molecular Ecology Notes, 2001, 1: 250-251
    
    230 Hayashi Y, Kitade O, Kojima JI. Microsatellite loci in the Japanese subterranean termite,Reticulitermes speratus. Molecular Ecology Notes, 2002, 2: 518-520
    
    231 Vargo EL. Polymorphism at trinucleotide microsatellite loci in the subterranean Reticulitermes flavipes. Mol Ecol, 2000, 9: 817-820
    
    232 Indrayani Y, Matsumura K, Yoshimura T, et al.. Development of microsatellite markers for the drywood termite Incisitermes minor (Hagen). Molecular Ecology Notes, 2006, 6:1249-1251
    
    233 Jenkins TM, Dean RE, Verkerk R, et al. Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow,taxonomy,and introduction dynamics.Mol.Phylogenet.Evol.,2001,20:286-293
    234 Uva P,Cl(?)ment JL,Austin JW,et al..Origin of a new Reticulitermes termite(Isoptera,Rhinotermitidae) inferred from mitochondrial and nuclear DNA data.Mol.Phylogenet.Evol.,2004,30:344-353
    235 Miura T,Roisin Y,Matsumoto T.Molecular phylogeny and biogeography on the Nasute Termite Genus Nasutitermes(Isoptera:Termitidae) in the Pacific tropics.Mol.Phylogenet.Evol.,2000,17:1-10
    236 Marini M,Mantovani B.Molecular relationships among European samples of Reticulitermes(Isoptera:Rhinotermitidae).Mol.Phylogenet.Evol.,2002,22:454-459
    237 Ye W,Lee CY,Scheffrahn RH,et al..Phylogenetic relationships of nearctic Reticulitermes species(Isoptera:Rhinotermitidae) with particular reference to Reticulitermes arenincola Goellner.Mol.Phylogenet.Evol.,2004,30:815-822
    238 Su N,Ye W,Ripa R,et al..Identification of Chilean Reticulitermes(Isoptera:Rhinotermitidae) inferred from three mitochondrial gene DNA sequences and soldier morphology.Ann Entomol Soc Am,2006,99:352-363
    239 Coprena KA,Nelsonb LJ,Vargoc EL,et al..Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites.Mol.Phylogenet.Evol.,2005,35:689-700
    240 刑连喜,胡萃,程家安.四种白蚁的线粒体DNA限制性片段长度多态性研究(等翅目:鼻白蚁科,木白蚁科).昆虫分类学报.1999,21(3):181-185
    241 邢连喜,苏晓红,阴灵芳等.5种白蚁基因组DNA随机扩增多态性研究.西北大学学报(自然科学版).2001,31(5):445-447
    242 Zietkiewicz E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics,1994,20:176-183
    243 Houda CK,Marghali S,Marrakchi M,et al..Genetic diversity of Sulla genus (Hedysarea) and related species using Inter-simple Sequence Repeat(ISSR) markers.Biochem.Syst.Ecol.,2007,35:682-688
    244 Qian W,Ge S,Hong DY.Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers.Theor.Appl.Genet.,2001,102:440-449
