苯乙烯—丙烯腈在聚醚介质中的接枝共聚合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯乙烯(St)和丙烯腈(AN)在聚丙二醇(PPG)介质中的接枝共聚合产物——接枝聚醚多元醇(POP),可用于制备高性能聚氨酯泡沫和弹性体。该聚合过程属于典型的分散聚合,始于均相体系,由于St-AN共聚物(SAN)与PPG较差的互溶性,均相体系很快变成两相体系,即连续相(PPG富相)和分散相(SAN富相)。相分离以后,反应过程涉及反应物质的两相分配和两个聚合场所共存,使得聚合过程变得非常复杂。本文通过实验和模型研究了聚合过程中单体的相平衡规律、聚合反应动力学和颗粒的生长规律。
     相平衡实验研究获得了大量的相平衡数据。St-AN-SAN-PPG四元二相体系可以看成两个拟三元体系,即St-AN-SAN和St-AN-PPG。基于Flory-Huggins(F-H)高分子溶液理论,建立了一个拟三元两相体系的相平衡模型,用于描述St和AN在相间的分配规律。采用Hildebrand-Scatchard溶度参数和Hansen三维溶度参数估算了温度影响的F-H相互作用参数,并通过实验数据拟合未知模型参数。模型能够较好地描述St和AN的分配行为。大部分情况下,St和AN都趋向于PPG富相。‘'St/AN配比”明显影响它们在相间的分配行为,降低"St/AN比值”,可同时提高它们的分配系数(SAN富相浓度和PPG富相浓度之比)。St和AN的分配系数受"SAN/PPG配比”和SAN共聚物组成的影响较小,随温度的增加而缓慢增加。拟合得到了用于计算聚合过程中单体分配系数的经验式。
     对间歇和半连续接枝共聚合过程,进行了深入的实验研究,发现:
     1)随聚合反应的进行,主要聚合场所逐渐从连续相转移到分散相,导致了聚合速率和分子量(MW)的激增、接枝效率的降低和分子量分布(MWD)的加宽。单体浓度的增加、共单体中AN含量的增加和反应温度的提高均能加速主要聚合场所的转移。
     2)间歇聚合过程中,单体转化率(X)表现出明显的“本体聚合”特征。将共单体的滴加设定为“饥饿状态”时,半连续聚合过程中聚合速率可分为低速、恒速和低速三个阶段,固含率的变化相应呈现出缓慢增加、快速线性增加和缓慢增加三个阶段。
     3)间歇和半连续聚合过程中,共聚物组成主要受"St/AN进料比”影响,表观恒比点为St/AN=70/30wt/wt。在75/25~60/40的"St/AN比值”范围内,整个聚合过程中共聚物组成没有明显的漂移。
     4)接枝率主要受"St/AN进料比”影响,半连续聚合过程初期的接枝率高于间歇聚合过程初期,所得颗粒粒径也较小,但是后期的接枝率(0.2~0.3)没有明显区别。
     5)间歇聚合过程中,不同"St/AN进料比”(74/25-60/40wt/wt)下,分子量(MW)及其分布指数(PDI)没有明显区别。但是,当St/AN=60/40时,半连续聚合过程中所得的MW及PDI明显高于间歇聚合过程,尤其在低单体进料速率下,高固含率下发生了化学交联。当St/AN=70/30或75/25时,两种聚合过程所得的MW和PDI几乎没有区别。
     利用矩函数法建立了描述间歇、半连续和连续接枝共聚合过程的非均相接枝共聚合数学模型,模型由初始的“自由基溶液聚合模型”和后期“自由基两相聚合模型”组成。相分离之后,单体在两相间的分配系数采用相平衡模型或相平衡模型导出的经验式估算,引发剂和CTA假设在两相间平均分配,聚合物链的两相分配采用临界链长假定处理。分散相中的链终止、链增长和链转移速率系数及引发效率从该相一形成就采用CCS-AK扩散模型估算。利用间歇聚合过程所得的动力学数据拟合了未知模型参数。
     模型能够较好地描述间歇聚合动力学,包括St和AN的转化率、PPG和大单体转化率、共聚物组成、分子量及PDI、接枝效率和接枝比,以及聚合过程中反应场所的转移。拟合得到了St-AN、AN-St、St-大单体、大单体-St间、AN-大单体和大单体-AN间的竞聚率。分散相中存在明显的“凝胶效应”和“笼效应”。大部分情况下,半连续聚合模型能够较好地描述聚合过程中体系的固含率及产品的结构特征(共聚物组成、接枝效率、分子量和PDI),但是不能很好地模拟St/AN=60/40下的MW和PDI,特别是在低进料速率下。
     通过连续聚合过程建模仿真研究了不同反应条件对体系固含率及产品结构特征的影响,以及反应条件扰动对连续聚合过程的影响。固含率随单体浓度的增加而快速增加,接枝率随着"St/AN进料比”的降低而快速增加,MW随着"St/AN进料比”和反应温度的降低而明显增加,共聚物组成只受"St/AN进料比”的影响。与间歇和半连续聚合过程相比,连续聚合过程所得的接枝效率、MW和PDI较高。连续聚合过程中,反应条件的扰动后,体系可以较快达到稳定。
     颗粒的形成遵循“均相聚并成核机理”,齐聚物的吸附和接枝共聚物的缠结共同作用。实验数据和模型计算结果表明,间歇聚合过程中颗粒成核期约在X=0.01-0.05。大单体和链转移剂(CTA)的初始浓度,及"St/AN进料比”对体系的稳定、颗粒粒径及其分布(PSD)具有重要作用。当St/AN<80/20wt/wt时,容易制得光滑的、球形的和具有清晰界面的聚合物颗粒。随着[CTA]。和共单体中AN含量的增加,颗粒粒径降低,PSD变窄。实验表明,粒径∝[单体]0.58·[大单体]-0.65·[引发剂]-0.06;理论表明,粒径∝[单体]2/3·[大单体]-0.5·[引发剂]-1/12,理论指数值与之吻合较好。模型能够较好地描述了不同实验条件下颗粒粒径的增长规律。随着引发剂浓度和反应温度的增加,颗粒粒径缓慢降低。随着“单体/PPG进料比”和"St/AN进料比”的增加,颗粒粒径缓慢增加。
     对于聚合过程中的PSD,半连续与间歇聚合过程间存在明显区别。当大单体与PPG一起加入到反应釜中,半连续聚合过程的PSD会演变为双峰分布而后者一直为单峰分布。当大单体与单体料液一起滴加到反应釜中,半连续聚合过程的颗粒增长规律与间歇聚合过程相似,一直为单峰分布。半连续聚合过程中,可以通过“调控St/AN进料比”和“调控大单体的加料方式”调控颗粒粒径及其分布。
Graft copolymerization of styrene (St) and acrylonitrile (AN) in the presence of polypropylene glycol (PPG) is used to prepare graft polyether polyol (POP), which is widely applied in manufacturing high-performance polyurethane foams and elastomers. The present system starts from a homogeneous system and becomes a two-phase system (a PPG-rich continuous phase and a SAN-rich disperse phase) soon after the beginning due to the limitted misicbility between St-AN (SAN) copolymer and PPG. After then, polymerization involves partition behaviors of reactants and two polymerization loci, which makes the polymerization process very complicated. This work is aimed to disclose the polymerization kinetics and the particle growth. Mathematical models are also developed to describe batch and semibatch processes, and to simulate continuous process as well.
