大鼠机器人遥控遥测系统与行为模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的机器人是完成人类给予它的任务的机器装置,它可以根据预先设置的指令来自动完成规定动作,也可以在某些特定的环境下由人类实时控制来代替人类工作。到目前为止,传统的机器人始终无法解决运动灵活性、能源供给、环境适应性等方面的欠缺。随着生命科学研究范畴的不断延伸,生物技术、无线传感器技术、自动控制技术等多学科汇集,在这个汇集点上研制出的“动物机器人(Animal-Robot)”可以弥补上述不足。
     本论文以SD级大鼠为实验对象,针对已有的动物机器人运动控制系统或者神经活动遥测记录系统功能单一的缺点,研究新型大鼠机器人无线遥控遥测系统,利用无线数据广播系统(Radio Data System, RDS)技术双向传输控制指令和大鼠脑电信号,设计基于微电流刺激的新型大鼠机器人运动控制系统,同时利用自制的遥控遥测系统采集了大鼠脑电信号并对其分析。主要工作如下:
     (1)从神经生物学的角度入手,寻找大鼠脑部与运动相关的新核团,并验证新发现的核团具有控制大鼠运动方向的功能。
     (2)设计新型大鼠机器人遥控系统电路和软件,改变了以往电压刺激的方法,利用C8051F330单片机产生微电流脉冲刺激大鼠脑部核团以控制大鼠运动方向,使用无线数据广播系统技术,实现对大鼠的无线遥控导航,同时在系统中增加脑电遥测功能,遥控动物运动的同时测量大鼠脑电信号并分析脑电信号,验证新发现的核团与脑部初级运动核团之间的神经通路。
     (3)研究如何实现大鼠机器人的自动控制,将广义回归神经网络(GeneralRegression Neural Network, GRNN)和线性神经网络算法分别应用于自动导航控制中,首先使用人工导航方式进行网络算法训练,然后数据输入广义回归神经网络中,进行实际测试,结果表明,在实时导航实验中,GRNN网络能够输出指令准确度更高的指令来控制大鼠机器人自动沿着某一路径运动。
     (4)利用针灸针自制刺激电极,大大降低系统成本,实验结束后对大鼠脑部被刺激核团做石蜡切片和HE染色研究以确定电极植入大鼠脑部位置。
     (5)以电生理实验为基础,分别测量静息条件下和癫痫状态下的大鼠机器人脑部左海马区脑电信号,利用现有的几种数学模型对这种脑电信号进行分析,从原始的脑电信号中,分离出δ (delta)、θ (theta)、α (alpha)、β (beta)节律,希望得到相关波形的有用信息。
     (6)通过注射性激素使实验大鼠进入繁殖状态后,采集听觉脑干反应信号,对大鼠听觉脑干反应进行可塑性研究。实验过程中采用纯音(Tone pips)和打击音(Clicks)作为刺激方式,测量了麻醉状态下雌、雄成年大鼠ABRs的阈值、潜伏期和幅值三个重要参数,同时也给出了参数的计算方法。实验结果表明大鼠体内激素水平改变了其听觉在某些频率上的敏感性,证明了大鼠听觉脑干反应具有可塑性特点。在较低的频率范围内,大鼠听力比较敏感,但是到了高频阶段,大鼠听觉变得不敏感,即在高频声音刺激下,大鼠听觉脑干反应不受体内激素水平影响。
The traditional robots are machines to complete the mission given by humans,which can automatically complete the required actions according to thepre-programmed procedures, and also can be manipulated by humans in real time toreplace human work in some specific circumstances. But so far, the traditionalmechanical robots have never been able to slove the lack of movemet flexibility, powersupply and environmental adaptability. With the continuous extension of research scopein life science, humans bring together with bio-technology, wireless sensor technology,automatic control technology and other multi-disciplines and develop “animal-robot” onthe focal point that can be use to make up for the shortcomings above.
     Based on animal experiments of SD rats, this thesis aims at the disadvantage ofsingle function in the existing systems for animal-robot motion control or neural activitytelemetry recording and studies a new wireless remote and telemetry system forrat-robot, which is developed by using wireless Radio Data System (RDS) technologyto bidirectionally transmit control commands and the EEG signals. After doing theexperiments we analyse the EEG signals in rats. The following studies are presentedand discussed:
     (1) Starting from the point of neurobiology, we look for the new nuclei in rat brainwhich have some relationships with motor function, and verify that the newlydiscovered nuclei have the function to control the movement direction of the rat.
