危重症患者院内感染病原菌耐药性及危险因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     调查研究2008年1月~2009年12月天津医科大学总医院急救中心病房危重症患者病原菌耐药趋势,为临床合理使用抗生素提供依据。
     方法
     对2008年1月~2009年12月在急救中心病房危重症患者送检的临床各类标本中分离的病原菌,描述其在2年间的分布情况,调查2年间临床常见的病原菌对常用抗生素的药敏结果,探讨临床常见的病原菌的耐药与变迁。标本按《全国临床检验操作规程》培养分离菌株,并用法国生物梅里埃公司生产的VITEK-AMS全自动微生物分析仪测定病原菌,采用Kirby-Bauer纸片扩散法(K-B)法进行抗生素敏感试验。使用纸片初筛选法和纸片表型确证试验检测产超广谱β-内酰胺酶的菌株。按美国临床实验室标本委员会(NCCLs)判断标准进行药敏试验结果判断。用SPSS17.0统计软件建立数据库并进行统计学分析,统计学方法包括一般描述性方法,比较产ESBLs组和非产ESBLs组的耐药率,用K-S法检验数据资料,显示数据呈正态分布,用Logistic进行多重耐药菌危险因素分析,以p<0.05为有统计学意义。
     结果
     1.本次调查2年间共分离出病原菌738株,其中革兰阴性杆菌442株,占总分离数的59.9%;革兰阳性菌96株,占13.0%;真菌200株,占27.1%。在革兰阴性菌位居前五位的依次为铜绿假单胞菌116株,占26.2%;肺炎克雷伯菌84株,占19.0%;大肠埃希菌59株,占13.3%;鲍曼不动杆菌54株,占12.2%;阴沟肠杆菌30株,占6.8%。革兰阳性菌中主要菌株为肠球菌42株,占43.8%;葡萄球菌41株,占42.7%;其中耐甲氧西林的葡萄球菌25株,占61.0%;耐高浓度氨基糖苷类肠球菌33株,占78.6%。未发现耐万古霉素的革兰阳性菌。真菌中以白色假丝酵母菌为主,占真菌分离数的80.0%。
     2.临床分离的病原菌主要来自于呼吸道痰标本,占总分离菌的77.0%,其次是泌尿道,占18.2%,血标本只占2.4%。
     3.耐药结果分析显示:五种常见革兰阴性杆菌对临床常用抗生素总体耐药率最低的是美罗培南5.9%,亚胺培南的耐药率为13.4%,氨苄西林耐药率最高,为93.7%。铜绿假单胞菌对美罗培南和亚胺培南的敏感率最高,分别为87.0%和70.0%,对头孢噻吩和头孢唑林的耐药率均为100%。肺炎克雷伯菌对亚胺培南和美罗培南的敏感率最高,分别为96.4%和98.8%,对氨苄西林的耐药率最高,耐药率为100%。大肠埃希菌对抗菌药物敏感率最高的是亚胺培南和美罗培南及青霉素类的哌拉西林/他唑巴坦敏感率较高分别为98.3%、96.7%和98.3%,头孢哌酮舒巴坦、头孢西丁的敏感率为86.4%和83.1%,丁胺卡那霉素的敏感率为82.1%,其余药物敏感率均低于60%。鲍曼不动杆菌对亚胺培南和美罗培南的敏感率最高,均达到了100%,对头孢哌酮/舒巴坦、头孢他啶、头孢吡肟、替卡西林/棒酸的敏感率均在90%以上,头孢噻肟、替卡西林、哌拉西林/他唑巴坦、庆大霉素、丁胺卡那霉素、妥布霉素、奈替米星、左旋氧氟沙星、复方新诺明的敏感率均大于80%,呋喃妥因耐药率为100%。阴沟肠杆菌对多数抗菌药物均有较好的活性,敏感率最高的是亚胺培南和美罗培南以及奈替米星,敏感率均为100%,丁胺卡那霉素、妥布霉素的敏感率均在90%以上
     4.实验共分离出产超广谱β-内酰胺酶的菌株51株,检出率为11.5%,其中产ESBLs的肺炎克雷伯菌23株,产酶率为27.4%,产ESBLs的大肠埃希菌是28株,产酶率为47.5%。肺炎克雷伯菌和大肠埃希菌是产超广谱β-内酰胺酶的主要菌株。肺炎克雷伯菌和大肠埃希菌的产ESBLs菌株的耐药率明显高于非产ESBLs组。
     5.葡萄球菌对抗生素敏感率最高的是呋喃妥因和万古霉素,敏感率均为100%,其次是利奈唑烷,敏感率为94.6%。肠球菌对抗菌药物敏感率最高的是利奈唑烷和万古霉素,敏感率为95.2%和100%,未发现对万古霉素耐药的菌株。
     6.真菌抗菌活性最好的是5-氟胞嘧啶,敏感率为100%、其次为两性霉素B、酮康唑敏感率均达99.0%,特比萘芬、制霉菌素耐药率最高均达80.0%以上。
     结论