     Equilibrium data of St-AN-SAN-PPG quaternary system were measured. Phase equilibria of the quaternary two-phase systems, St-AN-SAN-PPG, can be treated as phase equilibria between two pseudo-ternary systems, i.e. St-AN-SAN and St-AN-PPG. A pseudo-ternary two phase equilibrium model based on Flory-Huggins (F-H) polymer solution theory is established to describe partition behaviors of St and AN. The temperature-depedent F-H interaction parameters are estimated from Hildebrand-Scatchard solubility parameters and Hansen three-dimensional solubility parameters. The estimated F-H interaction parameters are also fitted by phase equilibrium data. The calculated results agree well with the experimental data under various experimental conditions. Both monomers are prone to exist in PPG-rich phase in most cases. St/AN ratio has a significant role in their partition coefficients, which are defined as the ratio of concentrations in SAN-rich phase to that in PPG-rich phase. The increase of AN amount can increase their partition coefficients, but St has the inverse effect. SAN/PPG ratio and copolymer composition have little impact on partition coefficients of St and AN. Partition coefficients of St and AN are increased slowly with increasing temperature. Two empirical expressions are obtained to calculate partition coefficients of St and AN during polymerization.
     Basing on the extensive research on graft copolymerization experiments of batch and semibath processes, the following conclusions have been drawn.
     1) During the polymerization, the main polymerization locus shifts from the continuous process into the disperse phase, leading to sharp increase in polymerization rate and molecular weight (Mw), decrease in graft effciency and broaden in molecular weight distribution (MWD). Increase of monomer concentration, AN fraction in comonomer and reaction temperature can advance the shift of main polymerization locus into the disperse phase.
     2) Conversion evolution in batch process is similar to that in typical bulk polymerization and gel effect ocurrs soon after the beginning. When the feeds rate of monomer are set to be at a starvation state, the polymerization rate in semi-batch process can be divided into three stages: slow, constant and slow, and the increase of solid content can be also divided into three stages: slow, constant and slow.
     3) Copolymer composition is only affected by comonomer feed ratio. The apparent azeotropic point is found to be around St/AN=70/30wt/wt. When St/AN ratio changes from75/25to60/40, there is no clear copolymer composition drift.
     4) Graft efficiency is mainly affect by comonomer ratio. The initial graft efficiency in semi-batch process is higher than that in batch process, so the initial particle size prepared in semi-batch process is smaller than that in batch process. There is no obvious difference between graft efficiency in the later polymerization (ca.0.2-0.3).
     5) In batch process, average weight molecular weight (Mw) and its polydispersity index (PDI) have no difference at different St/AN ratios. However, Mw and PDI prepared in semi-batch process at St/AN=60/40wt/wt is much higher than those prepraed in batch process, and some cross-linked SAN copolymers are formed at higher solid content under such conditions. At St/AN=70/30or75/25, there is no difference for Mw and PDI obtained between batch and semi-batch process.
     Heterogeneous free radical polymerization models consisting of initial free radical solution polymerization models and later free radical two-phase polymerization models are developed for batch, semi-batch and continuous graft polymerization using moment method. After phase separation, partition coefficients of monomers are estimated by the phase equilibrium model or the empirical expressions derived from the phase equilibrium model; initiator and CTA are assumed to partition evenly between each phase; partition behaviors of polymer chains are evaluated by the critical chain length assumption. The well-known CCS-AK diffusion controlled model is used to estimate the initiation efficiency, kinetic parameters of termination, propagation and transfer reaction in the disperse phase from its formation. The kinetics data of batch process is used to fit the unknown model parameters.
