烟草内生细菌Itb57生物学性状及其对黑胫病的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草是一种重要的经济作物,烟草黑胫病是世界上各烟草种植区重要病害之一。在我国大部分烟草种植区均有发生,且在多个省市发生危害严重。为了迎合工业上对特色品质的需求,生产上所种植的烟草品种有许多抗病性程度不高。目前对黑胫病的控制仍然以化学药剂为主,从而导致病原菌抗药性增强、环境污染及烟叶重金属含量超标等后果,影响防治效果、生态安全和人类健康等问题的出现。为此,本文以生态防治为指导思想,从植物微生态系统角度,研究内生细菌对烟株根际生态、植株生理生化和病原菌等方面的综合作用,并以此来控制烟草黑胫病害。主要研究结果如下:
     内生细菌对烟株根际生态的影响10个内生细菌菌株在3种方式处理后,烟株吸收利用土壤有机质的程度有一定差别,其中菌株Itb295在浸种+灌根处理后土壤有机质含量最高。菌株Itb225、Itb220和Itb57处理后土壤有机质含量与对照最接近;多数菌株在3种处理方式下土壤pH值与对照处理相比,只是略有变化。其中变化最大的是菌株Itb185在浸种处理后,pH值达到8.23。相对偏低的是菌株Itb162的浸种处理和Itb28的浸种+灌根处理;各菌株通过浸种+灌根处理后,均能使土壤中全钾的含量降低,且总体来说,各菌株处理后有利于降低土壤中全钾含量。而各菌株对烟苗利用速效钾的影响上表现出促进或抑制作用,Itb225和Itb28两个菌株的3种处理均使得速效钾含量明显高于对照处理;10个菌株处理后对土壤全磷含量的影响,除菌株Itb220的浸种处理和Itb80的喷雾灌根处理后全磷含量远高于对照处理外,其余各处理与对照相比,土壤全磷含量相差不大。而各菌株对土壤中有效磷的影响较大,变化范围在2.59-18.36 mg/kg,多数菌株在某种处理方式后可降低土壤中有效磷含量;
     各菌株对土壤中过氧化氢酶、脲酶和蔗糖酶这3种与土壤肥力相关的酶活力影响也没有明显一致的趋势,不同菌株对酶活力影响各有不同。有的菌株可提高某种酶活性,有的也表现出抑制作用;
     对土壤微生物类群影响方面,菌株Itb57和Itb12经过浸种、浸种+灌根和喷雾灌根这3种方式处理后,土壤中真菌的数量比其余8个菌株及对照处理要低一个数量级;菌株Itb57在浸种和浸种+灌根处理后,土壤中细菌数量最多,且比对照处理高一个数量级;10个菌株在3种处理方式下和对照处理一样,放线菌数量均在同一个数量级(对数值范围为5.1-5.8)。从趋势上可以看出,与对照相比,多数菌株处理后能提高土壤中放线菌数量;对于功能菌群的影响,多数菌株发酵液处理后有利于土壤中固氮菌的增长。所有菌株能明显有利于解磷细菌繁殖。多数菌株处理后土壤中解钾细菌数量与对照处理相比波动幅度不大。
     内生细菌对烟株生长的影响10个内生细菌菌株发酵液对烟草幼苗在地上部鲜重、干重、最大叶长宽和真叶数等4个方面各有不同程度的影响,其中Itb57对烟苗的促生效果较好,其次是Itb185和Itb295。而菌株Itb162在浸种处理方式下对烟苗的地上部干重和真叶数两个方面有明显的不利影响。10个内生细菌菌株发酵液在浸种、浸种+灌根和喷雾灌根3种处理方式下,浸种+灌根处理对烟苗的促生效应较好且相对稳定,而浸种处理下部分菌株有抑制烟苗生长的作用。
     重点研究内生细菌选择对10个菌株进行综合评价,菌株Itb57对促进土壤矿化及植株对养分的利用相对较优,对土壤3种酶活性无明显影响,可显著降低土壤中真菌数量,提高细菌数量,尤其能提高固氮、解磷和解钾3大功能细菌数量,且对烟苗的促生效应最好。故将内生细菌Itb57作为重点研究对象,以烟草黑胫病菌YBX1-4菌株作为测定拮抗活性的标准病原菌株。
     菌株Itb57的抗菌作用及代谢产物内生细菌Itb57具有广谱的拮抗活性,对供试的烟草赤星病菌等9种植物病原真菌均有一定程度的的拮抗作用。其中对烟草赤星病菌、番茄早疫病菌的抑菌作用最好,抑菌带宽分别为9.83 mm和9.50 mm。其次是对花生黑斑病菌的抑制作用,达9.33 mm。并且对烟草上的炭疽病菌、灰霉病菌和白绢病菌也有较好的效果。对烟草黑胫病菌的拮抗研究表明,对峙培养后使得病菌菌丝扭曲、分支增多,有的菌丝上形成小瘤状物,多数菌丝变成短粗的结节。代谢产物试验表明菌株Itb57可以产生纤维素酶,蛋白酶,嗜铁素,不产生几丁质酶。
     菌株Itb57的分类地位结合菌株菌落性状、形态特征和生理生化性状及16S rDNA序列比对分析,确定Itb57菌株为枯草芽孢杆菌Bacillus subtilis。获得菌株Itb57的16S rDNA片断序列长度为1397bp,在GenBank数据库中的注册登录号(Accession No)为GQ153538。
     菌株Itb57对烟苗生理生化影响菌株Itb57发酵液原液和离心后的上清液可完全抑制烟草种子萌发,而一定浓度的菌悬液能促进种子萌发和幼芽生长,当菌悬液浓度为3x107 cfu/mL时处理最佳。菌株Itb57还能促进烟株根系生长发育,提高根系活力。菌悬液处理烟苗后能明显提高植株与抗性相关的苯丙氨酸解氨酶、过氧化物酶和多酚氧化酶的活性,但诱导抗性酶活提高的时间段及增强比例有一定差别。
     菌株Itb57的内生定殖研究通过利福平标记菌株Itb57,获得抗Rif200μg/mL的突变株,突变菌株接种后从烟株体内回收菌株的培养性状和对黑胫病菌的拮抗能力与Itb57基本相同,证明Itb57为内生菌株。研究也发现,用其菌悬液处理植株根部,可在茎叶中分离获得,表明菌株还能在植株内从下到上转移,且菌落计数表明菌株Itb57在植株各组织中的含菌量以根部最多,为3.72×104 cfu/g FW,茎中次之,为2.14×104 cfu/g FW,叶片中最少,为0.15×l04 cfu/g FW。经无菌培养后的烟苗接种菌株Itb57,通过扫描电镜和透射电镜可观察到菌株Itb57不仅能在植株根表定殖且能进入烟草植株中在皮层细胞内定殖,进一步证明了菌株Itb57的内生性。
     菌株Itb57的生物学特性及发酵条件培养基筛选试验表明,以花生粉为原料最有利于菌株Itb57生长繁殖和产生拮抗物质。菌株生长曲线表明,Ith57在0-12h生长较为缓慢,数量增加幅度较小,随后进入对数生长期,菌体数量快速增加,到48 h达到最大数量,随后菌株生长进入稳定期。菌株发酵条件单因素测定表明,菌株Itb57生长和抑制黑胫病菌的拮抗物质产生的最适条件是:发酵温度为28℃、培养液初始pH值为7.0、发酵时间为48h、摇瓶转速180r/min和25 mL/500 mL三角瓶装液量。正交试验优化后的最佳发酵条件组合是发酵温度为28℃、培养液初始pH值为7.0、时间72 h、摇瓶转速180 r/min和25 mL/500 mL三角瓶装液量。
     菌株Itb57对黑胫病的防治效果Itb57发酵液对烟草黑胫病的温室防治效果为69.28%;2007和2008年的田间小区防治效果分别为61.25%和72.49%,与对照化学药剂58%甲霜·锰锌可湿性粉剂的防治效果无显著差异。小区防治试验后采取烟叶分析测定表明,菌株Itb57对烟株的主要化学成分影响和常规对照相比变化不大。菌液处理后在减小两糖差值、协调糖碱比、氮碱比方面均表现出稍优于常规对照处理。
Tobacco is an important cash crop. Tobacco black shank, caused by Phytophthora nicotianae, is an economically important disease of tobacco world-wide. In China, it occurs frequently and commonly, which causes a huge loss at several provinces. For adapting to the industrial demand in specific quality, most of tobacco varieties to Tobacco black shank is not much strong, therefore, the main way to control the disease still keeps taking chemical pesticides. Thus, it causes the drug-resistant development, environmental pollution, and the heavy metals contents in tobacco leaves getting over-standard etc., finally impacts on the disease control effect, the ecological safety and the mankind health. For this reason, based on the thought for ecological control, the effect of endophytic bacteria on rhizosphere ecosystem, physiology and biochemistry of host plant, and pathogens causing Tobacco black shank, was studied in this paper, from the plant micro-ecosystem. The main results of the study are as follows.
     The impact of endophytic bacteria on tobacco rhizosphere ecosystem The absorption and utilization of soil organic matter by tobacco plants got certain difference after three kinds of treatments. The strain Itb295 showed a maximum content of soil organic matter after the treatment of seed-soaking and root-irrigation among the ten strains tested, while that of the strains Itb225, Itb220 and Itb57 was most closed to the control (CK). The soil pH value of majority of biological control strains differed slightly with the CK after three kinds of treatments, only that of the strain Itb185 got the highest level at 8.23 after seed-soaking. The pH values of strain Itb162 seed-soaking and strain Itb28 seed-soaking and root-irrigation were relatively lower in all