     1.呼吸道是危重症患者院内感染主要部位,主要与患者高龄、合并肺部疾病多、长期卧床,营养状态差,气管插管、呼吸机使用以及既往应用广谱抗菌药物导致呼吸道二重感染有关。
     2.革兰阴性菌是危重症患者院内感染主要致病菌,其中铜绿假单胞菌、肺炎克雷伯菌、大肠埃希菌、鲍曼不动杆菌、阴沟肠杆菌最常见。真菌成为第二大感染菌,主要与有创检查,免疫抑制剂、以及抗菌药物的不合理应用有关。多重耐药菌株主要为铜绿假单胞菌,侵入性操作、抗生素使用是多重耐药菌株铜绿假单胞菌的独立危险因素。
     3.革兰阴性杆菌对青霉素和一、二代头孢菌素耐药率较高,耐药率达50%以上,对三、四代头孢菌素有较好的敏感性,敏感率在50%以上。革兰阴性杆菌对亚胺培南和美罗培南最敏感,敏感率在95%以上,但铜绿假单胞菌对其的敏感性在70%以上。革兰阳性球菌对红霉素、青霉素有较高的耐药率,耐药率达80%以上,对万古霉素、利奈唑烷最敏感,敏感率在94%以上。真菌对两性霉素B、5-氟胞嘧啶、氟康唑和酮康唑敏感率在96%以上,特比萘芬和制霉菌素的敏感率较低,敏感率在10%以下。
     4.监测细菌耐药性的变化,依据药物敏感试验结果合理的选用抗生素,及时调整经验性用药是至关重要的。
Objectives To investigate the distribution and antimicrobial resistance trend of pathogens in patients from Emergency Intensive Care Unit(ICU)of Tianjin Medical University between July 2008 and Dec 2009, so as to provide theoretical bases of rational usage of antibiotics and experienced therapy for the clinic.
     Methods Distribution of the main pathogens isolated from all specimens of critical patients and antimicrobial susceptibility test results were analyzed retrospectively. Flora cultivation and isolation was operated with the methods described by the National Clinical Laboratory Operational Regulations.Bacterial identification was carried out using VITEK-AMS.Bacterial susceptibility testing was carried out using Kirby-bauey methods. Two kinds of disc diffusion sorcening test and phenotypic confirmatory test were used to detect Extended-Spectrumβ-Lactamases(ESBLs) in bacteria;The resistant rate of bacteria was analyzed according to the guidelines of the National Committee for Clinical Laboratory Standards. Data were analyzed with SPSS 17.0 software and ststistical methods including general descriptive methods, Compare the resistance rate in ESBLs-produced group and in non-ESBLs-produced group, then the data were tested by K-S method, which was shown to be in normal distribution.