     The model describes the polymerization kinetics of batch process well, including monomer conversion, PPG¯omer conversions, copolymer composition, weight average molecular weight, PDI, graft efficiency and graft ratio, and describes the shift of polymerization locus as well. The reactivity ratios of St-AN pair, AN-St pair, St-macromer pair, macromer-St, AN-macromer pair and macromer-AN pair are fitted. In the dispersed phase, the obvious "gel effect" and "cage effect" are found. In most cases, the mathematical model for semi-batch process can describe properties of products well, including:solid content, copolymer composition and graft efficiency, Mw and PDI except for Mw and PDI at St/AN=60/40wt/wt, especially at low feeding rate.
     Mathematical model for continuous process is used to simulate the effects of reaction conditions on solid content and product structure properties, and to carry out the stability analysis. Solid content increases sharply with increasing monomer concentration. Graft efficiency increases sharply with decreasing St/AN ratio. Mw increases with decreasing St/AN ratio and reaction temperature. Copolymer composition is only affected by comonomer ratio. Graft efficiency as well as Mw and PDI simulated in continuous process is higher than that obtained in batch or semi-batch proces. The reactor can tolerate the disturbances and insure that the transients will move back to the original steady state.
     Based on "homogeneous aggregation nucleation mechanism", particle formation is cocontributed by absoption of oligomer radicals and entanglement of graft copolymers. Experimental data and simulated results observe that the nucleation occurs at monomer conversion of0.01-0.05in batch process, after then particle number keeps constant. Initial concentrations of macromer and CTA, and St/AN ratio have important roles on particle stability and PSD. Smooth, spherical and well-defined particles can be prepared when St/AN ratio is<80/20wt/wt. Particle size decreases and PSD becomes narrower with increasing CTA concentration and the AN fraction in comonomers. In theory, d∝Wmt02/3·WMo-0.5·[I]0-1/12; actually, d∝Wmt00.58·WM0-0.65·[I]0-0.06.The exponent values of the experimental dependence on monomer intial mass concentration (Wmto), macromer initial mass concentration (WM0) and initiator initial molar concentration ([I]0) is in good accordance with the theoretical values. The calculated conversion-dependent particle sizes under various experimental conditions agree well with the experimental data. Particle size decreases slowly with increasing initiator concentration and reaction temperature. Particle size increases slowly with increasing monomer/PPG ratio and St/AN ratio.
     PSD prepared via semi-batch process differs much from that prepared by batch process. When all macromer is added into reactor with PPG firstly, the PSD in semi-batch process becomes bimodal PSD, but the PSD remains monodisperse in batch process. When all macromer is added into reactor with monomer mixture continuously, particle variation in semi-batch process is similar to that in batch process, and keeps monodisperse during the whole polymerization process. In semi-batch graft copolymerization process, the following two methods can be used to controll particle size and PSD:optimizing St/AN ratio and optimizing addition manner of macromer.
引文
[1]Dai J, Wang L, Cai T, Zhang A, Zeng X. EPDM/St-An graft copolymerization reaction behavior by phase inversion emulsion and the toughness effect of EPDM-g-SAN on SAN resin. J. Appl. Polym. Sci.2008,107:3393-3400.
    [2]Zeng Zh, Wang L, Cai T, Zeng X. Synthesis of high rubber styrene-EPDM-acrylonitrile graft copolymer and its toughening effect on SAN. J. Appl. Polym. Sci.2004,94: 416-423.
    [3]Shi X, Cheng W, Lu Z, Du Q, Yang Y. Synthesis of graft copolymer of styrene and acrylonitrile onto poly (butyl acrylate) by using polymeric peroxide. Polym. Bull.2002, 48:389-396.
    [4]Ionescu M. Chemistyr and technology of polyols for polyurethanes. Rap,2005.
    [5]朱启民,刘益军等.聚氨酯泡沫塑料(第三版).北京:化学工业出版社.2005.
    [6]Pla F, Fonteix C, Van der Wal H. Modeling of continuous dispersion copolymerization of styrene and acrylonitrile in a polyol medium. Chem. Eng. Technol.2010,33:1859-1876.
    [7]Michiel BE, Willem K, Ronald VK. Macromer stabiliser precursor for polymer polyols, US6403667,2002.
    [8]Zaschke B, Hoppe A, Schuster M, Wenzel M, Wagner K. Graft polyols with a bimodal particle size distribution and method for producting graft polyols of this type, in addition to the use thereof for producing polyurethanes, US20050222361A1,2005.
    [9]Dwight KH, Midlan M. Low viscosity, high solids polymer polyols prepared using a preformed dispersant, US4745153,1988.
    [10]Adkins RL, Guelcher SA, Hayes JE. Low viscosity polymer polyols, US20060025491A1, 2006.
    [11]Bob H, Willem K, Martien K, Martinus J, Maria, Lelieveld;. Process for preparing polymer polyols, US20030220410A1,2003.
    [12]Donald WS, Xinhua Z, Charles VR. Process for the preparation of polypl polymer dispresions, US6143802,2000.
    [13]Graeme DF. Polymer polyols and a process for the production therefof, US6455603 B1, 2002.
    [14]Mao YH, Kenneth CS, Joeseph FL. Method for the preparation of graft polymer dispersions having broad particle size distribution withou wildly flucuating viscosities, US5223570,1993.