    245 Verma VK,Behera TK,Munshi AD,et al..Genetic diversity of ash gourd[Benincasa hispida(Thunb.) Cogn.]inbred lines based on RAPD and ISSR markers and their hybrid performance.Sci.Hortic.,2007,113:231-237
    246 He L,Wang S,Miao X,et al..Identification of necrophagous fly species using ISSR and SCAR markers.Forensic Sci.Int.,2007,168:148-153
    247 Lo N,Kitade O,Miura T,et al..Molecular phylogeny of the Rhinotermitidae.Insectes Soc.,2004,51:365-371
    248 Liu H,Beckenbach AT.Evolution of the mitochondrial cytochrome oxidase Ⅱ gene among ten orders of insects.Mol.Phylogenet.Evol.,1992,1:41-52
    249 Hall TA.BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucleic Acids Symp.Ser.,1999,41:95-98
    250 Yeh FC,Yang RC,Boyle TBJ,et al..POPGENE,the user-friendly shareware for population genetic analysis.Molecular biology and biotechnology centre,university of Alberta,Canada.1997
    251 Simon C,Frati F,Beckenbach A,et al..Evolution,weighting,and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Ann Entomol Soc Am,1994,87:651-701
    252 王四宝.白僵菌与引诱剂联合控制松褐天牛及白僵菌分子生态学研究:[博士学位论文].上海:中国科学院研究生院,2006
    253 Lee KE,Wood TG.Termites and Soils.London:Academic Press,1971
    254 Ohkuma M,Kudo T.Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus.FEMS Microbiol.Lett.,1998,164:389-395
    255 Hongoh Y,Deevong P,Inoue T,et al..Intra- and Inter-Host Species Comparison of Bacterial Microbiota in the Gut of the Wood-Feeding Termites,Microcerotermes spp.(Termitidae) and Reticulitermes spp.(Rhinotermitidae).Appl.Environ.Microbiol.,2005,71:6590-6599
    256 Shinzato N,Muramatsu M,Matsui T,et al..Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus.Biosci.Biotechnol.Biochem.,2005,69:1145-1155
    257 Zhou X,Smith JA,Oi FM,et al..Correlation ofcellulase gene expression and cellulolytic activity throughout the gut of the termile Reticulitermes flavipes.Gene,2007,395,29-39
    258 Anklin-M(u|¨)hlemann R,Bignell DE,Veivers PC,et al..Morphological,microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus.J.Insect.Physiol.,1995,41:929-940
    259 Sands WA.The association of termites and fungi.Biology of Termites,Vol.1(eds.K.Krishna & F.M.Weesner).London:Academic Press,1969,495-524
    260 Schmitt-Wagner D, Friedrich MW, Wagner B, et al. Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol., 2003, 69:6018-6024
    