     Results 1.738 strains of pathogenic bacteria were isolated from clinical samples during 2 years,among which there are 442 strains of Gram-negative bacilli among them,accounting for 59.5% in total clinical isolates; 96 strains of Gram-positive bacteria among them, accounting for 13.0% in total clinical isolates; 200 strains of fungus among them, accounting for 27.1% in total clinical isolates. The common Gram-negative bacilli were mainly Pseudomonas aeruginosa 116 strains(26.2%), Klebsiella spp 84 strains(19.0%), Escherichia coli 59 strains(13.3%),Acinetobacter baumannii 54 strains(12.2%), Enterobacter cloacae 30 strains(6.8%), The common Gram-positive bacilli were Enterococcus42strains(43.8%), Staphylococcus41 strains(42.7%). Methicillin resistant Staphylococcus accountde for 61.0% in total Staphylococcus. High concentration of Aminoglycoside resistant enterococci accounted for 78.6% in the total Enterococcus. No vancomycin-resistant gram-positive bacteria was found. The common fungus was Candida albicans, accounting for 80.0% in total clinical fungus isolates.2.77.0% pathogens are isolated from specimens in respiratory tract and 18.2% from than in urinary tract among 738 strains of pathogens, blood specimens only account for 2.4%.3. According to surveillance of drug resistance, the clinical antibacterial drugs with the lowest total drug-resistant rates of Gram-negative bacilli were imipenem and meropem.4. A total of 51 strains of ESBLs-produced bacteria were isolated, the detecting rate is 11.5%. They include 23 strains of Klebsiella pneumonia whose ESBLs-produced rate is 27.4% and 28 strains of Escherichia coli whose ESBLs-produced rate is 47.5%. Klebsiella pneumonia and Escherichia coli were predominant strains of ESBLs-producing. The resistance rates of ESBLs-produced strains to the common antimicrobial agents were Significantly higher than those of non-ESBLs-producing strains.5. Vancomycing and Nitrofurantoin are the most effective antibiotics against staphylococcus and enterococci.No vancomycin-resistant strains were detected.6. 5-flurocytosine Amphotericin B and Ketoconazole Capsules were the most active antibiotic against fungus.
     Conclusions 1. Respiratory tract is the main site where nosocomial infections occur in critically ill patients.2. Gram-negative bacterium is the main pathogenic bacteria in nosocomial infection, Invasive procedures and antibiotic use are independent risk factors of the multi-drug resistant strains of Pseudomonas aeruginosa.3. Third and fourth generation cephalosporins against gram-negative bacteria has good sensitivity, and the sensitivity ratio is over 50%. Imipenem and Meropenem against Gram-negative bacteria are most sensitive, and the sensitivity ratio is more than 95%. Vancomycin, linezolid against gram-positive bacteria are most sensitive, and the sensitivity ratio is above 94%. Amphotericin B,5 - fluorocytosine, fluconazole and ketoconazole have good sensitivity against fungal, and the sensitivity ratio is above 96%.4. Monitoring bacteria resistant, according to antimicrobial susceptibility test changes result chosing antibiotic adjust experience administration is very important.
引文
[1]汪复.新世纪感染领域面临的任务与挑战[J].中国抗感染化疗杂志,2001,1(1):1-2.
    [2]Greenwood D.Resistance to antimicrobial agents:a personal view[J].J Med Microbiol,1998,47(2):751-755.
    [3]Jones RN, Pfaller MA bacterial resistance:A worldwide problem[J].Diagn Microbiol Infect Dis,1998,31(2):379-388.
    [4]Mederios AA.Evolution and dissemination of β-lactamases accelerated by Generations of β-lactam antibiotics[J].Cilin Infect Dis,1997,24(11):9-45.
    [5]王以光,杨厚,编译.国外耐药菌情况及战胜耐药菌的途径[J].国外医学抗生素分册,2000,21(3):97-103.
    [6]Cosgrove SE, Kaye KS, Eliopoulous GM, et al. Health and economic outcomes of the emergence of third generation cephalosporin resistance in Enterobacter species [J].Arch Intern Med.2002,162(2):185-190.
    [7]World Health Organization.WHO global strategy for containment of antimicrobial Resistance. WHO/CDS/CSR/DRS,2001.2a.
    [8]汪复.应加强细菌耐药性和耐药菌感染的研究力度[J].中华医学杂志,2006,86(9):579-580.
    [9]朱德妹.进一步加强细菌耐药性检测[J].中华检验医学杂志,2006,29(10):1-2.
    [10]朱德妹.加强细菌耐药性监测,提高抗感染治疗水平[J].中华传染病杂志,2007,25(1):1-2.
    [11]杨月华.医院感染病原菌分布及药敏分析[J].职业与健康,2007,23(8):666-667.
    [12]王珩,李慧.安徽省2004年革兰阴性菌耐药性耐药分析[J].中华医院感染学杂志,2006,16(9):1051-1052.
    [13]周玲,刘德华,秦海燕,等.2002-2005年我院临床常见细菌分离及耐药性分析[J].中华医学实践杂志,2006,5(10):1097-1100.
