不结球白菜抗逆相关转录因子的克隆及耐热耐寒相关蛋白的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐害、极端温度、化学毒害和氧化胁迫等非生物胁迫严重影响农业生产,并导致环境退化。植物在生长发育过程中,需要对各种逆境和发育信号作出反应,这就要求对各种功能基因的表达进行精确调控。植物在感受环境胁迫信号后,会激活相应的信号传导途径,诱导大量胁迫应答基因表达,产生相应的胁迫应答反应。根据转录因子结构以及DNA结合活性等特点,将其分成若干个家族,如NAC、Mvb、HSF、bZIP等,这些转录因子在胁迫响应过程中发挥着重要的作用。
     本研究利用RACE(Rapid amplification of cDNA ends)技术从不结球白菜cDNA文库中克隆到1个新的编码NAC类转录因子的全长cDNA序列,命名为BrNAC。BrNAC基因的开放阅读框(ORF)由837bp组成,编码1个由278个氨基酸组成的NAC类转录因子。推导的氨基酸序列与油菜NAC5-8有97%的同源性,与油菜NAC5-7、NAC3同源性分别为92%和86%,与拟南芥ATAF2的同源性达89%。二级结构分析表明BrNAC具有许多其它NAC家族的共同特性。构建的同源进化树表明,BrNAc在进化关系上与AFAF2亚族转录因子最近。使用实时荧光定量PCR对BrNAC基因在不同组织中以及不同逆境胁迫下相对的转录水平进行了定量分析,结果表明,BrNAC基因的表达在茎、叶中最高,并且受冷和机械损伤和高盐的诱导,而与NAA和ABA的关系不大。
     利用基于PCR的两步PTDS方法(PCR-based two-step DNA synthesis,PTDS)技术成功的合成了来源于白杨SP1基因和昆虫的抗冻肽ThpI基因。PTDS基因合成方法,是一个较为简单,高效,高保真度,低成本的基于两步PCR方法合成长DNA序列方法。同以前的合成方法比较,该PTDS还具有时间短,通常是6到7天,该方法还比较容易获得不同种类,不同长度,甚至大于6kb的DNA片段,适合高GC比,高度重复序列,复杂二级结构的DNA合成。因而,PTDS方法提供了一个能够合成不同种类、具有复杂结构的长片段基因的可行的技术。
     为了进一步分析SP1基因和ThpI基因的功能,本研究构建了农杆菌.植物双元表达载体,通过蘸花法转化拟南芥,获得转SP1基因和ThpI基因的拟南芥植株。结果表明,过量表达SP1基因的拟南芥获得了很明显高温抗性。通过检测野生型和转SP1基因的拟南芥的叶绿素含量、叶绿素荧光、含水量、脯氨酸及MDA含量等多种生理指标,验证了SP1基因过量表达提高拟南芥高温抗性的生理机制;过量表达ThpI基因的拟南芥提高了植物的低温抗性,通过检测野生型和转ThpI基因的拟南芥的电导率、脯氨酸、MDA含量、SOD活性等多种生理指标,验证了ThpI基因过量表达提高植物耐寒性的生理基础。
Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity, and oxidative stress, are serious threats to agriculture and result in the deterioration of the environment. Plants need to response to multiple stresses and developmental signaling during the growth and development. Thus the expression of functional genes should be accurately adjusted and controlled. Many signal transduction pathways are activated and plenty of genes involved in abiotic stress response are induced to express in plants. At present, a number of transcription factor families have been found involving in plant stress responses, and each contain a different type of DNA-binding domain, including NAC, Myb, WRKY, and bZIP and so on.
     In this paper, a novel NAC type transcription factor, nambed BrNAC, was isolated using rapid amplification of cDNA ends (RACE) method from Brassica campestris ssp.chinensis. The full-length cDNA of BrNAC has an 837bp open reading frame (ORF) and encode a NAC subgroup transcription factor consisting in 278 amino acids. At the nucleotide sequence level, BrNAC has 97% sequence similarity to Brassica napus NAC5-8, 92% to NAC5-7, 86% to NAC3 genes and 89% to Arabidopsis thaliana AFAF2. The secondary structure analysis revealed that BrNAC strongly resembled other NAC genes. BrNAC was more close to AFAF2 in its homologous evolutional tree. The result of RT-PCR indicated that the expression of BrNAC gene was induced by cold stress, mechanical damage and high salinity, but not NAA and ABA, and the transcript level of BrNAC gene was the highest in Brassica campestris ssp. chinensis stem and leave.
     SP1 gene from Populus tremula and ThpI gene from Choristoneura fumiferana were successively synthesized by PCR-based two-step DNA synthesis (PTDS). It is a simple, high fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. Compared to the previously published methods, the PTDS method is rapid (6 to 7 days) and suitable for synthesizing different species and different segments, long segments of DNA (5 to 6-kb) with high G+C contents, repetitive sequences, or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures.