    261 Hongoh Y, Vineet KS, Tulika P, et al.. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl Acad. Sci. USA, 2008, 105(14):5555-5560
    
    262 Muyzer G, de Waai e c, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbial, 1993, 59: 695-700
    
    263 Tanaka H, Aoyagi H, Shina S, et al.. Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol, 2006, 71: 907-917
    
    264 Edwards U, Rogall T, Bl(?)cker H, et al.. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA.Nucleic Acids Res., 1989, 17: 7843-7853
    
    265 Weisburg WG, Barns SM, Pelletier DA, et al.. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 1991, 173: 697-703
    
    266 Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'.Nucleic acids res, 2002, 30: 2083-2088
    
    267 Zhang XL, Yan X, Gao PP, et al.. Optimized sequence retrieval from single bands of TGGE (temperature gradient gel electrophoresis) profiles of the amplified 16S rDNA fragments from an activated sludge system. J microbial method, 2005, 60: 1-11
    
    268 Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl environ microbial,2005,71: 1501-1506
    
    269 Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 1987, 43:783-791
    
    270 Tamura K, Dudley J, Nei M, et al.. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599
    
    271 Lee SB, Taylor JW. Phylogeny of five fungus-like protoctistan Phytophtora species,inferred from the internal transcribed spacers of ribosomal DNA. Mol Biol Evol, 1992, 9:636-653
    272 Dojka MA,Hugenholtz P,Haack SK,et al..Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation.Appl.Environ.Microbiol.,1998,64:3869-3877
    273 Reardon CL,Cummings DE,Petzke LM,et al..Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer.Appl.Environ.Microbiol.,2004,70:6037-6046
    274 刘芳华.沼气发酵微生物群落结构解析及元基因组文库构建:[博士学位论文].上海:中国科学院研究生院,2008
    275 Yang H,Schmitt-Wagner D,Stingl U,et al..Niche heterogeneity determines bacterial community structure in the termite gut(Reticulitermes santonensis).Environ.Microbiol.,2005,7:916-932
    276 Thongaram T,Hongoh Y,Kosono S,et al..Comparison of bacterial communities in the alkaline gut segment among various species of higher termites.Extremophiles,2005,9:229-238
    277 Boga HI,Ludwig W,Brune A.Sporomusa aerivorans sp.nov.,an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite.Int J Syst Evol Microbiol.,2003,53(5):1397-1404
    278 Nakajima H,Hongoh Y,Noda S,et al..Phylogenetic and Morphological Diversity of Bacteroidales Members Associated with the Gut Wall of Termites.Biosci.Biotechnol.Biochem.,2006,70(1):211-218
    279 Reichenbach H.Order Ⅰ:Cytophagales Leadbetter,1974,99AL.In:Bergey'S Manual Of Systematic Bacteriology(eds.Staley JT,Bryant MP,Pfennig N,et al.).Baltimore:Williams and Wilkins,1989,2011-2013
    280 Avgustin G,Wallace RJ,Flint HJ.Phenotypic diversity among ruminal isolates of Prevotill ruminicola:proposal of Prevotella brevis sp.nov.,Prevotella bryantii sp.nov.,and Prevotella albensis sp.nov.,and redefinition of Prevotella ruminicola.Int.J.Syst.Bacteriol.,1997,47:284-288
    281 Stingl U,Maass A,Radek R,et al..Symbionts of the gut flagellate Staurojoenina sp.from Neotermes cubanus represent a novel,termite-associated lineage of Bacteroidales:description of "Candidates Vestibaeulum illigatum".Microbiology,2004,150:2229-2235
    282 Noda S,Iida T,Kitade O,et al..Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus.Appl.Environ.Microbiol.,2005,71:8811-8817
    283 Noda S, Inoue T, Hongoh Y, et al. Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ. Microbiol, 2006,8, 11-20
    
    284 Lopez-Garcia P, Duperron S, Philippot P, et al. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the mid-Atlantic ridge. Environ. Microbiol, 2003, 5(10): 961-976
    
    285 Kudo T, Ohkuma M, Moriya S, et al. Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles, 1998, 2: 155-161
    
    286 Graber JR, Leadbetter JR, Breznak JA. Description of Treponema azotonutricium sp.nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol, 2004, 70: 1315-1320
    
    287 Leadbetter JR, Schmidt Tm, Graber JR, et al.. Acetogenesis from H_2 plus CO_2 by spirochetes from termite guts. Science, 1999, 283: 686-689
    
    288 Iida T, Ohkuma M, Ohtoko K, et al.. Symbiotic spirochetes in the termite hindgut:phylogenetic identification of ectosymbiotic spirochetes of oxymonad protests. FEMS Microbiol Ecol, 2000, 34: 17-26
    
    289 Dr(?)ge S, Fr(?)hlich J, Radek R, et al. Spirochaeta coccoides sp. nov., a Novel Coccoid Spirochete from the Hindgut of the Termite Neotermes castaneus. Appl. Environ.Microbiol, 2006, 72(1): 392-397
    
    290 Herlemann DPR, Geissinger O, Brune A. The Termite Group I phylum is highly diverse and widespread in the environment. Appl. Environ. Microbiol, 2007, 73(20): 6682-6685
    
    291 Hongoh Y, Yuzawa H, Ohkuma M, et al. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett,2003,221:299-304
    
    292 Nakajima H, Hongoh Y, Usami R, et al. Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiology Ecology, 2005, 54: 247-255
    
    293 Ikeda-Ohtsubo W, Desai M, Stingl U, et al. Phylogenetic diversity of "Endomicrobia" and their specific affiliation with termite gut flagellates. Microbiology, 2007, 153:3458-3465
    