    [14]吴安华,任南,文细毛,等.全国医院感染监测网1998-1999年监测资料分析[J].中华医院感染学杂志,2000,10(6):401-403.
    [15]张红艳,吴绪伟,肖谊,等我院2004-2007年间革兰阴性菌分离及耐药情况分析[J].中国实用医药,2010,5(3):157-160.
    [16]李汉杰.侵袭性肺部真菌感染的诊治进展.内科,2009,4(1):88-90.
    [17]储云卓,丁丽萍,年华,等.医院感染菌的分布及耐药结果分析[J].中华医院感染学杂志,2003,13(8):787-790.
    [18]吴晓燕,赵思阳,邹立新,重症监护病房的病原菌分布及药物敏感性分析[J].检验医学与临床,2009,6(19):1641-1645.
    [19]Somerville DA, Noble WC.A note on the gram-negative bacilli of hunan skin[J]. Rev Eur Etud Clin Biol,1970,15(6):669-671.
    [20]刘慧琳,刘拴虎,刘雅丽.ICU气管切开患者医院感染分析[J].华北煤炭医学院学报,2001,3(6):677-678.
    [21]徐凤玲.ICU病人气管切开后获得性肺部感染分析[J].疾病控制杂志,2002,6(3):268.
    [22]Ibrahim EH, Sherman G, Ward S, et al.The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting [J]. Chest 2000,118(1):146-155.
    [23]陈白茹,柯秀玲.ICU院内感染分析及控制对策[J].福建医药杂志,2000,22(3):138-139.
    [24]Marilee D.Obritsch,Douglas N.Fish,Robert Maclaren,et al,National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002.Antimicrobial Agents and Chemotherapy,2004,48:4606-4610.
    [25]王红民,曹建霞.综合ICU铜绿假单胞菌药敏分析.2009,44(4):911-912.
    [26]Hyunjoo Pai, Jong-Won Kim, Jungmin Kim, Ji Hyang Lee, et al.Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates. [J].Antimicrob Agents Chemother.2001,45(2):480-484.
    [27]谭湘萍,司徒冰,刘晓玲.多重耐药铜绿假单胞菌的危险因素分析及泛耐药株的治疗初探.2011,21(2):84-87.
    [28]Keith Poole. Aminoglycoside Resistance in Pseudomonas aeruginosa [J].Antimicrobial Agents and Chemotherapy,2005,49(2):479-487.
    [29]Mammeri H,Van De Loo M,Poirel L,et al.Emergence of Plasmid-Mediated Quinolone Resitance in Escherichia coli in Europe[J]. Antimicrobial Agents and Chemotherapy,2005,49(1):71-76.
    [30]Hooper, DC.Emerging mechanisms of fluoroquinolone resistance[J].Emerging Infections diseases,20017(2):337-341.
    [31]Weiner J,Quinn JP,Bradfors PA,et al.Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes[J].JAMA,1999,281(6):517-523.
    [32]汪复,朱德妹,胡付品,等.上海地区细菌耐药性监测分析[J].中华医学杂志,2001,81(1):17-19.
    [33]文细毛,任南,徐秀华,等.全国医院感染监控网医院感染病原菌分布及耐药分析[J].中华医院感染学杂志,2000,12(4):241-244.
    [34]冯福英,兰小鹏在,杨湘越,等.大肠埃希菌和肺炎克雷伯菌质粒AmpC酶基因型及流行病学分析[J].中华检验医学杂志,2007,30(3):314-318.
    [35]沈定霞,罗燕萍,曹敬荣,等.大肠埃希菌质粒介导CMY-2型AmpC酶基因的研究[J].中华检验医学杂志,2007,30(8):914-918.
    [36]Bisson G, Fishman NO, Patel JB, et al. Extended-spectrum β-Lactamases-producing Escherichia coli and Klebsiella species:risk factors for colonization and impact of antimicrobial formulary interventions on colonization prevalence [J].Infect control Hosp Epidemiol,2002,23:254-260.
    [37]孔海深,汪宝贯,顾毅,等.超广谱β-内酰胺酶肺炎克雷伯菌和大肠埃希菌的耐药性[J].中华检验医学杂志,2000,23(1):23-25.