     (2) New circuits and software in the remote control system are designed whichchange the previous methods of voltage stimulation for rat-robot. The C8051F330chipis utilized to generate micro-current pulses which stimulate the nuclei in rat brain tocontrol the movement direciton of the rat. The RDS technology is utilized for wirelessremote navigation control of the rat, and at the same time EEG telemetry function isadded to the system.
     (3) A General Regression Neural Network (GRNN) and Linear Neural Networkalgorithms are applied to the automatic navigation control system, respectively. First thecontrolling procedure of human operations is utilized for traing the the networks, and then data is fed into the neural networks for actual tests. The results of tests show that inreal time in navigation experiments the GRNN can reliably output commands with moreaccurate instructions to control the rat-robot to follow a given path automatically.
     (4) The homemade acupuncture needles are utilized to make the stimulationelectrodes for reducing system cost very much. After the experimts the paraffin sectionsand HE staining are applied to determine the location of the electrodes which wereimplanted in the rat brain.
     (5) On the base of electrophysiological experiments, EEG signals in left hippocam-pus are measured under resting state and epileptic state, respectively. Hoping to getsome useful information in the related waveforms, several existing mathematical modelare applied to analyse and isolate the δ (delta), θ (theta), α (alpha), beta (beta) rhythmform original EEG.
     (6) In experiments the rats are in the reproductive state by injecting sex hormone.The auditory brainstem responses (ABRs) are collected to study the plasticity of ABRsin rats. During the experiments tone pips and clicks are utilized as the stimulation,respectlively. Three important ABRs parameters including thresholds, latencies andamplitude in the male and female rats are measured respectively under anesthesia state,and at the same time the calculation methods are given. The results of experiments showthat the hormone levels in rats change the hearing sensitivity at some certain frequencies,and prove that the auditory brainstem responses in rats have the characteristics ofplasticity. In lower frequency range auditory in rats is more sensitive, but it will becomeinsensitive in higher frequency range. Under high-frequency sound stimulation ABRs inrats are not affected by the hormone levels.
引文
[1]李海鹏,戴振东,谭华,等.壁虎动物机器人遥控系统[J].计算机技术与发展,2008,18(8):16-19
    [2] F. Delcomyn. Motor activity during searching and walking movements of cockroach leg [J].Journal of Experimental Biology,1987,133(11):111-120
    [3]严霞,倪化生,黄炫.ZigBee星形网络在动物机器人中的应用[J].电子技术,2010,8(3):22-26
    [4]董满收,蔡雷,王浩,等.电刺激家鸽中脑诱导运动的初步研究[J].生物学杂志,2012,4(1):6-10
    [5]严霞.基于ZigBee无线传感网络的动物机器人系统[D].中国科学技术大学,2010,1-2
    [6] A. Nieder. Miniature stereo radio transmitter for simultaneous recording of multiplesingle-neuron signals from behaving owls [J]. Journal of Neuroscience Methods,2000,101(2):157–164
    [7] S. Takeuchi, I. Shimoyama. A radio-telemetry system with a shape memory alloy microelectrodefor neural recording of freely moving insects [J]. IEEE Transactions on BiomedicalEngineering,2004,51(1):133–137
    [8] D. S. Schregardus, A. W. Pieneman, A. T. Maat, et al. A lightweight telemetry system forrecording neuronal activity in freely behaving small animals [J]. Journal of NeuroscienceMethods,2006,155(1):62–67
    [9]郭策,戴振东,孙久荣.生物机器人的研究现状及其未来发展[J].机器人,2005,27(2):187-192
    [10]张昊.大壁虎运动行为研究及仿壁虎机器人研制[D].南京航空航天大学,2010,3-8
    [11]代良全.类壁虎机器人步态规划研究及运动控制系统研制[D].南京航空航天大学,2008,12-15
    [12]谢合瑞,郭策,戴振东.恒流多通道动物机器人遥控刺激系统的研制[J].现代电子技术,2009,32(4):5-10