    [15]Mark RK, Manfred D, Torsten H, Gundolf J, Josef S, Helmut W. Continuous process for the preparation of highly stable, finely divided, low viscosity polymer polyols of small average particle size, US5814699,1998.
    [16]王俊卿,苏致兴.聚醚多元醇大分子单体与苯乙烯/丙烯腈共聚合反应动力学研究.兰州大学学报(自然科学版).2000,36:88-92.
    [17]李伯耿,罗英武,范宏,朱世平.聚合动力学研究:从揭示反应机理到定制聚合物的链结构.2009年全国高分子学术论文报告会(大会报告),天津,2009.
    [18]Luo Y, Wang R, Yang L, Yu B, Li B, Zhu S, Effect of reversible addition-fragmentation transfer (RAFT) reactions on (mini)emulsion polymerization kinetics and estimate of RAFT equilibrium constant, Macromolecules 2006,39:1328-1337.
    [19]Wang R, Luo Y, Li B, Sun X, Zhu S, Design and control of copolymer composition distribution in living radical polymerization using semi-batch feeding policies:A model simulation,Macromol. Theory. Simul.2006,15:356-368.
    [20]Sun X, Luo Y, Wang R, Li B-G, Liu B, Zhu S, Programmed synthesis of copolymer with controlled chain composition distribution via semibatch RAFT copolymerization, Macromolecules 2007,40:849-859.
    [21]Sun X, Luo Y, Wang R, Li B-G, Zhu S, Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles, AIChE J.2008,54: 1073-1087.
    [22]Wang D, Li X, Wang W-J, Gong X, Li B-G, Zhu S, Kinetics and modeling of semi-batch RAFT copolymerization with hyperbranching, Macromolecules 2011,45:28-38.
    [23]蒋晓群.聚合物多元醇GPOP-H45制备高回弹泡沫研究.化学推进剂与高分子材料.2006,4:38-42.
    [24]朱国强,顾良民,顾志宏.高固含聚合物多元醇在聚氨酯软泡中的应用.聚氨酯工业.1998,2:28-31.
    [25]冯月兰,殷宁,亢茂青,王心葵.聚合物多元醇在聚氨酯微孔弹性体中的应用.化学推进剂与高分子材料.2007,1:50-55.
    [26]殷宁,亢茂青,冯月兰,邸亚丽,封悦霞,王心葵.聚酯聚合物多元醇改性聚酯型微孔聚氨酯弹性体结构和性能研究.化学推进剂与高分子材料.2006,6:26-28.
    [27]Ionescu M, Gosa K, Mihalache I, Zugravu V, Carp N. Graft polyether polyols based on a-methylstrene and acrylonitrile for flexibel polyurethane foams. Cell Polym.1994,13: 339-360.
    [28]郭睿威.聚合物聚醚多元醇的合成与应用研究[博士学位论文].天津:天津大学,2002.
    [29]韩怀强.聚合物多元醇产品质量的影响因素与控制.聚氨酯工业.2002,17:5-8.
    [30]Odian G. Principles of polymerization (Fourth edition). A John Wiley & Sons, Inc., Publication.2004.
    [31]Nguyen S, Berek D. Liquid chromatography of polymer mixtures by a combination of exclusion and full adsorption mechanisms. Three- and four-component polymer blends. Chromatographia 1998,48:65-70.
    [32]Nguyen SH, Berek D. Liquid chromatography of polymer mixtures applying a combination of exclusion and full adsorption mechanisms.5. Six-component blends of chemically similar polymers. Colloid Polym Sci.1999,277:318-324.
    [33]Nguyen SH, Berek D, Chiantore O. Reconcentration of diluted polymer solutions by full adsorption/desorption procedure- 1. Eluent switching approach studied by size exclusion chromatography. Polymer 1998,39:5127-5132.
    [34]Nguyen SH, Berek G, Capek I, Chiantore O. Polystyrene-graft-poly(ethylene oxide) copolymers prepared by macromonomer technique in dispersion. I. Liquid chromatographic separation of product mixtures. J. Polym. Sci. Part. A:Polym. Chem. 2000,38:2284-2291.
    [35]Berek D, Nguyen SH. Adsorption and desorption of macromolecules on the solid surfaces studied by on-line SEC.1. The principle of method. Macromolecules 1998,31: 8243-8249.
    [36]Harald Pasch, Martina Adler, Frank Rittig, Stefan Becker. New developments in multidimensional chromatography of complex polymers. Macromol. Rapid Comm.2005, 26:438-444.
    [37]Knecht D, Rittig F, Lange RFM, Pasch H. Multidimensional chromatographic techniques for hydrophilic copolymers:II. Analysis of poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. J. Chromatogr. A 2006,1130:43-53.
    [38]郑友桂PEG/VAc自由基接枝聚合动力学研究[硕士学位论文].杭州:浙江大学,2007.
    [39]Guo R, Lu X, Hua M, Fang D, Yao K. Separation and characterization of poly(styrene-co-acrylonitrile)-graft-poly(propylene oxide) polymer stabilizer formed in dispersion polymerization of styrene and acrylonitrile in polyether. Polym. Int.2001,50: 1379-1383.
    [40]宫成,李黎,吴林波,李伯耿.聚合物多元醇黏度的研究.石油化工.2011,40:1190-1195
    [41]Flory PJ. Principles of polymer chemistry. Cornell University Press, Ithaca, NY,1952.
    [42]Guillot J. A thermodynamic approach for emulsion copolymerization. Makromol. Chem., Rapid Commun.1980,1:697-702.