the treatments. Furthermore, an interesting result was found that total potassium content in the soil decreased after all the tested strains treated by seed-soaking and root-irrigation. However, it was not shown all the tested strains positively impacted on the tobacco seedling taking advantage of effective potassium. Compared to CK, the effective potassium content in soil of strains Itb225 and Itb28 was much higher after three kinds of treatments. It was studied how the change of soil total phosphor contents was after ten strains treatments. Compared to CK, the soil total phosphor contents changed slightly, except that of treatments by Itb220 seed-soaking or Itb8O spraying irrigation far increased. The impact of tested strains on effective phosphor was great, varied from 2.59 to 18.36 mg/kg. The majority of strains could make the effective phosphor contents decreased in the soil after a certain treatment.
     There was no obviously consistent trend towards affecting of the tested strains on the activity of three kinds of enzymes (Catalase, Urease and Sucrase) in the soil related to soil fertility. The difference in the study was that a part of experimental strains raised the activity of a certain enzyme, while others preformed repressing.
     The effect of different treatments on soil micro-organisms showed as follows. After three kinds of treatments (seed-soaking, root-irrigation and spray irrigation) of two strains Itb57 and Itb12, in contrast with CK and the other eight strains, the number of soil fungi was 10 times lower. After two kinds of treatments (seed-soaking, root-irrigation) of strain Itb57, the number of soil bacteria was 10 times more than the CK treatment. The quantity of soil actinomyces of all strains tested was in the same quantity grade (the logarithm value ranged from 5.1 to 5.8) in three kinds of treatments. From the tendency, it was found that the majority of experimental strains had made the quantity of soil actinomyces increase. As one of functional groups of soil micro-organisms, the number of Azotobacter increased treated by ferment liquid of most strains tested, the number of Phosphate-solubilizing bacteria increased in the treatments with all the biological control strains tested, while that of Potassium-releasing bacteria in the treatments of most tested strains was much closed to the CK trial.
     The impact of endophytic bacteria upon tobacco growth The effect of the ferment liquid often endophytic bacteria on fresh weight and dry weight aboveground, width and length of the biggest leaves, euphylla numbers of tobacco seedlings were studied in the paper. The results indicated that strain Itb57 could promote the seedling's growing well, and followed by the strains Itb185 and Itb295. But strain Itb162 negatively affected on the dry weight aboveground and euphylla numbers of tobacco seedlings with the treatment by seed-soaking. After three kinds of treatments (seed-soaking, seed-soaking+root-irrigation, and spray irrigation) of the ten strains, seed-soaking+ root-irrigation showed a good and stabilized effect on the growth promotion of tobacco seedlings, on the other hand, the seed-soaking treatment with part of tested strains restricted the seedlings' growth.
     Integrated evaluation and selection of the optimal from experimental endophytic bacteria Integrated evaluation of the ten strains in the study, it was found that strain Itb57 was more excellent in accelerating the soil mineralization, promoting the absorption and utilization of nutrients for tobacco plants, and the seedlings growth, except no significant effect on three sorts of enzymes activities. Besides, strain Itb57 could reduce the amount of soil fungi, and make the numbers of soil bacteria increase, especially the three kinds of functional groups of soil micro-organisms, Azotobacter, Phosphate-solubilizing bacteria and Potassium-releasing bacteria. Therefore, strain Itb57 was taken as key objective strain in the research, and YBX1-4 was chosen as one standand strain of Phytophthora nicotianae for antagonistic measurement.
     Antibiotic effect and metabolism products of strain Itb57 It was found the antagonistic spectrum of endophytic strain Itb57 was broad, showing an antagonistic effect on nine tested pathogenic fungi in a certain degree. The best was observed in Alternaria alternata, A. solani, the width of restrained zone was 9.83 mm and 9.50 mm, respectively. The better repressing effect was on Cercospora personata on peanut with a zone of 9.33 mm, besides on the pathogens Colletotrichum, Botrytis, Sclerotium. The antagonistic effect on P. nicotianae showed that the hypha of pathogen became distortion, more branches, even formed a small lump and short knot in the duel culture plate. Metabolizing products was detected in strain Itb57 generated Cellulase, Proteinase and Siderophore, but no Chitinase.