     We analyzed the function of expression of SP1 and ThpI gene in Arabidopsis thaliana plants, through constructing the Agrobacterium tumefaciens GV3101 containing plant binary expression vector. The floral dip method was used to transfer them into A. thaliana. The results showed that the SP1 transgenic plants exhibited improved growth than wild type control plants after 45℃high temperature stress for 16 h. The chlorophyll and water contents and chlorophyll fluorescence were decreased much more in wild type than in transgenic plants; Moreover, the transgenic plants had higher proline contents and lower malondialdehyde contents after high temperature stress. After low temperature stress, the ThpI transgenic plants exhibited stronger growth than wild plants. The transgenic plants had higher proline contents and higher SOD activity. Moreover, they had lower electrolyte leakage percentage and lower malondialdehyde contents after cold stress.
引文
1.陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报,2002,28(2):81-88
    2.陈启龙.RACE技术的研究进展及其应用[J].黄山学院学报,2006,8(3):95-98
    3.崔凯荣,戴若兰.植物体细胞胚发生的分子生物学[M].北京:北京科学出版社,2000,179
    4.费云标,江勇,赵淑慧.昆虫抗冻蛋白的研究进展[J].昆虫学报,2000,43(1):98-102
    5.高丽红,李式军.高温胁迫对蔬菜作物的影响[M].园艺学进展(第二辑)。南京:东南大学出版社,1998,344-349
    6.郝敏,谷守芹,韩建民,董金皋.cDNA末端扩增技术的研究进展[J].河北林果研究,2006,21(2):157-161
    7.何玉科,巩振辉.高等植物在农杆菌介导下的遗传转化[J].细跑生物学杂志,1991,13(3):97-101
    8.黄祥富,黄上志,傅家瑞.热激蛋白的功能及其基因表达的调控[J].植物学通报,1999,16:530-536
    9.黄泽军,黄荣峰,黄大昉.植物转录因子功能分析方法[J].农业生物技术学报,2002,10(3):295-300
    10.霍大勇,沈黎明.逆境胁迫诱导基因的结构、功能与表达调控[J].生物化学与生物物理进展,1998,25(3):216-221
    11.雷娟利,徐志豪.转座子在植物功能基因组学中的应用[J].浙江农业学报,2002,14(5):291-296
    12.李洁.植物转录因子与基因调控[J].生物学通报,2004,39(3):9-11
    13.李德谋,罗小英,侯磊,裴炎,方卫国,杨光伟.利用交错延伸剪接PCR技术扩增油菜花粉育性基因MS2Bnap全长cDNA序列[J].遗传,2001,23(6):553-555
    14.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003,258
    15.李树峰,曹允考,郝丽,严云勤.抗冻蛋白的研究进展及其应用[J].东北农业大学学报,2003,34,(1):90-94
    16.利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出报社,2002,1-278
    17.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474
    18.柳展基,邵凤霞,唐桂英.植物NAC转录因子的结构功能及其表达调控研究进展[J].西北植物学报,2007,27(2):1915-1920
    19.罗塞男,杨国顺,石雪晖,卢向阳,徐萍.转录因子在植物抗逆性上的应用研究[J].湖南农业大学学报,2005,31(2):219-223
    20.马翠兰,刘星辉,胡又厘.柚品种间的耐寒性差异及其机理[J].福建农业大学学报,1998,27(2):160-165
    21.邱为民,张思仲,武辉,张戈,肖翠英.一种新的cDNA末端快速扩增获取全长cDNA的方法[J].遗传,2001,23(5):480-482
    22.桑春果,张开春,张军科.重叠区扩增法合成抗菌肽B基因[J],西北农林科技大学学报(自然科学版),2002,30(1):65-67
    23.史刚荣.环境胁迫下的植物细胞程序性死亡及其意义[J].生物学通报,2003,38:3-4
    24.孙旻旻,胡英考,旻月明.定位克隆分离植物基因的研究进展[J].生物学通报,2002,37(1):16-17
    25.唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展[J].首都师范大学学报,2002,23(3):47-51
    26.唐艳梅,孙仲序,詹伟,曾海涛,夏阳.AFP抗冻蛋白基因工程研究进展[J].山东林业科技,2005,4:76-78
    27.万东石,李洪玉,张立新,梁厚果.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003,23(1):151-157
    28.王爱国,罗广华,邵从本,郭俊彦.植物的氧化代谢及活性氧对细胞的伤害[A].中国科学院华南植物研究所.中国科学院华南植物研究所集刊(第五集)[C].北京:北京科学出版社,1989.