    [43]Guillot J. Some thermodynamic aspects in emulsion copolymerization. Die Makromol. Chem.1985,10:235-264.
    [44]Liu X, Nomura M, Fujita K. Thermodynamic correlation of partial and saturation swelling of styrene-acrylonitrile copolymer particles by styrene and acrylonitrile monomers. J. Appl. Polym. Sci.1997,64:931-939.
    [45]Liu X, Nomura M, Liu Y-H, Ishitani K, Fujita K. Saturation swelling of ABS latex particles by styrene and acrylonitrile monomer mixtures. Ind. Eng. Chem. Res.1997,36: 1218-1223.
    [46]Lu YY, El-Aasser MS, Vanderhoff JW. Dispersion polymerization of styrene in ethanol: Monomer partitioning behavior and locus of polymerization. J. Polym. Sci. Part. B: Polym. Phys.1988,26:1187-1203.
    [47]Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization.2 Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media. Macromolecules 1996,29: 4508-4515.
    [48]Lu T, Shan G. Modeling of two-phase polymerization of acrylamide in aqueous polyethylene glycol) solution. AIChE J.2011,57:2493-2504.
    [49]Saenz JM, Asua JM. Mathematical modeling of dispersion copolymerization. Coll. Surf. A:Physiochem. Eng. Aspects.1999,153:61-74.
    [50]Brandrup J, Immergut EH, Grulke EA. in:Brandrup, E.H. Immergut, E.A. Grulke (Eds), Solubility parameter values, Polymer Handbook fourth edition. Interscience, New York, 1999,657-687.
    [51]Adamska K, Voelkel A. Hansen solubility parameters for polyethylene glycols by inverse gas chromatography. J. Chromatogr. A 2006,1132:260-267.
    [52]Adamska K, Bellinghausen R, Voelkel A. New procedure for the determination of Hansen solubility parameters by means of inverse gas chromatography. J. Chromatogr. A 2008,1195:146-149.
    [53]Hansen CM. Hansen solubility parameters:a user's handbook. CRC Press, Boca Raton, FL,2000.
    [54]Lindvig T, Michelsen ML, Kontogeorgis GM. Thermodynamics of paint-related systems with engineering models. AICHE J.2001,47:2573-2584.
    [55]Lindvig T, Michelsen ML, Kontogeorgis GM. A Flory-Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibr.2002,203:247-260.
    [56]潘祖仁.高分子化学(第四版).北京:化学工业出版社,2007.
    [57]Frank EC, Donald WS, Stuart LW. Low viscosity polymer polyols with improved dispersion stability, US5364906,1994.
    [58]Jiang S, Sudol ED, Dimonie VL, El-Aasser MS. Kinetics of Dispersion Polymerization of Methyl Methacrylate and n-Butyl Acrylate:Effect of Initiator Concentration. Macromolecules 2007,40:4910-4916.
    [59]Jiang S, Sudol ED, Dimonie VL, El-Aasser MS. Kinetics of dispersion polymerization: Effect of medium composition. J. Polym. Sci. Part. A:Polym. Chem.2008,46: 3638-3647.
    [60]Jiang S, Sudol ED, Dimonie VL, El-Aasser MS. Dispersion polymerization of methyl methacrylate:effect of stabilizer concentration. J. Appl. Polym. Sci.2008,107: 2453-2458.
    [61]Jiang S, Sudol ED, Dimonie VL, El-Aasser MS. Dispersion copolymerization of methyl methacrylate and n-butyl acrylate. J. Polym. Sci. Part. A:Polym. Chem.2007,45: 2105-2112.
    [62]Shim SE, Jung H, Lee K, Lee JM, Choe S. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer. J. Colloid Interf. Sci.2004,279:464-470.
    [63]Capek I, Riza M, Akashi M. Dispersion copolymerization of poly(oxyethylene) macromonomers and styrene. J. Polym. Sci. Part. A:Polym. Chem.1997,35:3131-3139.
    [64]Capek I, Nguyen SH, Berek D. Polystyrene-graft-poly(ethylene oxide) copolymers prepared by macromonomer technique in dispersion.2. Mechanism of dispersion copolymerization. Polymer 2000,41:7011-7016.
    [65]Capek I, Murga R, sbreve, et al. Dispersion copolymerization of polyoxyethylene macronomer and styrene 4. Solution properties of polystyrene-graft-polyoxyethylene copolymers. J. Polym. Sci. Part. A:Polym. Chem.1999,37:3087-3097.
    [66]Liu J, Chew CH, Wong SY, Gan LM, Lin J, Tan KL. Dispersion polymerization of styrene in aqueous ethanol media using poly(ethylene oxide) macromonomer as a polymerizable stabilizer. Polymer 1998,39:283-289.
    [67]Patrick Larcroix-Desmazes, Alain Guyot. Reactive surfactants in heterophase polymerization. Part XXI-Kinetics of styrene dispersion polymerization stabilized with poly(ethylene oxide) macromonomers. Polym. Advan. Technol.1997,8:601-607.
    [68]Saenz JM, Asua JM. Dispersion copolymerization of styrene and butyl acrylate in polar solvents. J. Polym. Sci. Part. A:Polym. Chem.1996,34:1977-1992.
    [69]Saenz JM, Asua JM. Kinetics of the dispersion copolymerization of styrene and butyl acrylate. Macromolecules 1998,31:5215-5222.
    [70]Kawaguchi S, Winnik MA, Ito K. Dispersion copolymerization of n-butyl methacrylate with poly(ethylene oxide) macromonomers in methanol-water, comparison of experiment with theory. Macromolecules 1995,28:1159-1166.