    [38]周兵,杜延义,刘海云,等.大肠埃希菌和肺炎克雷伯菌超广谱β-内酰胺酶的产生及药敏分析[J].中华医院感染学杂志,2000,10(4):311-312.
    [39]Saurina G, Quale JM, Manikal VM, et al. Antimicrobial resistance in Enterobacteri-aceae in Brooklyn, NY:epidemiology and relation to antibiotic usage patterns [J]. Journal of Antimicrobial Chemotherapy,2000,45(2):895-898.
    [40]Jacoby GA, Medeios AA.More extended-spectrun β-lactamases[J]. Antimicrobial Agents and Chemotherapy,1991,35(9):1697-1704.
    [41]Koutsolioutsou A, Pena-Llopis S, Demple B.Constitutive soxR Mutations Contribute to Multiple-Antibiotic Resistance in Clinical Escherichia coli Isolates [J]. Antimicrobial Agents and Chemotherapy,2005,49(7):2746-2752.
    [42]汪复.抗菌药物合理应用的几个问题[J].中国抗感染化疗杂志,2005,5(1):1-3.
    [43]马越,李景云,张新妹,等1995-2002年阴沟肠杆菌临床分离株的耐药性分析[J].四川生理科学杂志,2004,26(1):1-4.
    [44]钱利生.医学微生物学[M],北京:人民卫生出版社,2003,246-249.
    [45]张秋林,李家斌,李慧.2004年葡萄球菌对12种抗菌药物的耐药性[J].中华医院感染学杂志,2006,16(10):1165-1166.
    [46]闵小春,陈桂兰,陈翠玲,等.湖北地区2003-2004年葡萄球菌临床分离株的耐药性分析[J].中国医院药学杂志,2007,27(6):789-790.
    [47]朱德妹,2005年中国CHINET葡萄球菌属耐药性分析[J].中国感染与化疗杂志,2007,7(4):269-273.
    [48]高爱平,张万翔,张海霞,等.泌尿生殖系统感染支原体培养及药敏结果分析[J].中国微生态学杂志,200315(4):231-232.
    [49]Domingues D,Tavora Tavira L,Duarte A,et al.Genital mycoplasmas in women attending a family planning clinic in Guine-Bissau and their susceptibility to antimicrobial agents[J].Acta Trop,2003,86(1):19.
    [50]程力明,梁流亚,徐孝伦.550例支原体药敏结果分析[J].中国微生态学杂志,2002,14(2):105-106.
    [51]朱德妹,汪复,张婴元.2003年上海地区细菌耐药性监测[J].中国抗感染化疗杂志,2005,5(1):4-12.
    [52]Hazen KC, Baron EJ, Colombo AL, et al. Comparison of Candida spp to fluconazole and voriconazole in a 4-year global evalution using disk diffusion [J].J Clin Microbiol,2003,41(12):5623-5632.
    [53]Pfaller MA, Diekema DJ, Rinaldi MG, et al.Results from the artemis disk Global Antifungal Surveillance Study:a 6.5-year analysia of susceptibilities of Candida and voriconzole by standardized disk diffusion testing [J]. J Clin Microbiol, 2005,43(12):5848-5859.
    [54]刘亚新,王亚霞,魏琴.重症监护病房获得性珠菌感染的临床分布及耐药性分析[J].中华医院感染学杂志,2005,15(12):1417-1419.
    [55]梅韬,邱听光,老年急性心肌梗塞医院感染危险因素分析[J].中华医院感染学杂志,2001,11(2):101-102.
    [56]Price MF,Larocco MT, Gentry LO. Fluconzole susceptibilities of Candida species and distribution of species recovered from blood cultures over a 5-year period [J].Antimicrobial Agents and Chemotherapy,1994,38(6):1422-1424.
    [57]蓝小玲.老年人肺部真菌感染53例临床分析[J].临床医学,2005,25(6):60-61.
    [58]董叶青,张嵘,李丽红.临床真菌感染及耐药性分析[J].浙江检验医学2007,5(1):36-37.
    [1]Sander CC,Sander WE.β-Lactam in Gram-negative bacteria:Global trends and clinical [J].Clin Infect Dis.1992,15(6):824-839.