    29.王宝山.植物自由基与植物膜伤害[J].植物生理学通讯,1986,(2):12-16
    30.王飞,王华,陈登文,李嘉瑞.杏品种花器官耐寒性研究[J].园艺学报,1999,26(2):356-359
    31.王瑞云,贺润喜,岳文斌,任有蛇.植物抗寒性基因工程研究进展[J].中国生态农业学报,2004,12(1):26-29
    32.王少丽,盛承发,乔传令.cDNA末端快速扩增技术及其应用[J].遗传,2004,26(3):419-423
    33.王希庆,陈柏君,印莉萍.植物中的MYB转录因子[J].生物技术通报,2003,(2):22-25
    34.王友华,段留生,卢孟柱,李召虎,王敏杰,翟志席.NAC1上游调控区的表达特征及其与侧根激素诱导的关系[J].中国科学C辑 生命科学,2006,36(3):217-222
    35.魏丽,蒋湘宁,裴东.不定根发生分子调控机制的研究进展[J].生命科学,2006,18(3):266-272
    36.徐芳,姚泉洪,熊爱生,彭日荷,侯喜林,曹兵.重叠延伸PCR技术及其在基因工程上的应用[J].分子植物育种,2006,4(5):747-750
    37.杨建民,李艳华,杨敏生,孙福在,赵延昌,朱正顺.几个仁用杏品种抗寒性比较研究[J].中国农业科学,1999,32(1):46-50
    38.杨天旭,汪耀富,宋世旭,蔡寒玉,高华军.逆境胁迫下植物LEA蛋白的研究进展[J].干旱地区农业研究,2006,24(3):120-124
    39.杨宇,吴元华,郑雅楠.利用重叠延伸PCR技术进行DNA的人工合成[J].安徽农业科学,2006,34(9):1810-1811
    40.姚泉洪,黄晓敏,彭日荷,范惠琴.连续延伸PCR法合成ACC解氨酶基因及测序[J].上海农业学报,1999,15(增刊):11-16
    41.于铃,王莱,牛吉山,陈佩度.植物抗病相关基因分离策略[J].西北植物学报,2002,22(6):1494-1503
    42.钟涛.cDNA末端快速扩增技术新进展[J].国外医学分子生物学分册,2002,24(1):7-11
    43.周鹏,董克家.利用套叠PCR技术进行基因突变和拼接[J].生命科学研究,2001,5(1):52-55
    44.周群初,马艳青.蔬菜耐热性研究现状及展望[J].长江蔬菜,2000,3:1-4
    45.朱正歌,孙宗修.转座子标签法克隆水稻基因前景[J].中国水稻科学,2001,15(1):146-150
    46.Abe H,Yamaguchi-Shinozaki K,Urao T,Lwasaki,T,Hosokawa,D and Shinozaki,K.Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expresfion[J].Plant Cell,1997,9(10):1859-1868
    47.Abel S,Theologis A.A polymorphic bipatite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea(Pisum sativurn)[J].Plant J.,1995,8:87-96
    48.Addle N O,Heidi A E,Leila L L and Karen S.NAC transcription factors:structurally distinct,functionally diverse[J].Trends in Plant Sci.,2005,10(2):79-87
    49.Aida M,Ishida T,Fukaki H,Fujisawa H and Tasaka M.Genes involved in organ separation in Arabidopsis,analysis of the cup-shaped cotyledon mutant[J].The Plant Cell,1997,9(6):841-857
    50.Altman and Arie.From plant tissue culture to biotechnology:Scientific revolutions,abiotic stress tolerance,and forestry[J].In Vitro Cell and Dev.Biol.- Planta,2003,39:75-84
    51.Anil G and Avnish K.Understanding molecular alphabets of the plant abiotic stress responses[J].Current Science,2001,80(2):206-215
    52.Asada K.Production and action of action of active oxygen species in photosynthetic tissues.In:Foyer CH,Mullineaux PM,(Eds),Cause of Photooxidative stress and Amelioration of Defense Systems in Plants,CRC Press,Boca Raton,FL,1994,77-104
    53.Aukerman M J,Schmidt R J,Burr B and Burr F A.An arginine to lysine substitution in the bZIP domain of an opaquc-2 mutant in maize abolishes specific DNA binding[J].Genes Dev.,1991,5(2):310-320
    54.Baker C C,Sieber P,Wellmer F and Meyerowitz E M.The early extra petalsl mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis[J].Current Biol.,2005,15 (4): 303-315
    55. Banzet N, Richaud C, Deveaux Y, Kazumaier M, Gagnon J and Triantaphylides C. Accumulation of small heat shock proteins including mitochondrial hsp22, induced by oxidative stress and adaptive response in tomato cells [J]. Plant J., 1998, 13: 519-527
    56. Barrett J. Thermal hysteresis proteins [J].Int J. Biochem. Cell Biol., 2001, 33 (2): 105-117
    57. Bobb A J, Eiben H G, Bustos M M and PvALF. An embryo-specific acidic transcriptional activator enchances gene expression from phaseolin and phytohemagglutinin promoters [J]. Plant J.,1996, 8:331-343
    58. Borman H C and Janshan E V N. Nicotianana tabacum callus studies X. ABA increase resistance to cold damage [J]. Plant Physiol., 1980,48: 491-493
    59. Borson N D, Salo W L and Drewes R L. A Lock-docking oligo-dT primer for 5' and 3' race [J]. PCR Methods Appl., 1992, 2:144-148
    60. Boulikas T, Putative nuclear lacalization signals (NLS) in protein transcription facors [J]. Cell Biochem. 1994, 55:32-58
    61. Bray E A, Bailey S J and Weretilnyk E. Responses to abiotic stresses; in Biochemistry and molecular biology of plants, Gruissem, W., Buchannan, B., Jones, R.(eds.), American Society of Plant Physiologists, Rockville, MD, 2000, pp1158-1249
    62. Breton G, Danyluk J, Ouellet F and Sarhan F. Biotechnological applications of plant freezing associated proteins [J]. Biotechnol. Annu. Rev., 2000, 6: 59-101
    63. Brianne M B. Introduction of insect antifreeze protein genes into the model plant Arabidopsis thaliana [J]. Introduc. of Insect Anti. Protein Genes, 1999, 79-84