    [71]Kawaguchi S, Ito K. Dispersion Polymerization. Advances in Polymer Science:Polymer Particles 2005,175:299-328.
    [72]曹堃.分散聚合法制备微米级单分散聚甲基丙烯酸甲酯功能性微球[博士学位论文].杭州:浙江大学,1998.
    [73]Daniel E, Graciela M, Ramon DdL, Carla L. A mathematical model of the bulk copolymerization of styrene and acrylonitrile in the presence of polystyrene-block-polybutadiene. Macromol. Theory. Simul.2008,17:180-197.
    [74]Mueller PA, Storti G, Morbidelli M. The reaction locus in supercritical carbon dioxide dispersion polymerization. The case of poly(methyl methacrylate). Chem. Eng. Sci.2005, 60:377-397.
    [75]Quintero-Ortega IA, Jaramillo-Soto G, Garcia-Moran PR, Castellanos-Cardenas ML, Luna-Barcenas G, Vivaldo-Lima E. A comparison of modeling approaches for dispersion homopolymerization of MMA and styrene in supercritical CO2. Macromol. React. Eng. 2008,2:304-320.
    [76]Yasuda M, Seki H, Yokoyama H, Ogino H, Ishimi K, Ishikawa H. Simulation of a particle formation stage in the dispersion polymerization of styrene. Macromolecules 2001,34:3261-3270.
    [77]Chernyshev AV, Soini AE, Maltsev VP, Soini E. A model of complete classical treatment of dispersion radical polymerization kinetics. Macromolecules 1998,31:6455-6460.
    [78]Mueller PA, Storti G, Morbidelli M. Detailed modelling of MMA dispersion polymerization in supercritical carbon dioxide. Chem. Eng. Sci.2005,60:1911-1925.
    [79]Mueller PA, Storti G, Morbidelli M, Apostolo M, Martin R. Modeling of vinylidene fluoride heterogeneous polymerization in supercritical carbon dioxide. Macromolecules 2005,38:7150-7163.
    [80]Achilias DS, A review of modeling of diffusion controlled polymerization reactions, Macromol. Theory. Simul.2007,16:319-347.
    [81]Chiu WY, Carratt GM, Soong DS. A computer model for the gel effect in free-radical polymerization. Macromolecules 1983,16:348-357.
    [82]Louie BM, Carratt GM, Soong DS. Modeling the free radical solution and bulk polymerization of methyl methacrylate. J. Appl. Polym. Sci.1985,30:3985-4012.
    [83]Achilias D, Kiparissides C. Modeling of diffusion-controlled free-radical polymerization reactions. J. Appl. Polym. Sci.1988,35:1303-1323.
    [84]Achilias DS, Kiparissides C. Development of a general mathematical framework for modeling diffusion-controlled free-radical polymerization reactions. Macromolecules 1992,25:3739-3750.
    [85]Keramopoulos A, Kiparissides C. Development of a comprehensive model for diffusion-controlled free-radical copolymerization reactions. Macromolecules 2002,35: 4155-4166.
    [86]Chatzidoukas C, Pladis P, Kiparissides C, Mathematical modeling of dispersion polymerization of methyl methacrylate in supercritical carbon dioxide, Ind. Eng. Chem. Res.2003,42:743-751.
    [87]Kotoulas C, Krallis A, Pladis P, Kiparissides C, A comprehensive kinetic model for the combined chemical and thermal polymerization of styrene up to high conversions, Macromol. Chem. Phys.2003,204:1305-1314.
    [88]Fleury PA, Meyer T, Renken A. Solution polymerization of methyl-methacrylate at high conversion in a recycle tubular reactor. Chem. Eng. Sci.1992,47:2597-2602.
    [89]Nising P, Meyer T. Modeling of the high-temperature polymerization of methyl methacrylate.1. Review of existing models for the description of the gel effect. Ind. Eng. Chem. Res.2004,43:7220-7226.
    [90]Fenouillot F, Terrisse J, Rimlinger T. Polymerization of methyl methacrylate at high temperature with 1-butanethiol as chain transfer agent. J. Appl. Polym. Sci.1999,72: 1589-1599.
    [91]Fenouillot F, Terrisse J, Rimlinger T. Experimental study and simulation of the polymerization of methyl methacrylate at high temperature in a continuous reactor. J. Appl. Polym. Sci.2001,79:2038-2051.
    [92]Ray AB, Saraf DN, Gupta SK. Free radical polymerizations associated with the trommsdorff effect under semibatch reactor conditions. I:modeling. Polym. Eng. Sci. 1995,35:1290-1299.
    [93]Srinivas T, Sivakumar S, Gupta SK, Saraf DN. Free radical polymerizations associated with the trommsdorff effect under semibatch reactor conditions. II:Experimental responses to step changes in temperature. Polym. Eng. Sci.1996,36:311-321.
    [94]Dua V, Saraf DN, Gupta SK. Free-radical polymerizations associated with the trommsdorff effect under semibatch reactor conditions. III. Experimental responses to step changes in initiator concentration. J. Appl. Polym. Sci.1996,59:749-758.
    [82]Vrentas JS, Duda JL. Diffusion in polymer-solvent systems. Ⅰ. Reexamination of the free-volume theory. J. Polym. Sci. Polym. Phys. Ed.1977,15:403-416.
    [83]Vrentas JS, Duda JL. Diffusion in polymer-solvent systems. Ⅱ. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight.J. Polym. Sci. Polym. Phys. Ed.1977,15:417-439.