     The taxonomy of strain Itb57 Based on properties, morphological, physiological and biochemical characteristics of colonies, and 16S rDNA (GenBank accession No.GQ153538) phylogenetic analysis, strain Itb57 was identified as Bacillus subtilis. The sequence length of 16S rDNA of Itb57 of fragments was 1397 bp.
     The physiological and biochemical effects of strain Itb57 on tobacco seedlings The tobacco seed germination was entirely restrained after treatments with the original bacterial suspension and the above liquid post centrifugal practice of Itb57. But the bacterial suspension with certain concentration could promote the seed germination, and the growth of tobacco buds, especially when the bacterial suspension was at the concentration of 3×10(?) cfu/mL; the effect of growth-promotion was the best. Additionally, strain Itb57 was found to be able to stimulate the growth and development of seedling rootlets, and to lift the activity of roots. The activities of three sorts of enzymes related to tobacco resistance, such as Phenylalanine Ammonium Lyase (PAL), Peroxidase (POD) and Polyphenol Oxidase (PPO), were all significantly taken up after the treatments of tobacco seedlings with the bacterial suspension, only the detailed time segment and enhancement ratio for inducing the resistance and enzymes activities varied slightly.
     Research on endogenesis and colonization of strain Itb57 Strain Itb57 was tagged with rifampicin, the drug-resistant strain was acquired at the level of anti-Rif 200μg/mL. The cultivation character in the medium and antagonistic activities on P. nicotianae of the re-isolated strain after inoculation was similar to the original strain of Itb57. This result adequately proved strain Itb57 was endophytic bacteria. After tobacco roots were inoculated with the bacterial suspension of tagged strain Itb57, it was isolated again in the stem and leaves, which suggested that the tagged strain could transfer upwards in tobacco plants. Moreover, the number of colony form unit in tobacco tissue was found mostly in the rootlets (3.72×104 cfu/g fresh weight), followed by the stem (2.14×104 cfu/g FW), and the leaves (0.15×104 cfu/g FW) to colonize the interior tissues of tobacco plants. The highest amount (3.72×104 cfu/g fresh weight) of the inoculated bacterium was detected in the rootlets and the lowest in the leaves of the tobacco plants. Under the condition of sterilization, after tobacco seedlings was inoculated with tagged strain Itb57, its colonization was found in the surface of rootlets, even in the cortex cells, which further provided strong evidence that strain Itb57 was endophytic bacteria.
     The biology characteristics of strain Itb57 and fermentation conditions The experiments for screening the culture medium indicated that was beneficial to the growth, reproduction of strain Itb57 and its producing antagonistic substances in the conditions of peanut powder as nutrition source. According to the growth curve of strain Itb57, it was found that the strain grew slowly within 0-12 hours, subsequently the growth became fast into logarithm increasing stage, at 48 hour the top abundance obtained, and then kept into a stable period. Measurement of each single factor for fermentation of strain Itb57, the results showed that the optimal conditions for the growth and production of antagonistic substances of strain Itb57, were at 28℃of fermentation temperature, the initial pH7.0 value of culturing medium,48 hour of fermentation period, the rotation speed 180 rpm of triangle bottles, and the volume ratio of 25 mL/500 mL triangle bottles for supplying oxygen. The optimized conditions by trial consequently were at 28℃of fermentation temperature, the initial pH7.0 value of culturing medium, fermentation period 72 h, the rotation speed 180 rpm of triangle bottles, and the volume ratio of 25 mL/500 mL triangle bottles.
     The control efficacy of strain Itb57 to tobacco black shank Green-house pot-grown tobacco plant assays showed that the control efficacy to tobacco black shank by strain Itb57 was 69.28% when the bacterium was applied by root-irrigation in advance of P. nicotianae inoculation. Further, field trials in 2007 and 2008 demonstrated that the application of strain Itb57 controlled the disease by with the efficiency of 61.25% and 72.49%, respectively. Statistical analysis indicated that the disease control efficacy was not significantly different from that obtained by treatment with the chemical (58% metalaxyl mancozeb wettable powder) (P>0.05). Measurement of the chemical components in the tested tobacco plants after treatments with strain Itb57 in plot trial, the major components changed little, compared with the control (CK). The positive effect on the reduction of sucrose-glucose variance, nitrogen-alkali ratio, and balancing glucose-alkali ratio was better than the CK after treatment with bacterial suspension of strain Itb57.
引文
1 Hollis J P. Bacteria in healthy potato tissue. Phytopathology.1951,41:197-209
    2 刘云霞.植物内生细菌的研究与应用.植物保护,1994,20(5):30-32
    3 Kloepper J W and Bcauchamp C J. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology,1992,38:1219-1232
    4 杨海莲.水稻植株内生细菌的研究.中国农业科学研究所博士学位论文,1997