    64. Caray A A, Colmenero F J M, Caroiarrubio A and Covarrubias A A. Highly hydrophilic proteins in prokaryates and eukaryates are common during conditions of water deficit [J]. J. Biolchem.,2000, 275 (8): 5668-5674
    65. Cathie M and Javier P. MYB transcription factors in plants[J].Reviews, 1997,13 (2):225-229
    66. Cattivelli L and Bartels D. Molecular cloning and characterization of cold regulated genes in barely [J]. Plant Physiol., 1990, 93: 1504-1510
    67. Chen N Z, Zhang X Q, Wei P C, Chen Q J, Ren F, Chen J and Wang X.C. AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress [J]. J. Biochem. Mol. Biol., 2007, 40: 1083-1089
    68. Close T J, Kortt A A and Chandler P M A. cDNA based comparison of dehydration-induced proteins (dehydrins) in barley and corn [J]. Plant Mol. Biol. 1989,13: 95-108
    69. Coca M, Almoguera C and Jordano J. Expression of sunflower low-molecular-weight heat shock proteins during embryogenesis and prersistence after germination: localization and possible functional implications [J]. Plant Mol. Biol., 1994, 25: 479-492
    70. Collins G G, Nie X L and Salveit M E. Heat shock increases chilling tolerance of mung bean hypocotyls tissue [J]. Phisiol. Planta., 1993, 89: 117-124
    71. Daimon Y, Takabe K and Tasaka M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli [J]. Plant Cell Physiol., 2003, 44: 113-121
    72. Dan P, Oded S and Arie A. Characterization of BspA, a major boiling-stable, water-stress responsive protein in aspen (Populus tremula) [J]. Tree Physiol., 1995,15: 673-678
    73. Dehesh K, Smith L G, Tepperman J M and Quail P H. Twin autonomous bipartite nuclear lacalization signals direct nuclear import of GT-2 [J]. Plant J., 1995, 8: 25-36
    74. Delessert C, Kazan K, Wilsom L W, Straeten D V D, Manners J, Dennis E S and Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis [J]. The Plant J., 2005, 43 (5): 745-757
    75. Dgany O, Gonzalez A, Sofer O, Wang W W, Zolotnitsky G, Wolf A, Shoham Y, Alrman A, Sharon G W, Shoseyov O and Almog O. The structural Basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein [J]. J. Biol. Chem., 2004, 279: 51516-51523
    76. Diachenko L B, Ledesm A J, Chenchik A A and Siebert P D. Combing the techniques of RNA finger printing and differential display to obtain differentially expressed mRNA [J]. Biochem Biophys. Res. Commol/Lun., 1996, 219: 824-82
    77. Duman J G. Antifreeze and ice nucleator proteins in terrestrial arthropods [J]. Annu. Rev. Physiol., 2001,63:327-357
    78. Dure Ⅲ L and Chlan C A. Developmental biochemistry of cotton seed embryogenesis and germination. X Ⅱ .Purufication and properties of principle storage protein [J]. Plant physiol., 1981, 68: 180-186
    79. Dure Ⅲ L, Crouch M, Harada J, David T H, Mundy J, Quatrano R, Thomas T and Sung Z R.Common amino acid sequence demains among the L EA proteins of highter plants [J]. Plant MoLBiol., 1989,12:475-486
    80. Dwayne H M Y, Doug B, Margaret G, Andrew S, Isobel P, Steve W and Derek L. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress [J]. Plant Mol.Biol., 2003, 53: 383-397
    81. Ernst H A, Olsen A N, Skriver K, Larsen S and Leggio L L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors [J]. EMBO Reports, 2004, 5 (3): 297-303
    82. Esterbauer H, Schauer R J and Zololner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes [J]. Free Radic. Biol. Med. 1991, 11: 81-128
    83. Fei Y B, Sun L H and Tao H. An important antifreeze mechanism of over wintering protein (AFP) with high activity in Ammopiptanthus monlicus [J]. Cryobiology., 1994, 31(6):560
    84. Fletcher G L, Hew C L and Davies P L. Antifreeze proteins of teleost fishes [J]. Annu. Rev. Physiol., 2001, 63:359-390
    85. Frohman M A , Dush M K and Mrtin G R. Rapid production of full- length cDNAs from rare transcripts: amplification using single gene -specific oligonuleotide primer [J] . Proc. Natl. Acad. Sci. USA, 1988, 85(23): 8998-9002
    86. Frova C. Genetics dissection of thermotolerance in maize; in Physical stress in plants, Grillo, S. and Leone, A. (eds.), Springer-Verlag, New York, 1997, pp 31-38