    [2]Jacoby CA,Archer CL.New mechanisms of bacterial resistance to antimicrobial agents [J]. N Engl J Med,1991,324(9):601-612.
    [3]Jones RN, Pfaller MA. Bacterial resistance: worldwide problem [J].Diagn Microbiol Infect Dis,1998,31(2):379-388.
    [4]Mederios AA.Evolution and dissemination of β-lactamases accelerated by Generations of β-lactam antibiotics [J]. Cilin Infect dis.1997,24(suppl 1): s19-s45
    [5]仲兆舍.氟喹诺酮类药物在眼科治疗中心的应用[J].国外医学抗生素分册,2002,23(5):230-235.
    [6]Parenti F, Cavalleri. Novel glycopeptide antibiotics of the dalbaheptide group. [J] Drug Fut,1990,15(1):57.
    [7]Yan,H-S, Qi D-F, Cheng X-H,et al. Antibiotic activities and affinityes for bacterial cell wall analogue of N-demethylvancomycin and its derivaties. [J] J Antibiotics,1998.51(8):750.
    [8]Allen NE, Letourneau D, Hobbs JN The role of hydrophobic chain as antibacterial activity of semisynthetic glycopeptides antibiotics. [J] J Antibiotics,1997.50(8):675.
    [9]戴自英,刘裕昆,汪复.主编.实用抗菌药物学[M].3版.上海科学技术出版社,2003:18-25.
    [10]王睿,柴栋.细菌耐药机制与临床治疗对策[J].国外医药.抗生素分册,2003,24(3):97-103.
    [11]沈洪,许淑珍.肠球菌转座子介导的耐药基因转移研究进展[J].中华医院感染学杂志,2005,7(15):837-840.
    [12]朱佑明,李文桂.细菌耐药机制研究现状[J]重庆医学,2006,35(13): 1224-1226.
    [13]Hancook RE.Resistence mechanism in Pseudomonas aeruginosa and other nonfermentative gram-negative bacterial [J] Clin in-fect Dis,2001,27 (suppl): 93-99.
    [14]Me manus MC.Mechanism of bacterial resistance to anti microbial agent [J].AM J health Syst Phar m,1997,64(12):1420-1433.
    [15]Cappelletry D.Microbiology of bacterial respiratory infection [J].Padiatr infect Dis J,1998,17(8suppl):S55-61.
    [16]Nollette K A.Antimicrobial resistance [J].J Am Acad Nurse pract,2000, 12(7):286.
    [17]Van-Bambeke F, Tulkens PM. Macrolides:pharmacokinetics andpharmaco-dynamics [J].Int J Antimicrob Agents,2001,18(supp11):s 17.
    [18]Jorgensen J H. Global perspective on antimicrobial resistance in Haemop-hilus influenzae [J]. J Chemother,1991,3(suppl1):155.
    [19]糜祖煌.细菌耐药的分子机制[J].临床儿科杂志,2005,23(7):422-424.
    [20]Moosdeen F The evolution of resistance to cephalosporins[J] Clin Infect Dis 1997,24:487-493.
    [21]Livermore DM.Beta-lactamase mediated resistance and opportunities for its control [J].Antimicrob Chen other,1998,41 (supplD):25-41.
    [22]Ambler RP. The structure of bata lactamases[J]. Philosophical Transactions of the Royal Society of London, Series B Biological Sciences,1980, 289:321-331.
    [23]Bush K,Jacoby GA,Medeiros AA.A functional classification scheme for β-Lactamases and its correlation with molecular structure[J].Antimicrob Agents Chemother,1995,39(6):1211.
    [24]Cirlich D.Nass S.Biochemical-genetic characterization and regulation of expression an Acc-I-like chromosome borne cep halo sporinase from Hafnia alver [J].Antimicrob Agents Chemother,2000,44(6):1470.
    [25]Cniadkowski M. Evolution and epidemiology of extended-spectrum beta-lactamses(ESBLs) and ESBLs-producing microorganisms [J].Clin Microbiol Infect,2001,7(11):597.
    [26]Lister PD. Beta-Lactamase inhibitor combinations with extended-spectrum penicillins:factors influencing antibacterial activity against Enterobacte-riaceae and Pseudomonas aeruginosa [J].Pharmacotherapy,2000,20(9pt 2):213S.