    5 龙良鲲.拮抗番茄青枯口香糖内生细菌的定殖与探病作用研究.西南农业大学硕士学位论文,2003
    6 何红.辣椒内生枯草芽孢杆菌防病促生作用研究.福建农林大学博士学位论文,2003
    7 满百膺.东祁连山高寒牧草内生细菌分离、鉴定及其生物学功能研究.甘肃农业大学硕士学位论文,2008
    8 马芸.三种药用植物内生细菌的多样性研究.兰州大学硕士学位论文,2009
    9 盛红梅.乌鲁木齐河源区冰缘植物内生细菌多样性及其空间分布特征研究.兰州大学博士论文,2006
    10 Lemoigne M. Produit de deshydratation et de polymerisation de l'acide b-oxybutyrique. Bullelin de la Socie'te'de Chemie Biologique,1926,8:770-782
    11 Catal'an A 1, Ferreira F, Gill P R, Batista S. Production of polyhydroxyalkanoates by Herbaspirillum seropedicae grown with different sole carbon sources and on lactose when engineered to express the lacZ lacY genes. Enzyme Microbial Technol,2007,40: 1352-1367
    12 Robert P. Ryan, Kieran Germaine, Ashley Franks, David J. Ryan, David N. Dowling. Bacterial endophytes:recent developments and applications. FEMS Microbiology Letters, 2008,278:1-9
    13 Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hured T, Krause L, Linke B, McHardy A C, Sarkar A, Schneiker S, Syed A A, Thauer R, Vorholter F J, Weidner S, Puhler A, Reinhold-Hured B, Kaiser O, Goesmann A. Complete genome of the mutualistic N2-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology,2006,24:1384-1390
    14 Monica Rosenblueth and Esperanza Martinez-Romero. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions,2006,19(8):827-837
    15 Hallmann J, Quadt-Hallmann A, Mahaffee W F, Kloepper J W. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology,1997,43:895-914
    16 Hurek T, Handley L L, Reinhold-Hurek B, Piche Y. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions, 2002,15:233-242
    17 Iniguez A L, Dong Y, Triplett E W. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions,2004,17:1078-1085
    18 Sevilla M, Burris R H, Gunapala N, Kennedy C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wildtype and Nif-mutants strains. Molecular Plant-Microbe Interactions, 2001,14:358-366
    19 Sessitsch A, Howieson J G, Perret X, Antoun H, and Martinez Romero E. Advances in Rhizobium research. Critical Reviews in Plant Sciences,2002,21:323-378
    20 Sturz A V, Christie, B R, Nowak J. Bacterial endophytes:Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences,2000,19:1-30
    21 Lund B M and Wyatt G M. The effect of oxygen and carbon dioxide concentrations on bacterial soft rot of potatoes. Ⅰ. King Edward potatoes inoculated with Erwinia carotovora var. atroseptica. Potato Research,1972,15:174-179
    22 Van Peer R, Punte H L M, de Weger L A, Schippers B. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Applied Environment Microbiology,1990,56:2462-2470
    23 金铃,巴峰,计平生,梅汝鸿.小麦内生有害细菌的发现和作用研究.植物病理学报,1996,26(2):123-126
    24 Sturz A V and Christie B R. Endophytic bacteria of red clover as agents of allelopathic clover-maize syndromes. Soil Biology and Biochemistry,1996,28:583-588
    25 袁红旭,周锦兰,郑向华,周立赖.蓖麻内生细菌生物效应分析.中国油料作物学报,2005,27(3): 62-65
    26 Boddey R M, de Oliveira O C, Urquiaga S, Reis V M, Olivares F L, Baldani V L D, and Dobereiner J. Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvement. Plant Soil,1995,174:195-209
    27 Engelhard M, Hurek T, Reinhold-Hurek B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environment Microbiology,2000,2:131-41
    28 de Matos Nogueira E, Vinagre F, Masuda H P, Vargas C, de Padua V L M., da Silva F R, dos Santo R V, Baldani J I, Gomes Ferreira P C, and Hemerley. Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genetics and Molecular Biology,2001,24:199-206
    29 Weyens N, D van der Lelie, S Taghavi, J Vangronsveld. Phytoremediation:plant endophyte partnerships take the hallenge. Current Opinion in Biotechnology,2009:20:1-7
    30 Sturz A V, Christie B R, Matheson B G, and Nowak J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility Soils,1997,25:13-19
    31 Sturz A V and Christie B R. Endophytic bacterial systems governing red clover growth and development. Annals of Applied Biology,1995,126:285-290
    32 Quadt-Hallmann A, Benhamou N, Kloepper J W. Bacterial endophytes in cotton: mechanisms of entering the plant. Canadian Journal of Microbiology,1997,43:577-582
    33 Cooley M B, Miller W G, Mandrell R E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Applied Environment Microbiology,2003,69:4915-4926
    34 Verma S C, Singh A, Chowdhury S P, Tripathi A K. Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnology Letters,2004,26:425-429
    35 Rosenblueth M and Martinez Romero E. Rhizobium etli maize populations and their competitiveness for root colonization. Archives of Microbiology.2004,181:337-344
    36 Rosenblueth M and Martinez-Romero E. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions,2006,19:827-837.
    37 Kamnev A A, Tugarova A V, Antonyuk L P, Tarantilis P A, Polissiou M G, Gardiner P H. Effects ofheavymetals on plant-associated rhizobacteria:Comparison ofendophytic and non-endophytic strains of Azospirillum brasilense. Journal of Trace Elements in Medicine and Biology,2005,19(1):91-95
    38 朱雪竹,倪雪,高彦征.植物内生细菌在植物修复重金属污染土壤中的应用.生态学杂志,2010,29(10):2035-2041
    39 Idris R, Trifonova R, Puschenreiter M, Wenzel W W, Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology,2004,70(5):2667-2677