    87. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme M, Phan T L, Yamaguchi-shinozaki K and Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J., 2004, 39: 863-876
    88. Gale M D and Devos K M. Plant Comparative Genetics after 10 years [J]. Science, 1998, 282: 656-659
    89. Deng G J and R ichare A. Isolation and characterization of an antifreeze p ro tein from the longho rn sculp in, Myoxocep halus octodecim spinosis [J]. Biochem icaet Biophysica. Acta., 1998, 1388 (2): 305-314
    90. Goff S A, Cone K C and Chandler V L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins [J]. Genes Dev., 1992, 6: 864-875
    91. Gong M S, Chen Y S and Li Z. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings [J]. J. Plant Physiol.., 1997, 24: 371-379
    92. Griffith M, Ala P and Yang D S. Antifreeze protein produced endogenously in winter rye leaces [J]. Plant Physiol., 1992, 100(2): 593-596
    93. Grimstone A V, Mullinger A M and Ramsay J A. Further studies on the rectal complex of the mealworm, Tenebrio molitor [J]. Phil. Trans. R. Soc. London B., 1968, 253: 343-382
    94. Guiltinan M J and Miller L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-l[J]. Plant Mol.Biol., 1994, 26 (4): 1041-1053
    95. Guo H S, Xie Q, Fei J F and Chua N H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell, 2005, 17(5): 1376-1386
    96. Guo Y F and Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence [J]. Plant J., 2006, 46 (4): 601-612
    97. Gustafsson C, Govindarajan S and Minshull J. Codon bias, heterologous protein expression [J]. Trends Biotech., 2004, 22: 346-353
    98. Harvey R J. Radom-primed cDNA synthesis facilitates the isolation of 5'-cDNA by RACE [J]. Nucleic Acids. Res., 1991,19: 4002
    99. Havaux M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperature [J]. Plant Cell and Environment, 1993, 16: 461-467
    100. He Y L, Liu Y L, Cao W X, Huai M F, Xu B G and Huang B R. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky Bluegrass [J]. Crop Sci. 2005, 45: 988-995
    101. He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S and Chen S Y. AtNAC2, a transcription factors downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J]. Plant J., 2005,44 (6): 903-916
    102. Hew C L, Kao M H, So Y P and Lim K P. Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana [J]. Can. J. Zool., 1983, 61: 2324-2328
    103. Hibara K, Takada S and Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation [J]. Plant J., 2003,36: 687-696
    104. Horton R M, Cai Z L, Ho S N and Pease L R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction [J]. BioTech., 1990, 8 (5): 528-535
    105. Ho S N, Hun H D, Horton R M, Pullen J K. and Pease L R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction [J]. Gene, 1989, 77(1): 51-59
    106. Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F and Xiong L Z Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc. Natl. Acad. Sci. USA, 2006, 103 (35): 12987-12992
    107. Huang H, Tudor M, Su T, Zhang Y and Ma H. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation[J]. Plant Cell, 1996, 8(1):81-94
    108. Immink R G, Ferrafio S, Busscher-Lange J, Koviker, M and Angenent G C. Analysis of the petunia MADS-box transcription factor family [J]. Mol.Genet. Genomics., 2003, 268(5): 598-606
    109. Ishida T, Aida M, Takada M and Tasaka M. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana [J].Plant Cell Physiol., 2000, 41, 60-67
    110. Jacobsen J V and Shaw D C. Heat-stable proteins and abscisic acid action in barley aleurone cells [J]. Plant Physiol., 1989, 91:1520-1526
    111. Wallis J G, Wang H Y and Guerra D J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures [J]. Plant Mol. Biol., 1997,35: 323-330
    112. Medina J, Monica B and Javier T. The arabidopsis CBF gene family is composed of three genes encoding AP2 Domain-containing proteins whose expression is regulated by low temperature but not by abscisci acid or dehydration [J]. Plant Physiol., 1999,119: 463-469
    113. Kadyrzhanova D K, Vlachonasios K E, Ververidis P and Dilley D R. Molecular cloning of a novel heat induced/ chilling tolerance related cDNA in tomato fruit by use of mRNA differential display [J]. Plant Mol. Biol., 1998, 36: 885-898