    [27]Tzouveleckis L S, Bonomo R A. SHV-type beta-lactamases [J].Curr Pharm Des,1999,5(11):847.
    [28]Zhao X,Drlica K.Restricting the selection of antibiotic-resistant mutants:a gencral strategy derived from fluoroquinolone studies [J].Clin Infect Dis, 2001,15.33(supp13):S147.
    [29]Bearden D T,Danziger L H.Mechanism of action of resistance to quinolones [J].Pharmacotherapy,2001,21(10 pt 2):224S.
    [30]Dalhoff K. Worldwide guidelines for respiratory tract infections:commu-nity-acquired pneumonia [J].Int J Antimicrob Agents,2001,18(suppl 1):S39.
    [31]Garau J.The clinical impact of macrolide resistance in Pneumococcal respiratory infections [J]. Int J Antimicrob Agents,2001,18(suppl 1):S33.
    [32]Azuccna E. Mobashery S. Aminoglycoside-modifying enzymes:mechanisms of catalytic processes and inhibition [J]. Drug Resist Updat,2001,4(2):106.
    [33]WrightGD,ThompsonPR.Aminoglycoside-phosphotransferases:proteins,struc ture,and mechanism [J].Front Biosci,1999,4:9.
    [34]Garau J.The clinical impact of macrolide resistance in Pneumococcal respiratory infections[J]. Int J Antimicrob Agents,2001,18(suppl 1):S33-S38。
    [35]周惠平.临床细菌学检验面临的挑战[J].中华检验医学杂志,1999,22(1):11-13.
    [36]党京丹.细菌耐药机制研究进展[J].临床和实验医学杂志2009,9(8):134-136.
    [37]沈红,许淑珍.肠球菌转座子介导的耐药基因转移研究进展[J].中华医院感染学杂志,2005,7(15):837-840.
    [38]夏建朴,宋素景.临床JK棒酸杆菌抗生素敏感试验及耐药基因的监测[J].河北医药,2007,29(10):1048-1049.
    [39]Tran J H Jacoby G A.Mechanism of plasmid-mediated quinolone resistance [J].Proc Natl Acad Sci USA,2002,99(8):5638.
    [40]Ruiz J,Sierra J M,Anta M T,et al.Characterization of sparfloxacin-resistance mutants of Staphylococcus aureus obtained in vitro [J].Int J Antimicrob Agents,2001,18(2):107.
    [41]Akasaka T, Tanaka M, Yamaguchi A, et al. Type Ⅱ topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999:role of target enzyme inmechanism of fluoroquinolone resistance [J]. Antimicrob Agents Chemother,2001, 45(8):2263.
    [42]陈民钧,细菌耐药性及其临床意义[J].中华外科杂志,1998,36(A00):6-8.
    [43]童明庆,刘根焰.细菌耐药与临床对策[J].临床检验及实验室设备,2005,6(2):32-33.
    [44]张印俊,病原菌对抗菌药物的耐药机制[J].国外医药·抗生素分册,2002,23(5):206-214.
    [45]Li xian-zhi.Efflux-mediated multiple antibiotic resistance in Pseudomonas aeruginosa [J]中国抗生素杂志,2003,28(10):577-96.
    [46]吴迪,陈升汶.铜绿假单胞菌对碳青霉烯耐药机制的研究[J].国际呼吸杂志,2007,27(8):610-612.
    [47]彭青,钱元恕.细菌生物膜的及其相关感染的研究进展[J].中国抗感染化疗杂志,2004,4(2):126-8.
    [48]Costerton J W.Stewart P S,Creenberg E P,et al.Bacterial biofilms:a common cause of persistent infections[J].Science,1999,284:1318-1322.
    [49]Adamsson I,Edlund C,Nord C E.Microbial ecology and treatment of Helicobacter pglori infections [J] J Chemother,2000,12(1):5.
    [50]Hiramatsu K.Vancomycin-resistant Staphylococcus aureus:a newmodel of antibiotic resistance [J].Lancet Infect Dis,2001,1(3):147.
    [51]Ince D, Zhang X, Silver LC, et al. Dual targeting of DNA gyrase and topoisomerase Ⅳ:target interactions of garenoxacin, a new desfluoroquiolone [J]. Antimicrobial Agents and Chemotherapy,2002,46(11):3370-3380.