    294 Spear JR, Walker JJ, McCollom TM, et al.. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. U. S. A., 2005, 102:2555-2560
    295 Tringe SG,Mering C,Kobayashi A,et al..Comparative metagenomics of microbial communities.Science,2004,308:554-557
    296 Tajima K,S Arai,K Ogata,et al..Rumen bacterial community transition during adaptation to high-grain diet.Anaerobe,2000,6:273-284
    297 Hugenholtz P,Pitulle C,Hershberger KL,et al..Novel division level bacterial diversity in a Yellowstone hot spring.J.Bacteriol.,1998,180(2):366-376
    298 李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性.微生物学报,2008,48(3):323-329
    299 Shinzato N,Mizuho Muramatsu,Yoshio Watanabe,et al..Termite-Regulated Fungal Monoculture in Fungus Combs of a Macrotermitine Termite Odontotermes formosanus.Zoological Society,2005,22:917-922
    300 Nalepa CA.Nourishment and the origin of termite eusociality.In:“Nourishment and Evolution in Insect Societies”.Hunt JH,Nalepa CA(Eds.).Boulder:Westview Press,1994:57-96
    301 William AS.The association of termite and fungi.In:Biology of the termite.Kummer K,Frances MW(eds.).New York:Academic Press,1969:495-524
    302 王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物分类学报,1999,37(4):407-416
    303 Wang S,Miao X,Zhao W,et al..Genetic diversity and population structure among strains of the entomopathogenic fungus,Beauveria bassiana,as revealed by inter-simple sequence repeats(ISSR).Mycol.Res.,2005,109(12):1364-1372
    304 Mckay GJ,Egan D,Morris E,et al..Genetic and Morphological Characterization of Cladobotryum Species Causing Cobweb Disease of Mushrooms.Appl.Environ.Microbiol.,1999,65(2):606-610
    305 White TJ,Bruns T,Lee S,et al..Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.PCR Protocols:a Guide to Methods and Applications(eds.Innis MA,Gelfand DH,Sninsky JJ,et al.).New York:Academic Press,1990,315-322
    306 Gardes M,White TJ,Fortin JA,et al..Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA.Can.J.Bot.,1991,69:180-190
    307 Gardes M,Bruns TD.Rapid characterization of ectomycorrhizae using RFLP pattern of their PCR amplified- ITS.Mycological Society Newsletter,1991,41:14
    308 Baura G,Szaro TM,Brons TD.Gastrosuillus laricinus is a recent derivative of Suillus grevellei,molecular evidence.Mycologia,1992,84:592-597
    309 Chen W,Hoy JW,Schneider RW.Species-specific polymorphisms in transcribed ribosomal DNA of five Pythium species.Exp.Mycol.,1992,16:22-34
    310 Moriya S,Inoue T,Ohkuma M,et al..Fungal Community Analysis of Fungus Gardens in Termite Nests.Microbes Environ,2005,20:243-252
    311 Bulmer,MS,Crozier,RH.Duplication and diversifying selection among termite antifungal peptides.Mol.Biol.Evol.,2004,21:2256-2264
    312 Lamberty M,Zachary D,Lanot R,et al..Insect immunity:Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect.J.Biol.Chem.,2001,276:4085-4092
    313 Carninci P,Shibata Y,Hayatsu N,et al..Normalization and subtraction of cap-trapper-selected cDNAs to prepare fulllength cDNA libraries for rapid discovery of new genes.Genome Res,2000,10(10):1617-1630
    314 Kato S,Sekine S,Oh S W,et al..Construction of a human fulllength cDNA bank.Gene,1994,150(2):243-250.
    315 徐军望,朱贞,李旭刚.快速cDNA文库筛选和淀粉合成酶基因的分离与鉴定.高技术通讯,2001,8:1-6
    316 程旭东,董玲丽,凌宏清.基于PCR技术筛选cDNA和genome文库方法的改进.高技术通讯,2004,11:32-37
    317 徐碧玉,苏伟,张建斌等.香蕉果实SMART cDNA文库的构建及利用PCR方法筛选香蕉Actin2基因.热带亚热带植物学报,2005,13(5):375-380
    318 吴新东,陈芳,李鑫等.中国美利奴细毛羊BAC文库的三维PCR筛选.生物工程学报.2008,24(10):1828-1831
    319 Sini(?)a H,J(o|¨)rn P.Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools.J.Microbiol.Methods,2007,68:434-436
    320 王志成,蒋建雄,钟军等.PCR快速筛选棉纤维cDNA文库分离全长cDNA序列.湖南农业大学学报(自然科学版),2005,31(3):272-275