    114. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K and Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nature Biotechnol., 1999,17: 287-291
    115. Katagiri F, Seipel K and Chua N H. Identification of a novel dimer stabilization region in a plant bZIP transcription activato [J]. Mol. Cell Biol., 1992, 12 (11): 4809-4816
    116. Kavi P B, Hong Z and Miao G H. Over-expression of delta1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants [J]. Plant Physiol., 1995, 108: 1387-1394
    117. Kikuchi K, Ueguchi-Tanaka M, Yoshida T K, Nagato Y, Matsusoka M and Hirano H Y. Molecular analysis of the NAC gene family in rice [J]. Mol. Gen. Genet., 1999, 262: 1047-1051
    118. Klinge B, Uberlaeker B, Korfliage C and Werr W. ZmHox: a novel class of maize homeobox genes. Plant Mol. Biol. 1996, 30: 439-453
    119. Kuhlmann M, Horvay K, Strathmann A, Heinekamp T, Fischer U, Bottner S and Droge-Laser W. The α-Helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat Protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response [J]. J. Biol. Chem., 2003, 278(10): 8786-8794
    120. Lee A J, Elwyn IR and David C. The construction of a cDNA expression library for the sheep scab mite Psoroptes ovis [J]. Vet Parasitol, 1999, 83 (3 - 4): 241-252
    121. Lee B H, Won S H and Lee H S. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice [J]. Gene, 2000a, 245: 283-290
    122. Lee G J and Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein [J]. Plant Physiol., 2000b, 122:189-198
    123. Lin Q, Barbas III C F and Schultz P G. Small-molecule switches for zinc finger transcription factors [J]. J.Am.Chem.Soc, 2003,125(3): 612-613
    124. Lindquist S and Craig E A. The heat shock proteins [J]. Annu. Rev. of Genet, 1988, 22: 631-677
    125. Loh E Y, Elliot J F, Cwirla S, Lanier L L and Davis M M. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain [J]. Science, 1989, 243 (4888):217-220
    126. Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J and Wang X C. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis [J]. Plant Mol.Biol., 2007, 63 (2): 289-305
    127. Lyck R, Harmening U, Hohfeld I, Treuter E, Scharf K D and Nover L. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors [J]. Planta, 1997,202:117-125
    128. Martin C and Paz-ares J. MYB transcription factors in plants [J]. Trends Genet, 1997, 13(2):67-73
    129. Maxwell K, Johnson G N. Chlorophyll fluorescence- a practical guide [J]. J. Exp. Bot., 2000, 345: 659-668
    130. Michael K J, Jesper H R, Per L G, Torben G, Anja T F, Michael H, Nina J, Michael F L and David B C. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis [J]. Plant Mol. Biol., 2007, 65:137-150
    131. Mie K, Liu Q and Setsuko M. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nature Biotech., 1999, 17: 287-291
    132. Mitsuda N, Seki M, Shinozaki K and Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence [J]. Plant Cell, 2005, 17(11): 2993-3006
    133. Miyao-Tokutomi M, Byung-Hyun L, Mizusawa N and Yamamoto N. Active oxygen and photoinhibition of photosystem Ⅱ. In: Garab G (eds) Proceedings of the Xith International Congress on Photosynthesis, Vol. Ⅲ. Kluwer Academic Publishers, Dordrecht, 1998,2097-2102
    134. Monk L S, Fagerstedt K V, Crawford and R.M.M. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress [J]. Plant Physiol., 1989, 76: 456-459
    135. Murray E E, Lotzer J and Eberle M. Codon usage in plant genes [J]. Nucleic Acids Res., 1989,17: 477-498
    136. Murayuma I N, Rakow T L and Muruyama H I. cRACE: A simple method for identfication of the 5'ends of mRNAs [J]. Nucleic Acids Res., 1995,23:3796-3797
    137. Nakano T, Suzuki K and Fujimura T. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol., 2006, 140(2): 411-432
    138. Nantel A and Quatrano R S. Characterization of three rice basic /leucine zipper factors including two inhibitors of EmBP-I DNA binding activity. J Biol. Chem. 1996, 271: 31296-31305
    139. Neil R B and Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities [J]. J. Exp. Bot. 2004, 403: 1607-1621
    140. Nieto-Sotelo J, Martinez L M, Ponce G, Cassab G, Alagon A, Meeley R B, Ribaut J M and Yang R. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root . ' growth [J]. The Plant Cell, 2002, 14:1621-1633