    40 Sheng X F, Xia J J, Jiang C Y, He L Y, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape(Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution,2008,156:1164-1170
    41 Sun L N, Zhang Y F, He L Y, Chen Z J, Wang Q Y, Qian M, Sheng X F. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology,2010, 101(2):501-509.
    42 Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 2009,11:251-267
    43 Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere,2009,77:153-160
    44 Wei G H, Fan L M, Zhu W F. Fu Y Y, Yu J F, Tang M. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Journal of Hazardous Materials,2009,162:50-56
    45 Shields M S. TOM a new aromatic degradtive plasmid from Burkholderia (Pseudomonas) cepacia G4. Applied and Environmental Microbiology,1995,61:1352-1356
    46 Scher F M. A method for assessing the root-colonizing capacity of bacteria on maize. Canadian Journal of Microbiology,1984,30:151-157
    47 吴蔼民,顾本康,傅正擎,胡华东.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报,2001,31(4):289-295
    48 龙良鲲,肖崇刚.内生细菌01-144在番茄根茎内定殖的初步研究.微生物学通报,2003.30(5):53·57
    49 何红,邱思鑫,蔡学清,关雄胡,方平.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定.微生物学报,2004,44(1):13-18
    50 丁立孝,李文泽,宁子红,徐丽娟,梅汝鸿.双抗性标记花生内生菌的诱变与筛选.莱阳农学院学报,1997,14(4):235-239
    51 蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态.福建农林大学学报(自然科学版),2003,32(1):41-45
    52 杨海莲,孙晓璐,宁未.水稻内生阴沟肠杆菌的定殖研究.自然科学进展,1999,9(12):1241-1244
    53 张学君,赵学军,王金生.枯草芽孢杆菌B3菌株对小麦根系和茎基部的定殖作用研究.生物防治通报,1994,10(4):717-174
    54 刘云霞,张青文,周明样.电镜免疫胶体金定位水稻内生细菌的研究.农业生物技术学报,1996,4(4):354-358
    55 冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学.中国生物化学与分子生物学报,2002,18(1):85-91
    56 Gage D J, Bobo T, Long S R. Use of green fluorescent protein to visualize early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). Journal of Bacteriology,1996,178:7159-7166
    57 Tombolini R, Unge A, Davey M E, de Bruijn F J and Jansson J K. Flow cytometric and microscopic analysis of GFP tagged Pseudomonas fluorescens bacteria. FEMS Microbiology Ecology,1997,22:17-28
    58 Villacieros M, Power B, Sanchez-Contreras M, Lloret J, Oruezabal R I, Martin M, Fernandez-Pinas F, Bonilla I, Whelan C, Dowling DN, Rivilla R. Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant and Soil,2003,251:47-54
    59 Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore F P, Moore E R B, Campbell C D, Ryan D, Dowling D N. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiology Ecology,2004,48:109-118
    60 Germaine K, Liu X, Cabellos G, Hogan J, Ryan D and Dowling D N. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichloro-phenoxyacetic acid. FEMS Microbiology Ecology,2006,57:302-310
    61 James E K, Gyaneshwar P, Mathan N, Barraquio W L, Reddy P M, Iannetta P P, Olivares F L & Ladha J K. Infection and colonization of rice seedlings by the plant growth promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions,2002,15:894-906
    62 Sessitseh A, Reiter B, Pfeifer U, Wilhelm E. Cultivation-independent population analysis of baeterial endophytes in three potato varieties based on eubaeterial and Aetinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiology Ecology,2002, 39:23-32
    63 Kobayashi D Y and Columbo J D. Bacterial endophytes and their effects on plants and uses in agriculture. In:Bacon C W, White Jr (Eds), Microbial endophytes. Marcel Dekker, New York,2000,199-233
    64 Lilley A K, Fry J C, Bailey M J, Day M J. Comparison of aerobic heterotropic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiology Ecology,1996,21:231-242
    65 Madhaiyan M, Saravanan V S, Jovi D B, Lee H, Thenmozhi R, Hari K, Sa T. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiology Research,2004,159:233-243
    66 McInroy J A and Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil,1995,173:337-342
    67 Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Research in Microbiology,2003,154:105-114
    68 马冠华,肖崇刚.烟草内生细菌种群动态研究.微生物学杂志,2004,24(4):7-10
    69 易有金.烟草内生细菌及其对烟草青枯病的防治作用研究.湖南农业大学博士学位论文,2007
    70 刘云霞,张青文,周明牂.水稻体内细菌的动态研究.应用生态学报,1999,10(6):735-738
    71 宋子红,丁立孝,马伯军,李文泽,梅汝鸿.花生内生菌的种群及动态分析.植物保护学报,1996,2(4):309-314
    72 王琦,鲁素云,梅汝鸿.棉花维管组织内生细菌分析之一:不同抗性品种含菌动态与土质和生育期的关系.中国微生态学杂志,1997,9(1):48-52
    73 Elvira Recuenco M and Van Vuuurde J W L. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Canadian Journal of Microbiology.2000,46: 1036-1041
    74 Reiter B and Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Canadian Journal of Microbiology,2006,52:140-149
    75 Li C H, Zhao M W, Tang C M, Li S P. Population Dynamics and Identification of Endophytic Bacteria Antagonistic Toward Plant-Pathogenic Fungi in Cotton Root. Microbiology Ecology,2010,59:344-356
    76 林玲,金中时,马长文,孙飞,王凤良,龚伟荣,顾本康,周益军.棉花黄萎病生防内生细菌Jaas cd的鉴定及田间防效.江苏农业学报,2010,26(1):65-69
    77 赵赟鑫,刘开辉,邓百万,陈文强,耿直,李娟花.2株中国红豆杉内生细菌代谢产抑菌活性物质的研究.食品与生物技术学报,2010,29(4):617-623
    78 Range shwaran R, Wasnikar A R, Prasad R D. Isolation of endophytic bacteria for biological control of Pathogen. Journal of Biological Control,2002,16(2):125-133
    79 王万能,肖崇刚.烟草内生细菌118防治黑胫病的机理研究.西南农业大学学报,2003,25(1):28-31
    80 崔北米,潘巧娜,张陪陪,赵亮,韦革宏.大蒜内生细菌的分离及拮抗菌筛选与鉴定.西北植物学报,2008,28(11):2343-2348
    81 Wang H L, Wen K, Zhao X Y. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plantpathogenic fungi and its plant growth-promoting effect. Crop Protection,2009,28:634-639