    [95]Zhou F, Guptam SK, Ray AK. Modeling of the sheet-molding process for poly(methyl methacrylate).J.Appl. Polym. Sci.2001,81:1951-1971.
    [96]Marten FL, Hamielec AE. High-Conversion Diffusion-Cotrolled Polymerization of Styrene.1.J. Appl. Polym. Sci.1982,27:489-505.
    [97]Garcia-Rubio LH, Lord MG, MacGregor JF, Hamielec AE. Bulk copolymerization of styrene and acrylonitrile:Experimental kinetics and mathematical modelling. Polymer 1985,26:2001-2013.
    [98]Jones KM, Bhattacharya D, Brash JL, Hamielec AE. An investigation of the kinetics of copolymerization of methyl styrene to high conversion:Modelling diff"sion-controlled termination and propagation by free-volume theory. Polymer 1986,27:602-610.
    [99]Bhattacharya D, Hamielec AE. Bulk thermal copolymerization of:Modelling diffusion-controlled termination and propagation using free-volume theory. Polymer 1986,27:611-618.
    [100]Yaraskavitch IM, Brash JL, Hamielec AE. An investigation of the kinetics of copolymerization of to high conversion:Modelling diffusion-controlled termination and propagation by free-volume theory. Polymer 1987,28:489-496.
    [101]Quintero-Ortega IA, Vivaldo-Lima E, Luna-Barcenas G, Alvarado JFJ, Louvier-Hernandez JF, Sanchez IC, Modeling of the free-radical copolymerization kinetics with cross linking of vinyl/divinyl monomers in supercritical carbon dioxide, Ind. Eng. Chem. Res.2005,44:2823-2844.
    [102]S.F. Ahmed, G.W. Poehlein, Kinetics of dispersion polymerization of styrene in ethanol. 1. Model development, Ind. Eng. Chem. Res.1997,36:2597-2604.
    [103]N. Tefera, G. Weickert, K. R. Westerterp, Modeling of free radical polymerization up to high conversion. I. A method for the selection of models by simultaneous parameter estimation, J. Appl. Polym. Sci.1997,63:1649-1661.
    [104]姚臻.高粘聚合反应体系的动力学与反应工程研究——苯乙烯/马来酸酐无规本体共聚合[博士学位论文].杭州:浙江大学,1998.
    [105]Ober CK, Lok KP. Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules 1987,20:268-273.
    [106]Tseng CM, Lu YY, El-Aasser MS, Vanderhoff JW. Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci. Part. A:Polym. Chem.1986,24: 2995-3007.
    [107]Shay JS, English RJ, Spontak RJ, Balik CM, Khan SA. Dispersion polymerization of polystyrene latex stabilized with novel grafted poly(ethylene glycol) macromers in 1-propanol/water. Macromolecules 2000,33:6664-6671.
    [108]Shen S, Sudol ED, El-Aasser MS. Dispersion polymerization of methyl methacrylate: Mechanism of particle formation. J. Polym. Sci. Part. A:Polym. Chem.1994,32: 1087-1100.
    [109]Hansen FK, Ugelstad J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. J. Polym. Sci. Polym. Chem. Ed.1978,16:1953-1979.
    [110]Paine AJ. Dispersion polymerization of styrene in polar solvents. IV. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerizations. J. Polym. Sci. Part. A:Polym. Chem.1990,28:2485-2500.
    [111]Paine AJ. Dispersion polymerization of styrene in polar solvents:I. Grafting mechanism of stabilization by hydroxypropyl cellulose. J. Colloid Interf. Sci.1990,138:157-169.
    [112]Paine AJ, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight jn poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules 1990,23:3104-3109.
    [113]Sanz JM, Asua JM. Dispersion polymerization in polar solvents. J. Polym. Sci. Part. A: Polym. Chem.1995,33:1511-1521.
    [114]Cao K, Yu J, Li B-G, Li B-F, Pan Z-R. Micron-size uniform poly(methyl methacrylate) particles by dispersion polymerization in polar media:1. Particle size and particle size distribution. Chem. Eng. J.2000,78:211-215.
    [115]Kawaguchi S, Winnik MA, Ito K.1H NMR Study of Dispersion Copolymerization of n-Butyl Methacrylate with Poly(ethylene oxide) Macromonomer in Deuterated Methanol-Water. Macromolecules 1996,29:4465-4472.
    [116]Wu C, Akashi M, Chen M-Q. A simple structural model for the polymer microsphere stabilized by the poly(ethylene oxide) macromonomers grafted on its surface. Macromolecules 1997,30:2187-2189.
    [117]Tomita K, Ono T. Heterogeneous polymerization with polyaspartate macromonomer having vinyl pendant groups. Ⅱ. Control of particle diameter and diameter distribution in dispersion copolymerization. J. Polym. Sci. Part. A:Polym. Chem.2009,47:2281-2288.
    [118]Jiang Sh, Sudol ED, Dimonie VL, El-Aasser MS. Dispersion copolymerization of methyl methacrylate and n-butyl acrylate. J. Polym. Sci. Part. A:Polym. Chem.2007,45: 2105-2112.
    [119]Nugroho MB, Kawaguchi S, Ito K, Winnik MA. Control of particle size in dispersion polymerization using poly(ethylene oxide) macromonomers. J. Macromol. Sci. Part A 1995,32:593-601.