    [13] A. Mody. The roach, now within reach [N]. Indian Express Newspapers, March1,1999
    [14] R. Holzer, I. Shimoyama. Locomotion control of a bio2robotic system via electric stimulation[A]. Proceedings of the IEEE International Conference [C]. France:1997.1514-1519
    [15] W. Eazel. Robo-roach brings judgement day closer [N]. VNUNET, September15,2001
    [16] K. Arabi, M. Sawan. Implantable microstimulator dedicated to bladder control [J]. Journal ofMedical&Biological Engineering&Computing,1996,34(1):9-12
    [17] Y. Kuwana, I. Shimoyama. Steering control of a mobile robot using insect antennae [A].Proceedings of the IEEE International Conference on Intelligent Systems and Robots [C].America,1995,530-535
    [18] F. Delcomyn. Motor activity during searching and walking movements of cockroach leg [J].Journal of Experimental Biology,1987,133(11):111–120
    [19] S. K. Talwar, S. H. Xu, E. S. Hawley, et al. Rat navigation guided by remote control [J]. Nature,2002,417(6884):37-38
    [20]李建华.动物行为控制无线通信系统研究[D].郑州大学,2010,5-10
    [21]范佳.大壁虎中脑脊柱侧弯运动亚区的研究[D].南京航空航天大学,2011,5-15
    [22] J. M. Carmena, M. A. Lebedev, R. E. Crist, et a1. Learning to control a brain-machine interfaceforereaching and grasping by primates [J]. PLoS Biology,2003,1(2):193-208
    [23] T. Gregor, M. Carlo. New insights into rhythmic brain activity from TMS–EEG studies [J].Trends in Cognitive Sciences,2009,13(4):182-189
    [24] A. R.Tonia, M. M. Christoph. T.Gregor. A bias for posterior alpha-band power suppressionversus enhancement during shifting versus maintenance of spatial attention [J]. Neuroimage,2009,44,190–199
    [25] S. Brown. Stealth sharks to patrol the high seas [J]. New scientist,2006,189(2541):30-31
    [26]鲁非.鲨鱼-海军好帮手[J].水利天地,2012,9:20-24
    [27]周陈霞徐万和.纳米机器人的发展和趋势及其生物医学应用[J].机械,2011,4:8-12
    [28]王保华.生物医学中的遥测技术[M].北京:科学出版社,1989,33-36
    [29]王保华.生物医学测量与仪器[M].上海:复旦大学出版社,2003,22-24
    [30]刘克求.生物医学电子学[M].北京:北京大学出版社,1988,22-33
    [31]廉世俊,胡大可.远程医疗系统及其应用[J].国外医学:生物医学工程分册,1999,22(4):198-204
    [32]李树钧.利用Internet和RAS实现远程医疗[J].中国医疗器械杂志,1999,23(1):19-33
    [33]廉世俊.远程医疗中的通讯问题[J].国外医学:生物医学工程分册,1999,22(5):263-269
    [34]童明杰,胡大可.认知医学数字图像通讯标准[J].国外医学:生物医学工程分册,1999,22(5):303-307
    [35]林天毂. www和DICM网关的实现[J].生物医学工程学杂志,1999,16(3):333-338
    [36]李斌. CT数字影像介质交换和联机通讯的实现[J].中国医疗器械杂志,1998,22(5):282-285
    [37] E. J. Tehovnik. Electrical stimulation of neural tissue to evoke behavioral responses [J]. Journalof Neuroscience Methods,1996,65(1):1-17
    [38] A. A. Fenton, U. Robert. Muller. Using digital video techniques to identify correlations betweenbehavior and the activity of single neurons [J]. Journal of Neuroscience Methods,1996,70(2):211-227
    [39] I. Obeid, A. L. Miguel Nicolelis, P. D.Wolf. A multichannel telemetry system for single unitneural recordings [J]. Journal of Neuroscience Methods,2004,133(1):33-38
    [40]杨玉星.生物医学传感器与检测技术[M].北京:化学工业出版社,2005,77-82
    [41]高上凯.浅谈脑-机接口的发展现状与挑战[J].中国生物医学工程学报,2007,6(2):1-5
    [42]杨帮华,颜国正,于国清.脑机接口关键技术研究[J].北京生物医学工程,2005,24(4):309-315
    [43]杨立才,李伯敏,李光林.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241
    [44]伍亚舟,吴宝明,何庆华.基于脑-机接口系统研究现状[J].中国临床康复,2006,10(1):147-150
    [45]寿天德.神经生物学[M].北京:高等教育出版社,2009,27-31
    [46] K. Kim, S. Kim. Neural spike sorting under nearly0dB signal-to-noise ratio using nonlinearenergy operator and artificial neural-network classifier [J]. IEEE Transactions on BiomedicalEngineering,2000,47(10),1406–1411
    [47] Z. Y. Feng, W. D. Chen, X. S. Ye. A remote control training system for rat navigation incomplicated environment [J]. Journal of Zhejiang University: Science,2007,8(2):323-330
    [48]杨俊卿,苏学成,槐瑞托.基于新型多通道脑神经刺激遥控系统的动物机器人研究[J].自然科学进展,2007,17(3):379-384
    [49] G. Paxinos, C. Waston.大鼠脑立体定位图谱[M].诸葛启钏译.北京:人民卫生出版社,2005,86-97