    82 Natalia Malfanova, Faina Kamilova, Shamil Validov. Andrey Shcherbakov, Vladimir Chebotar, Igor Tikhonovich, Ben Lugtenberg. Charcaterization of Bacillus subtillis HC8, a novel plant-beneficial endophytic strain from giant hogweed. http://onlinelibrary. wiley.com/doi/10.1111/j.1751-7915.2011.00253. x/abstract
    83 邱服斌,李雁津,张晓霞,陈美娟,张海杰.人参内生细菌ge21菌株的鉴定及抑菌活性测定.微生物学通报,2010,37(1):43-47
    84 Van Buren A M, Andren C, Ishimaru C A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology,1993,83:1406
    85 王瑞霞,贺运春,赵廷昌,田宏先,李荫藩,刘飞.马铃薯环腐病生防菌株P1的鉴定、防病效果及促生作用研究.植物病理学报,2010,40(1):66-73
    86 崔林,孙振,孙福在,袁军,田宏先,王利琴,徐惠云.马铃薯内生细菌的分离及环腐病拮杭菌的筛选鉴定.植物病理学报,2003,33(4):353-358
    87 Sayonara M P A, Rosa L R M, Sami J M. In advance in biological control of plant diseases. Beijing:China agricultural University Pressing,1996,347-353
    88 赵凯,肖崇刚,孔德英.内生细菌对番茄青枯病的控病作用及其抗菌谱.西南农业大学学报,2006,8(2):314-318
    89 黎起秦,罗宽,林纬,彭好文,罗雪梅.番茄青枯病内生拮抗细菌的筛选.植物病理学报,2003,33(4):364-367
    90 Nancy P. Chaves, Luis E. Pocasangre, Fritz Elango, Franklin E. Rosales, Richard Sikora. Combining endophytic fungi and bacteria for the biocontrol of Radopholus similis (Cobb) Thorne and for effects on plant growth. Scientia Horticulturae,2009,122:472-478
    91 Vetrivelkalail P, Sivakumar M, Jonathan E I. Biocontrol potential of endophytic bacteria on Meloidogyne incognita and its effect on plant growth in bhendi. Journal of Biopesticides,2010,3(2):452-457
    92 李进荣,段玉玺,陈立杰,薛春生.大豆根瘤内生细菌对大豆胞囊线虫影响研究.大豆科学,2005,24(2):154-156
    93 孔庆科,丁爱云.内生细菌作为生防因子的研究进展.山东农业大学学报(自然科学版),2001,32(2):256-260
    94 Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defago G. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology,1992,82:190-195
    95 Voisard C, Keel C, Haas D, Defago G. Cyanide production by Pseudomonas fluorescens helps suppress Black Root Rot of tobacco under gnotobiotic conditions, the European Molecular Biology Organization,1989,8:351-358
    96 Lim H, Kim Y, Kim S,1991. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanisms against Fusarium solani, an agent of plant root rot. Applied and Environmental Microbiology,57,510-516
    97 郑爱萍,李平,王世全,王玲霞,马炳田.水稻纹枯病菌拮抗菌B34分离鉴定及杀菌蛋白的获得.中国水稻科学,2002,16(4):356-360
    98 Vandendergh P A and Gonzalez C F,1984. Methods for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida. US Patent No. US4 479936
    99 Buysens S, Poppe J, Hofte M. Role of siderophores in plant growth simulation and antagonism by Pseudomonas aerruginosa 7NSK2, in:Ryder, M.H., Stephens, P.M, Bowen, D.G. (Eds.), Improving Plant Productivity with Rhizosphere Baceria. Commonwealth Science and Industrial Research Organization, Adelaide, Australia,1994: 139-141
    100 何红,蔡学清.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报,2003,33(4):373-378
    101 Pleban S, Chemin L, Chet I. Chitinolytic activity of an endophytic strain Bacillus cereus. Applied Microbiology,1997,25(4):284-288
    102 Huang J. Ulstrastrcture of bacterial penetration in plants. Annual review phytopathology, 1986,24:141-157
    103 Duffy B K. Competition, In O. C. Maloy and T. D. Murray (ed.). Encyclopedia of plant pathology. John Wiley & Sons, Inc., New York, N.Y.2001:243-244
    104 Bacon C W, Yates I E, Hinton D M, Meredith F. Biological control or Fusarium moniforme in maize. Environmental Health Perspectives,2001.109(Supp1.2):325-332
    105 Castignetti D and Smarrelli J J. First year field performance of spruce seedlings inoculated with plant growth promoting rhizobacteria. Canadian Journal of Microbiology, 1986,39:1084-1088
    106 O'Sullivan D J and O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiology Reviews,1992,56:662-676
    107 Viswanathan R and Samiyappan R. Induction of systemic resistance by plant growth-promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum went in sugarcane. In Proceedings of the Sugar Technology Association of India, vol.61. Sugar Technology Association, New Delhi, India,1999:24-39.
    108 Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran J C. Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera cocultured with plant growth-promoting rhizobacteria. FEMS Microbiology Letters,2000,186:91-95
    109 Ait Barka E, Gognies S, Nowak J, Audran J C, Belarbi A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biological Control,2002,24:135-142
    110 Sharma V K and Nowak J. Enhancement of verticillium wilt resistance in tomato transplants by in vitro coculture of seedlings with a plant growth-promoting rhizobacterium (Pseudomonas sp. strain PsJN). Canadian Journal of Microbiology,1998, 44:528-536
    111 Brooks D S, Gonzalez C F, Apple D N, Filer T H. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biological Control,1994,4:373-381
    112 M'Piga P, R R Belanger, T C Paulitz, N Benhamou. Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiological and Molecular Plant Pathology,1997,50:301-320
    113 Benhamou N, Belanger R R, Paulitz T C. Induction of differential host responses by Pseudomonas fluorescens in Ri T-DNA-transformed transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology,1996,86: 114-178
    114 Benhamou N, Kloepper J W, Quadt-Hallmann A, Tuzun S. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology,1996,112:919-929