    141. Niu X, Renshaw G L, Miller L and Guiltinan M J.Bipartite determinants of DNA - binding specificity of plant basic leucine zipper protein [J]. Plant Mol.Biol., 1999,41:1-13
    142. Ohara O, Dorit R L and Gillbert W. One-sided polymerase chain reaction: the amplification of cDNA [J]. Proc. Natl. Acad. Sci. USA, 1989, 86(15): 5673-5677
    143. Olsen A N, Ernst H A, Leggio L L and Skriver K. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends in Plant Sci., 2005,10 (2): 79-87
    144. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K and Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Research, 2003, 10 (6): 239-247
    145. Payne C T, Zhang F and Lioyd A M. GL3 encodes a bHLH protein that regulates trichome decelopment in Arabidopsis through interaction with GL1 and TTG[J].Genetics, 2000,156:1349-1362
    146. Peng R H, Xiong A S, Li X, Fuan H and Yao Q H. A delta-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity [J]. Appl. Microbio. Biotech., 2003, 63: 300-306
    147. Peng R H, Yao Q H, Xiong A S, Cheng Z M and Li Y. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola [J]. Plant Cell Rep., 2006a, 25: 124-132
    148. Peng R H, Yao Q H and Xiong A S. A direct and efficient PAGE-mediated overlap extension PCR (POEP) method for gene multiple-site mutagenesis [J]. Appl. Microbio. Biotech., 2006b, 73: 234-240
    149. Pon RT and Yu S. Linker. Phosphoramidite reagents for the attachment of the first nucleoside to underivatize solid-phase supports [J]. Nucleic Acids Res., 2004, 32: 623-631
    150. Pon R T and Yu S. Tandem. Oligonucleotide synthesis using linker phosphoramidites [J]. Nucleic Acids Res., 2005, 33: 1940-1948
    151. Rabinowicz P D, Braun E L and Wolfe A D.Maize R2R3 Myb gene: Sequence analysis reveals amplification in the higher plants[J].Genetics, 1999,153:427-444
    152. Rainer B, Hollricher K, Panstruga R and Simons G. The barley Mlo gene: a novel control element of plant pathogen resistance [J].Cell, 1997,88:695-705
    153. Raineri D M, Bottino P and Gordon M P. Agrobacterium mediated transformation of rice (Oryza sativa L.) [J]. Bio. Tech., 1990, 8: 33-38
    154. Ramsay R A. The rectal complex of the mealworm, Tenebrio molitor (L .Coleoptera, Tenebrioni dae [J]. Phil. Trans. R. Soc. London B., 1964, 248: 279-314
    155. Rashid H, Yokoi S and Toriyama K. Transgenic plant product ion mediated by Agrobacterium in indica rice [J]. Plant Cell Rep., 1996, 15:727-730
    156. Ren T, Qu F and Morris J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus [J]. Plant Cell, 2000,12: 1917-1925
    157. Riechmann J L and Meyerowitz. The AP2/EREBP family of plant transcription factors [J]. Biol. Chem., 1998,379:633-646
    158. Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B and Bartel D P. Prediction of plant microRNA targets [J]. Cell, 2002, 110 (4): 513-520
    159. Rounsley S D, Ditta G S and Yanofsky M F. Diverse roles for MADS box genes in Arabidopsis development [J]. Plant Cell, 1995, 7(8):1259-1269
    160. Ruiz-Medrano R, Xoconostle-Cazares B and Lucas W J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants [J]. Development, 1999, 126 (20): 4405-4419
    161. Sablowski R W M, and Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA [J]. Cell, 1998, 92: 93-103
    162. Sainz M B, Grotewold E and Chandler V L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins[J]. Plant Cell, 1997, 9 (4): 611-625
    163. Sambrook J and Russell D W. Molecular Cloning; A laboratory Mannual. (Cold Spring Harbor laboratory Press, cold Spring Harbor, New York 2001
    164. Scandal I J G. Oxygen stress and superoxide dismutase [J]. Plant Physiol., 1993, 101:7- 9
    165. Schaefer B C. Resolution in rapid amplification of cDNA ends: New strategies for polymerase chain reaction cloning of full-length Cdna ends [J]. Anal. Biochem., 1995, 227: 255-273
    166. Skriver K. and Mundy J. Gene expression in response to abscisic acid and osmotic stress [J]. Plant Cell, 1990,2:503-512
    167. Smirnoff N. Antioxidant systems and plant response to the environment; in Environment and plant metabolism: flexibility and acclimation, Smirnoff, N. (eds.), 1995, pp.217-243, Bios Scientific Publishers, Oxford, UK.