    [50]赵以亮,李芳,宋永吉,等.特定行为下大鼠M1局部场电位变化的研究[A],中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集,西安,2010,45-47
    [51] S. Xu, S. K. Talwar, E. S. Hawley, et al. A multi-channel telemetry system for brainmicrostimulation in freely roaming animals [J]. Journal of Neuroscience Methods,2004,133(1-2):57–63
    [52] W. G. Song, J. Chai, T. Z. Han, et al. A remote controlled multimode micro-stimulator forfreely moving animals [J]. Acta Physiologica Sinica,2006,58(2):183–188
    [53] X. T. Pi, S. S. Li, L. Xu, et al. A preliminary study of the noninvasive remote control systemfor rat bio-robot [J]. Journal of Bionic Engineering,2010,7(4):375–381
    [54]张韶岷,王鹏,江君.大鼠遥控导航及其行为训练系统的研究[J].中国生物医学工程学报,2007,26(6):830-836
    [55]隋鸿锦,张书琴.猫丘脑腹后内侧核向皮质躯体感觉面区的定位投射[J].大连医学院学报,1992,14(1):42-46
    [56] L. Q. Pang, T. J. Sun, W. G. Qin. The multi-channel measurement and control system oftemperature and humidity based-on single-chip microcomputer C8051F330[J]. Control&Automation,2000,4(2):22-25
    [57] Quintic Corp. Datasheet of QN8027,[EB/OL]. http://www.quinticcorp.com/QN8027.html, July18,2010
    [58] T. Ativanichayaphong, J. W. He, C. E. Hagains, et al. A combined wireless neural stimulatingand recording system for study of pain processing [J]. Journal of Neuroscience Methods,2008,170(1):25-34
    [59]钱如竹.用运算放大器构成压控恒流源的研究[J].电测与仪表,2002,39(436):31-33
    [60]王勇,苏学成,槐瑞托.动物机器人遥控导航系统[J].机器人,2006,28(3):183-186
    [61]张典,杨志华,禹东川.多通道植入式神经电刺激系统[J].机器人,2011,33(11):673-678
    [62]董长虹. Matlab神经网络与应用[M].北京:国防工业出版社,2005,5-7
    [63] D. Helweg, H. Roitblat, P. Nachtigall. Using a biomimetric neural net to model dolphinecholocation [C]. Proceedings of the First New Zealand International Two-Stream Conferenceon Artificial Neural Networks and Expert Systems, Dunedinm,1993,247–251
    [64]赵闯,刘凯,李电生.基于广义回归神经网络的货运量预测[M].铁道学报,2004,1(3):5-10
    [65]王澎.基于熵权法的灰色广义模糊神经网络的机动车保有量预测模型[M].当代汽车,2010,5(1):5-8
    [66]谷志红,牛东晓,王会青.广义回归神经网络模型在短期电力负荷预测中的应用研究[M].中国电力,2006,4(1):4-8
    [67] D. Calvert, E. Bajcar, D. Stacey, et al. Analysis of equine gait through strain measurement [C].Proceedings of the25th Annual International Conference of the IEEE Engineering in Medicineand Biology Society, Ontario,2003,2370–2373
    [68] W. Britt, D. Bevly, G Dozier. Automated modeling of the guidance of a k-9[C]. AmericanControl Conference, Seattle, WA, USA,2008,2467–2474
    [69] W. Britt. A Software and Hardware System for the Autonomous Control and Navigation of aTrained Canine [D]. Alabama: Auburn University,2010,60-70
    [70] M. Zimmermann. Ethical guidelines for investigations of experimental pain in consciousanimals [J]. Pain,1983,16(2):109-110
    [71] M. Lou, C. C. Eschenfelder, T. Herdegen, et a1. Therapeutic window for use of hyperbaricoxygenation in focal transient ischemia in rats [J]. Stroke,2004,35(2):578-583
    [72] G. Paxinos, C. Waston. The Rat Brain in Stereotaxic Coordinates,3rd ed [M]. Beijing: People’sMedical Publishing Press,2005,86-97
    [73] T. Watanabe, K. Morimoto, M. Nakamura, et al. Modification of behavioral responses inducedby electrical stimulation of the ventral tegmental area in rats [J]. Behavioral Brain Research,1998,93(1-2):119-129
    [74]朱大年.生理学[M].北京:人民卫生出版社,2008,22-23
    [75] L. A. Benevento, L. B. McCleary. An immunocytochemical method for marking microelectrodetracks following single-unit recordings in long surviving, awake monkeys [J]. Journal ofNeuroscience Methods,1992,41(3):199-204
    [76]万晓梅.丰富环境对成年弱视大鼠视皮层17区NMDA受体的影响[D].青岛:青岛大学2011,21-24
    [77]谭郁玲.临床脑电图与脑电地形图学[M].北京:人民卫生出版社,1999,116-118
    [78] M. A. B. Brazier. A history of the electrical activity of the brain: the first half-century [M].Oxford: England: Macmillan,1961,199-122
    [79]张明岛,陈兴时.脑诱发电位学[M].上海:上海科技教育出版社,1995,3-8.