    115 Conn K L, Nowak J, Lazarovits G. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Canadian Journal of Microbiology,1997,43:801-808
    116 杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报,2000,30(2):106-110
    117 Wilhelm E, Arthofer W, Schaflei R. Bacillus subtillis, and endophyte of chestnut(C as tanea sativa), as antagonist against chestnut blight (Cryhponectria parasitica), In A. C. Cassells(ed.) Pathogen and microbial contamination management in micropropagation. Kluwer Academic Publishers, Dortrecht, The Netherlands,1997: 331-337
    118 Adhikari T B, Joseph C M, Guoping Yang, Phillips D A; Nelson L M. Evaluation of bacteria isolated from rice for plant Promotion and biological control of seedling disease of rice. Canadian Journal of Microbiology,2001,47:916-924
    119 Isopi R, Fabbri P, Del-Gallo M, Puppl G. Dual inoculation of Sorghum bicolor (L.) Moench ssp. Bicolor with vesicular arbuscular inbusulat in mycorrhizas and Acetobacter diazotrophicus. Symbiosis,1995,18:43-55
    120 Urquiaga S, Cruz K H S, Boddey R M. Contribution of nitrogen fixation to sugarcane: Nitrogen-15 and nitrogen-balance estimates. Soil Science Societ of America Journal, 1992,56:105-114.
    121 Vande Broek A and Vanderleyden J. Genetics of the Azospirillum-plant root association. Critcal review plant science,1995,14:445-466
    122 Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E. Root colonization and systemic spreading of Azoarcus sp. Strain BH72 in grasses. Journal of bacteriology,1994, 176(7):1913-1923
    123 Lazarovits G and Nowak J. Rizobateria for improvement of Plant growth and stablishment. Hortscience,1997,32:188-192
    124 蔡学清,何红,胡方平.内生菌BS-2对辣椒苗的促生作用及对内源激素的影响.亚热带农业研究,2005,1(4):49-52
    125 何红,蔡学清,关雄,胡方平.辣椒内生枯草芽孢杆菌(Bacillus subtilis)BS-2和BS-1防治辣椒炭疽病研究.植物病理学报,2003,33(2):170-173
    126 何红,蔡学清,洪永聪.内生菌BS-2对蔬菜立枯病的抑制效果.福建农林大学学报(自然科学版),2004,33(1):17-20
    127 蔡学清,胡方平,陈炜,林娜,林建强.内生枯草芽孢杆菌BS-2防治荔枝霜疫病及其生化机理.热带作物学报.2010,31(2):241-246
    128 邱思鑫.防病、促生植物内生芽孢杆菌的研究.福建农林大学博士学位论文.2004
    129 Sikora R A. Interrelation-ship between plant health promoting bacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouww. Rijks Univ. Gent,1988,53 (2),867-878
    130 Jonathan E I and Umamaheswari R. Biomanagement of nematodes infesting banana by bacterial endophytes (Bacillus subtilis). Indian Journal Nematology,2006,36:30-233
    131 Rashmi Tiwari, Alok Kalra, M P Darokar. Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Current Microbiology,2010,60:167-171
    132 窦瑞木,雷清泉,曹克强.中药白鲜皮内生细菌TS-5生化特性及对番茄灰霉病菌的抑制作用.中国农学通报,2010,26(13):324-327
    133 李娜,戴美学.草莓内生细菌的分离及草莓灰霉病菌拮抗菌的筛选鉴定.植物保护, 2010,36(4):70-74
    134 高小宁,陈金艳,黄丽丽,乔宏萍,韩青梅,康振生.油菜菌核病内生拮抗细菌的筛选及防病作用研究.农药学学报,2010,12(2):161-167
    135 沈其益.棉花病害基础研究与防治.北京:科学出版社,1995:69-187
    136赵秀香,陈华民,吴元华.硅酸盐细菌B925对烟草黑胫病菌的抑制作用及其16srDNA序列分析.烟草科技,2007(3):56-60
    137 Broadbent P, Baker K F, Waterworth Y. Bacteria and actinomyctes antagonistic to fungal root pathogens in Australian soil. Australian Journal of Biological Sciences,1971,24: 925-1944
    138 顾金刚,方敦煌,李天飞,刘杏忠.防治烟草黑胫病的根际细菌分离与筛选.中国烟草学报,2001(3):19-22,45
    139 王远山,王平,胡正嘉.绿针假单胞菌PL9菌株对烟草黑胫病菌的拮抗作用研究.华中农业大学学报(自然科学版),2002,21(3):248-251
    140 王革,李梅云,段玉琪,李松,马永凯,王颖琦,朱维明,李振国,李天飞.木霉菌对烟草黑胫病菌的拮抗机制及其生物防冶研究.云南农业大学学报:自然科学版,2001,23(3):222-226
    141 English J T and Mitchell D J. Relationship between the development of root systems of tobacco and infection by Phytophthora parasitica var. nicotianae. Phytopathology,1988, 78:1478-1483
    142 English J T and Mitchell D J. Influence of an introduced composite of microorganism on infection of tobacco by Phytophthora parasitica var. nicotianae. Phytopathology,1988, 78:1484-1490
    143 Cartwright D K and Spurr H W. Biological control of phytophthora parasitica vat. nicotianae on tobacco seedlings with no-pathogenic binucleate rhizoctonia fung. Soil Biology and Biochemistry,1998,30(14):1879-1884
    144 方敦煌,李天飞,沐应祥,周黎,杨硕媛,陆庆华.拮抗细菌GP13防治烟草黑胫病的田间应用.云南农业大学学报,2003,18(1):48-51
    145 周向平,肖启明,罗宽,巢进,田慧.烟草黑胫病菌拮抗内生细菌的筛选和鉴定.湖南农业大学学报(自然科学版),2004,30(5):450-452
    146 马冠华,周常勇,肖崇刚,陈国康,易龙.烟草内生细菌Itb57的鉴定及其对烟草黑胫病的防治效果.植物保护学报,2010,37(2):148-152
    147 Rosenblueth M, Martinez L, Silva J, Martinez-Romero E.2004. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Systematic and. Applied Microbiology,27:27-35
    148 陈瑞泰,朱贤朝,王智发,郭振业,董汉松,王兰珍,刘延荣,石金开.全国16个主产烟省(区)烟草侵染性病害调研报告.中国烟草科学,1997,1(4):1-7
    149 袁宗胜,张广民,刘延荣,陈松涛.烟草黑胫病菌对甲霜灵的敏感性测定.中国烟草科学,2001,(4):9,12
    150 Shew H D. Response of Phytophthora parasitica var. nicotianae to metalaxy exposure. Plant Disease,1985,69:559-562
    151 易龙,肖崇刚,马冠华,王万能,龙良鲲.防治烟草赤星病有益内生细菌的筛选及抑菌作用.微生物学报,2004,44(1):19-23
    152 易龙,肖崇刚.烟草赤星病拮抗细菌的筛选及其控病作用.植物保护学报,2004,31(1):63-68
    153 杨大旗,刘灼均,胡义文,李华荣,肖建国,陈宇,吴帮承,颜思齐.小麦纹枯病生防益菌菌株对小麦的促生性.西南农业学报1999,12(3):64-69
    154 谢细香.重铬酸钾稀释热比色法测定土壤有机质的研究.安徽农业科学,2005,33(6):998-999
    155 鲍士旦.土壤农化分析.北京:中国农业出版社,2000:25-200,301-321
    156 关松荫.土壤酶及其研究方法.北京:农业出版社,1986
    157 李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京农业出版社,1996,36:305-308
    158 中国科学院南京土壤研究所微生物室.土壤微生物研究法,科学出版社,1985
    159 柳凤,欧雄常,何红,胡汉桥,张小媛.红树内生细菌RS261菌株防治辣椒疫病的初步研究.植物病理学报,2009,39(3):333-336
    160 沈萍,闫淑珍,陈双林,崔晓灿,李莉.具ACC脱氨酶活性的植物内生细菌对辣椒的促生作用和对疫霉病的防治作用.植物保护学报,2008,35(1):28-32