    168. Smirnoff N. Plant resistance to environmental stress [J]. Curr. Opin. Biotech., 1998, 9:214-219
    169. Souer E, Houwelingen V A, Kloos D, Mol J and Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries [J]. Cell, 1996, 85 (2): 159-170
    170. Steffen P. Graether, Stephane M. Gagne, Leo Spyracopoulos, Zongchao Jia, Peter L. Davies and Brian D. Sykes. Spruce Budworm Antifreeze Protein: Changes in Structure and Dynamics at Low Temperature [J]. J. Mol. Biol., 2003, 327: 1155-1168
    171.Takada S, Hibara K, Ishida T and Tasaka M. The CUP-SHAPED COTYLEDON 1 gene of Arabidopsis regulates shoot apical meristem formation [J]. Development, 2001, 128: 1127-1135
    172. Takatsuji H. Zinc-finger transcription factors in plant [J]. Cell Mol. Life Sci., 1998, 54(6):582-596
    173. Templeton N S, Urselay E and Safer B. Reducing artifact and increasing the yield of specific DNA target fragments during PCR - RACE or anchor PCR[J] .BioTechniques,1992,15: 48-51
    174. Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K and Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter [J]. Plant Cell, 2004,16: 2481-2498
    175. Tran L S, Nakashima K, Shinozaki K and Yamaguchi S K. Plant gene networks in osmotic stress response: from genes to regulatory networks [J]. Methods Enzymol., 2007, 428: 109-128
    176. Tyshenko M G, Doucet D, Davies P L and Walker V K. The antifreeze potential of the spruce budworm thermal hysteresis protein [J]. Nature Biotechnol., 1997,15: 887-890
    177. Urrutia M E, Duman J G and Knight C A. Plant thermal hysteresis proteins [J]. Biochem. Biophy. Acta., 1992,1121: 199-206
    178. Varagona M J, Schmidt R J and Raikhel N V. Nuclear localization signals required for nuclear targeting of the maize regulatory protein Opaque-2[J]. Plant Cell, 1992, 4:1213-1227
    179. Voetberg G S and Sharp R E. Growth of the maize primary root at low water potentials III. roles of increased proline deposition in osmotic adjustment [J]. Plant Physiol., 1991, 96: 1125-1130
    180. Vroemen C W, Mordhorst A P, Aibrecht C, Kwaaitaal A C J and Vries S C. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis [J]. Plant Cell, 2003, 15:1563-1577
    181. Walden R, Hayashof H and Schell J. T-DNA as a gene tag [J]. Plant J, 1991, 1(3): 281-288
    182. Wang W X, Pelah D, Alergand T, Shoseyov O and Altaian A. Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen (Populus tremula L.) [J]. Plant Physiol., 2002, 130:865-875
    183. Wang W X, Pelah D, Alergand T, Shoseyov O and Altman A. Denaturate stable and/or protease resistant, chaperonelike oligomeric proteins, polynucleotides encoding same and their uses. 2001b, Provisional Patent Application No. 60/272,771, USA
    184. Wang W X, Vinocur B and Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta, 2003, 218: 1-14
    185. Worrall D, Elias L, A shford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C and Bowles D. A Carrot L eucine - Rich Repeat Protein That Inhibits Ice Recrystallization [J]. Science, 1998,282(5386): 115-117
    186. Wu C Y, Suzuki A and Washida H. The GCN4 motify in a rice glutelin gene is essential for endosperm-spercfic gene expression and is activated by Opaque-2 in transgenic rice plants [J]. Plant, 1998,14:673-683
    187. Xie Q, Sanz-Burgos A, Guo H S, Garcia J A and Gutierrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein [J]. Plant Mol. Biol., 1999,39:647-656
    188. Xie Q, Guo H S, Dallman G, Fang S, Weissman A M and Chua N H. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals [J]. Nature, 2002, 419 (6903): 167-170
    189. Xiong A S, Yao Q H, Peng R H, Li X, Fan H Q, Cheng Z M and Li Y. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences [J]. Nucleic Acids Res., 2004a, 32: e98
    190. Xiong A S, Yao Q H, Peng R H, Li X, Fan H Q and Guo M J. Isolation, characterization, molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris [J]. J. Biochem. Mol. Biol., 2004b, 37: 282-291
    191. Xiong A S, Yao Q H, Peng R H, Han P L, Cheng Z M and Li Y. High level expression of a recombinant acid phytase gene in Pichia pastoris [J]. J. Appl. Microbiol., 2005, 98: 418-428
    192. Young L and Dong Q. Two-step total gene synthesis method [J]. Nucleic Acids Res., 2004, 32: e59
    193. Zhang X and Glaser E. Interaction of plant mitochondrial and chloroplast signal peptides with the HSP70 molecular chaperone [J]. Trends in Plant Sci., 2002, 7: 14-21
    194. Zhang X, Henriques R. and Lin S S. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method [J]. Nat. Protoc., 2006, 1: 641-646
    195. Zhao C, Craig J C, Petzold H E, Dickerman A W and Beers E P. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl [J]. Plant Physiol., 2005,138:803-818
    196. Zoran R, Urska B and Prasad P V. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress [J]. Crop Sci., 2007, 47: 2067-2073