    [80]吴坚.独立分量分析在脑电信号处理中的应用[D].西安:长安大学,2009,8-12
    [81]刘衍素.癫痫脑电信号分析研究[D].成都:电子科技大学,2005,9-16
    [82]解学孔.癫痫病学[M].北京:人民卫生出版社,1995,2-6
    [83] R. J. Racine. Modification of seizure activity by electrical stimulation Ⅱ: motor seizure [J].Electroencephalography and Clinical Neurophysiology,1972,32(3):781-794
    [84]李颖洁,邱意虹,朱贻盛.脑电信号分析方法及其应用[M].北京:科学出版社,2009,20-26
    [85] T. Ning, J. D. Bronzino. Nonlinear analysis of the hippocampal subfields of CA1and thedentategyrus [J]. IEEE Transactions on Biomedical Engineering,1993,40(9):870-876
    [86] T. Ning, J. D. Bronzino. Autoregressive and bispectral analysis techniques: EEG applications [J].IEEE Engineering in Medicine and Biology Magazine,1990,9(1):47-50
    [87] X Tan, I.G. Campbell, L Palagini, et al. High internight reliability of computer-measured NREMdelta, sigma, and beta: biological implications [J]. Biol Psychiat,2000,48(10):1010-1019
    [88]郁可,郁阿丽,张永胜.小波神经网络在脑电信号数据压缩与棘波识别中的应用[J].生物物理学报,1998,14(2):276-281
    [89]游荣义,徐慎初.脑电信号的高阶奇异谱分析[J].生物物理学报,2003,19(2):147-150
    [90]刘河生,杨福生.一种改进的脑电癫痫波自动分析系统[J].清华大学学报,2002,42(3):304-308
    [91]崔锦泰.小波分析导论[M].程正兴译.西安:西安交通大学出版社,1997,36-38
    [92] W. B. Collis, P. R. White, J. K. Hammond. Higher-order spectra: the bispectrum and trispectrum[J]. Mechanical Systems and Signal Processing,1998,12(3):375-394
    [93]沈民奋,孙丽莎.现代随机信号与系统分析[M].北京:科学出版社,1998,6-12
    [94]吴宏伊.实验大鼠诱发脑电及癫痫脑电信号研究[D].成都:电子科技大学,2006,14-16
    [95] H. Jing, M. Takigawa. Comparison of human ictal, interictal and normal non-linear componentanalyses [J]. Clinical Neurophysiology,2000,111(7):1282-1292
    [96] T. F. Coleman, Y. Li. On the convergence of reflective Newton methods for large-scalenonlinear minimization subject to bounds [J]. Mathematical Programming,1994,67:189-224
    [97]艾玲梅,黄力宇,黄远桂,等.利用双谱分析的癫痫脑电特征研究[J].西安交通大学学报,2004,38(10):1097-1100
    [98]沈民奋,孙丽萍.心音信号的非高斯AR模型双谱分析[J].中国生物医学工程学报,2000,19(1):72-77
    [99] L. D. Iasemidis, D. S. Shiau, J. C. Sackellares. Dynamical resetting of the human brain atepileptic seizures: application of nonlinear dynamics and global optimization techniques [J].IEEE Transactions on Biomedical Engineering,2004,51(3):493-506
    [100] S. M. Pincus. Approximate entropy as a measure of system complexity [J]. Proceeding of theNational Academy of Sciences of the United States of America,1991,88(3):2297-2301
    [101]黄华品,陈清棠,郑安.健康人不同生理状态下的脑电近似熵的观测[J].中国应用生理学杂志,2000,16(4):321-323
    [102]黄华品.脑电图功率谱和近似熵在人脑发育过程中的研究[J].卒中与神经疾病,2000,7(1):4-6
    [103] C. J. Stam, B. W. Van Dijk. Synchronization likelihood: an unbiased measure of generalizedsynchronization in multivariate data sets [J]. Physica D:Nonlinear Phenomena,2002,163(3-4):236–251
    [104] R. Ferri, C. J. Stam, B. Lanuzza. Different EEG frequency band synchronization duringnocturnal frontal lobe seizures [J]. Clinical Neurophysiology,2004,115(5):1202-1211
    [105] G. F. Ball, L. V. Riters, J. Balthazart. Neuroendocrinology of song behavior and avian brainplasticity: multiple sites of action of sex steroid hormones [J]. Front Neuroendocrinol.2002,23(4):137-178