    161 史应武,娄恺,李春,王红刚,江雨丽.甜菜褐斑病内生拮抗菌的筛选、鉴定及其防效测定.植物病理学报,2009,39(2):221-224
    162 Liu B, Qiao H P, Huang L L, Buchenauer H, Han Q M, Kang Z S, Gong Y F. Biological control of take-all in wheat by endophytic Bacillus subtilis ElR-j and potential mode of action. Biological control,2009,49:277-285
    163 黄昌勇.土壤学.北京:中国农业出版,2000:197-208
    164 邱莉萍,张兴昌,程积民.坡向坡位和撂荒地对云雾山草地土壤酶活性的影响.草业学报,2007,16(1):87-93
    165 张翼,张长华,王振民,黄建国.连作对烤烟生长和烟地土壤酶活性的影响.中国农学通报,2007,23(12):211-215
    166 林碧润,姚汝华.新抗生素万隆霉素对黄瓜疫病菌抑菌形态学研究高向阳.华南农业大学学报,2004,25(4):27-29
    167 史建荣,王裕中,陈怀谷,沈素文.小麦纹枯病拮抗细菌的筛选.中国生物防治,1996,12(4):161-164
    168 John D R and David M O. Chitinase-overproducing mutant of Serratia marcescens. Applied and Environmental Microbiology,1981,41 (3):664-669
    169徐刘平.辣椒疫霉生防细菌筛选、生防潜能评估及生物防治研究.南京农业大学,2007
    170 Ghose T K. Measurement of cellulase activities. Pure and Applied Chemistry,1987,59 (2):257-268
    171 詹萍,吴明.产纤维素酶菌种的分离筛选和酶学性质的研究.安徽农业科学,2009,37(13):5846-5847,5914
    172 Bernhard Schwyn and Neilands J B. Universal Chemical Assay for the Detection and Determination of Siderophores. Analytical Biochemistry,1987,160:47-56
    173 陈丽华,张爱香,朱韬,赖志兵,王宗华,陈怀谷.禾谷丝核菌拮抗细菌的鉴定及其拮抗产物分析.植物病理学报,2008,38(1):88~95
    174 胡萌.植物内生细菌研究进展.山东农业大学学报(自然科学版),2008,39(1):148-151
    175杨敬辉,朱桂梅,潘以楼.水稻内生颉颃细菌的筛选及生防机理研究,江西农业学报,2009,21(5):70-73
    176 殷晓敏,陈弟,郑服丛.内生枯草芽孢杆菌B215对香蕉弯孢霉叶斑病抑制作用初探.广东农业科学,2008,2:61-63
    177 王瑞新,韩富根,杨素勤.烟草品质分析.郑州:河南科学技术出版社,1990:43-173
    178 中国农业科学院烟草研究所主编.中国烟草栽培学.上海:上海科学技术出版社,1987:98-277
    179 肖协忠.烟草化学.北京:中国农业科学出版社,1997:47-66
    180 English C F, Bell E J, Berger A J. Isolation of thermophiles from broadleaf tobacco and effect of pure culture inoculation on cigar aroma and mildness. Applied Microbiology, 1967,15:117-119
    181 Koiwai A, Matsumoto T, Nishida K. Studies on the fermentation of tobacco. Tobacco Science,1970,14:103-105
    182谢和,韩忠礼,赵维娜.微生物发酵对烤烟内在品质的影响.山地农业生物学报,1999.4:227-230
    183 李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    184 白宝璋,金锦子,白崧,黄丽萍.玉米根系活力TTC测定法的改良.玉米科学,1994,2(4):44-47
    185 李合生.植物生理生化实验原理与技术.高等教育出版社,2000
    186 陈志谊,王玉环,殷尚智.水稻纹枯病抗性机制的研究.中国农业科学,1992,25(4):41-46
    187 李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,1991,21(4):277-282
    188 中国农业科学院烟草研究所.中国烟草栽培学.上海科学技术出版社.2005:11
    189 陈武,何命军,易建华,周燕,成志军.三株拮抗菌对烟草幼苗根系活力的影响.湖南农业科学,2005,4:26-27
    190 郭培国,陈建军,李荣华.pH值对烤烟根系活力及烤后烟叶化学成分的影响.中国农业科学,2000,33(1):39-45
    191 易龙,肖崇刚,马冠华,杨水英.拮抗内生细菌与附生细菌及其组合对烟草赤星病的诱导抗性和控病作用.中国生物防治,2007,23(2):165-169
    192 Pellegrimi L, Rohfritsch O, Fritig B, Legrand M. Phenylalanine ammonialyase in tobacco: Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Pthsiology,1994,106(3) 877-886
    193 Manandhar H K, Mathur S B, Smedegaard-petersen V, Thordal-christensen H. Accumulation of transcripts for pathogenesis related proteins and peroxidase in rice plants triggered by Pyricularia oryzae, Bipolaris sorokiniana and u.v. light. Physiological and Molecular Plant Pathology,1999,55 (5):289-295
    194王万能,肖崇刚,杨水英,易龙.烟草内生细菌118菌株对烟草抗性相关酶的诱导作用研究.广西农业科学,2004,35(3):216-217
    195 何丽烂,区炳庆,温海祥.耐氨固氮菌浸种对几种蔬菜SOD.POD等活性的影响初探.佛山科学技术学院学报(自然科学版),2004,22(2):71-74
    196 祝明亮,张克勤.根结线虫生防菌ZK7和IPC在烟草根部定殖的显微观察.西北农林科技大学学报(自然科学版),2008,36(7):201-206
    197 陈晓斌,顾振芳,周杭英.黄瓜PGPR菌株根部定殖的扫描电镜研究.上海交通大学学报(农业科学版),2004,22(2):153-156
    198 Raupach G S. Kloepper J W. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple Cucumber pathogens. Phytopathology,1998,88(11): 1158-1164
    199 李金云,陈凡,王建辉,王慧敏.根癌病生防菌葡萄土壤杆菌E26菌株在葡萄植株的定殖研究.植物病理学报,2005,35(1):78-83
    200 冯家望,曾宪铭,范怀忠,李英杰.应用免疫金探针定位和定量测定稻种中的水稻细 菌性条斑病菌.植物病理学报,1994,24(3):233-238
    201 王清,吴振廷,王学林.免疫胶体金标记技术及其在植物保护上的应用前景.安徽农业科学,2005,33(3):485-487
    202 杜立新,冯书亮,曹克强,王容燕,冉红凡.枯草芽孢杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报,2004,27(6):78-82
    203 Scher F M, Kloepper J W, Singleton C A. Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Canadian Journal of Microbiology,1985,31: 570-574
    204 易有金,罗坤,罗宽.内生枯草芽孢杆菌B-001菌株内生定殖研究及生物学特性.核农学报,2007,21(4):349-352
    205方中达.植病研究方法(3版).北京:中国农业出版社,1998
    206 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    207戈登R E,海恩斯W C,帕格CHN著.芽孢杆菌属.蔡妙英,刘聿太,战立克,译.北京:农业出版社,1983
    208布坎南RE,吉本斯N E等著.伯杰细菌鉴定手册(8版).中国科学院微生物所译.北京:科学出版社,1984
    209 Marmur J. A procedure for the isolation of deoxyribo-nucleic acid from microorganisms. Journal of Molecular Biology,1961,3:208-218
    210 Weisburg W G, Barns S M, Pelletier D A, Lane D J.16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology,1991,173(2):697-703
    211 Kumar S, Nei M, Dudley J, Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics,2008, 9(4):299-306
    212程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报,2003,25(5):732-737
    213 李晶,杨谦.生防枯草芽孢杆菌的研究进展.安徽农业科学,2008,36(1):106-111
    214 杨海莲,孙晓璐,宋未.植物内生细菌的研究.微生物学通报,1998,25(4):224-227
    215 宫宇飞,乔红萍,魏国荣,高小宁,黄丽丽,康振生.内生枯草芽孢杆菌E1R-J发酵条件的优化.西北农业学报,2008,17(1):61-64
    216 何红,沈兆昌,邱思鑫,蔡学清,关雄,胡方平.内生拮抗枯草芽孢杆菌BS-2菌株的发酵条件.中国生物防治.2004,20(1):38-41
    217 沈萍.微生物实验.北京:高等教育出版社,1999.
    218 朱茂山,关天舒.发酵条件对生防细菌B301生长及抑菌物质产生的影响.吉林农业 大学学报,2008,30(3):263-267
    219 欧昆鹏,谢和.不同发酵条件对枯草芽孢杆菌产多糖的影响.贵州大学学报(自然科学版),2008,25(3):322-327
    220 赵达,刘伟成,裘季燕,刘霆,傅俊范.枯草芽孢杆菌B03液体发酵条件的优化.华北农学报,2008,23(2):205-209
    221 丁翠珍,裘季燕,刘伟成,吴云锋,赵达.枯草芽孢杆菌B02产生拮抗物质培养基及发酵条件优化.中国生物防治,2008,24(2):159-163