    [120]Liu J, Gan LM, Chew CH, Quek CH, Gong H, Gan LH. The particle size of latexes from dispersion polymerization of styrene using poly(ethylene oxide) macromonomer as a polymerizable stabilizer. J. Polym. Sci. Part. A:Polym. Chem.1997,35:3575-3583.
    [121]Shen R, Senyo T, Akiyama C, Atago Y, Ito K. One-step synthesis of a-p-vinylphenylalkyl-ω-hydroxy poly(ethylene oxide) macromonomers by anionic polymerization initiated from p-vinylphenylalkanols. Polymer 2003,44:3221-3228.
    [122]Paine AJ. Dispersion polymerization of styrene in polar solvents.7. A simple mechanistic model to predict particle size. Macromolecules 1990,23:3109-3117.
    [123]de Gennes PG. Conformations of polymers attached to an interface. Macromolecules 1980,13:1069-1075.
    [124]Morton M, Kaizerman S, Altier MW. Swelling of latex particles. J. Coll. Sci.1954,9: 300-312.
    [125]Yaws CL. Chemical properties handbook. Texas, McGras-Hill Book Co.1999.
    [126]van Krevelen DW. Properties of polymers. Elsevier, Amsterdam,1990.
    [127]Hoy KL. The Hoy Tables of Solubility Parameters. Union Carbide, WV,1985.
    [128]Hansen CM, Beerbower A. in:Kik-othmer (Eds.) Solubility parameters, encyclopedia of chamical technology (supplied volume). Interscience, New York,1971, pp.907.
    [129]Roland CM, Psurek T, Pawlus S, Paluch M. Segmental- and normal-mode dielectric relaxation of poly(propylene glycol) under pressure. J. Polym. Sci. Part B:Polym. Phys. 2003,41:3047-3052.
    [130]Yasuda M, Yokoyama H, Seki H, Ogino H, Ishimi K, Ishikawa H, Simulation of Particle Growth in the Dispersion Polymerization of Styrene:The Termination Rate Constant in Particles, Macromol. Theory. Simul.2001,10:54-62.
    [131]Huang NJ, Sundberg DC. A gel-permeation chromatography method to determine grafting efficiency during graft-copolymerization. Polymer 1994,35:5693-5698.
    [132]朱小翔PEG/VAc自由基接枝聚合与双烯/单烯ATRP交联聚合的模型研究[硕士学位论文].杭州:浙江大学,2007.
    [133]Hill DJT, O'Donnell JH, O'Sullivan PW. Analysis of the mechanism of copolymerization of styrene and acrylonitrile. Macromolecules 1982,15:960-966.
    [134]Jones SA, Prementine GS, Tirrell DA. Model copolymerization reactions. Direct observation of a "penultimate effect" in a model styrene-acrylonitrile copolymerization. J. Am. Chem. Soc.1985,107:5275-5276.
    [135]Dixon, KW. in Polymer Handbook,4th edition, (Eds:J. Brandrup, E.H. Immergut, E.A. Grulke). John Wilely & Sons, New York.1999, p.1-77.
    [136]Zhu S, Hamielec AE. Chain-length-dependent termination for free-radical polymerization. Macromolecules 1989,22:3093-3098.
    [137]Russell GT, Gilbert RG, Napper DH. Chain-length-dependent termination rate processes in free-radical polymerizations.2. Modeling methodology and application to methyl methacrylate emulsion polymerizations. Macromolecules 1993,26:3538-3552.
    [138]Robert RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids. McGraw-Hill Book Company:New York.1987:p 396.
    [139]Vrentas JS, Duda JL. Diffusion in polymer-solvent systems. Ⅰ. Reexamination of the free-volume theory. J. Polym. Sci. Polym. Phys. Ed 1977,15:403-416.
    [140]Vrentas JS, Duda JL. Diffusion in polymer-solvent systems. Ⅱ. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J. Polym. Sci. Polym. Phys. Ed.1977,15:417-439.
    [141]Neogi P. Diffusion in polymers. Marcel Dekker:New York.1996:165.
    [142]N.A. Dotson RG, R.L. Laurence, M. Tirrell. Polymerization Process Modeling. VCH Publishers, Inc. New York.1995.
    [143]Sanghvi PG, Patel AC, Gopalkrishnan KS, Devi S. Reactivity ratios and sequence distribution of styrene-acrylonitrile copolymers synthesized in microemulsion medium. Eur. Polym. J.2000,36:2275-2283.
    [144]M. Kamachi BY. in Polymer Handbook,4th edition, (Eds:J. Brandrup, E.H. Immergut, E.A. Grulke). John Wilely & Sons, New York.1999.
    [145]于良民,王质伟,李芳.接枝聚醚多元醇的合成研究.粘接.2008,29:16-18.
    [146]郑金云,闫敏,李玉松,杨雨强,陈伟.高固含量聚合物多元醇的合成研究.精细石油化工.2004,6:31-33.
    [147]李学东,王永和.连续法合成聚合物多元醇.聚氨酯工业.2002,17:28-31.
    [148]林永飞,张年群.浅谈聚合物多元醇黏度的影响因素.聚氨酯工业.2003,18:49-51.
    [149]Kaneko T, Hamada K, Chen MQ, Akashi M. One-step formation of morphologically controlled nanoparticles with projection coronas. Macromolecules 2003,37:501-506.
    [150]Chen M-Q, Kaneko T, Chen C-H, Akashi M. Preparation of confetti particles by dispersion copolymerization of acrylonitrile/styrene with poly(ethylene glycol) macromonomer. Chem. Lett.2001,30:1306-1307.