    [106] K. Bharti, A. B. John, C. Melisa. Auditory brainstem responses to airborne sounds in theaquatic frog: Xenopus laevis: correlation with middle ear characteristics [J]. Journal ofComparative Physiology A,2006,192(8):381-387
    [107] N. J. Hamill, M. D. McGinn, J. M. Horowitz. Characteristics of auditory brainstem responsesin ground squirrels [J]. Journal of Comparative Physiology B,1989,159(5):159-165
    [108] J. A. Sisneros, A. H. Bass. Seasonal Plasticity of Peripheral Auditory Frequency Sensitivity [J].The Journal of neuroscience,2003,23(3):1049-1058
    [109] J. A. Sisneros, A. H. Bass. Seasonal plasticity of peripheral auditory frequency sensitivity [J].The Journal of neuroscience,2003,23(2):1049-1058
    [110]张春燕.实验大鼠的体外受精技术研究[D].南京:南京农业大学,2007,37-38
    [111] B. Katbamna, C. Thodi, J. B. Senturia. Auditory-Evoked Brainstem Responses in the TorpidDeermouse [J]. Physiology&Behavior,1996,59(1):189-194
    [112] D. Zhang, J. G. Cui, Y. Z. Tang. Plasticity of Peripheral Auditory Frequency Sensitivity inEmei Music Frog [J]. PLOS ONE,2012,7(9):1-6
    [113] E. F. Brittan-Powell, J. Christensen-Dalsgaard, Y. Tang, et al. The auditory brainstem responsein two lizard species [J]. The Journal of the Acoustical Society of America,2010,128(4):787-794
    [114] J. B. M. Goense, A. S. Feng. Seasonal Changes in Frequency Tuning and Temporal Processingin Single Neurons in the Frog Auditory Midbrain [J]. Journal of Neurobiology,2005,65(1):22-36
    [115]薛薇.统计分析与SPSS的应用(第三版)[M].北京:中国人民大学出版社,2011,188-189
    [116] J. Lucas, T. Freeberg, A. Krishnan, et al. A comparative study of avian auditory brainstemresponses: correlations with phylogeny and vocal complexity, and seasonal effects [J]. Journalof Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,2002,188(5):981-992
    [117] J. R. Lucas, T. M. Freeberg. Information and the chick-a-dee call: communicating with acomplex vocal system. Ecology and behavior of chickadees and titmice [M]. England: OxfordUniversity Press, Oxford,2007,199-213
    [118] A. D. Tramontin, E. A. Brenowitz. Seasonal plasticity in the adult brain [J]. Trends inneurosciences,2000,23(6):251-258
    [119] N. J. Hamill, M. D. McGinn, J. M. Horowitz. Auditory brainstem responses in ground squirrelsarousing from hibernation [J]. Journal of Comparative Physiology B: Biochemical, Systemic,and Environmental Physiology,1989b,159(1):167-172
    [120] S. Rasika, F. Nottebohm, A. Alvarez-Buylla. Testosterone increases the recruitment and/orsurvival of new high vocal center neurons in adult female canaries [J]. Proceedings of theNational Academy of Sciences,1994,91(6):7854-7858
    [121] G. T. Smith, E. A. Brenowitz, M. D. Beecher, et al. Seasonal changes in testosterone, neuralattributes of song control nuclei, and song structure in wild songbirds [J]. The Journal ofneuroscience,1997,17(2):6001-6010
    [122] I. Obeid, J. C. Morizio, K. A. Moxon, et al. Two multichannel integrated circuits for neuralrecording and signal processing [J]. IEEE Transactions on Biomedical Engineering,2003,50:255-258